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Abstract—The frequency of recent headlines indicates that
attacks on governmental and corporate computer networks are
increasing. Once they infect one computer, the attackers are
quite likely to explore the network by accessing additional
computers. Such “lateral movement”, i.e., the process attackers
use to move from one computer to the next in a compromised
network, increases the difficulties of preventing data exfiltration.
To deal with challenges from large-scale data and little knowledge
of the attackers, we propose Latte, a graph-based detection
system to discover potential malicious lateral movement paths.
We model computers and accounts as nodes, and computer-to-
computer connections or user logon events as edges. We address
the lateral movement problem in two ways. Starting with an
infected computer or account, forensic analysis quickly identifies
other compromised computers. To discover a new attack, general
detection identifies unknown lateral movement across nodes
which are not known to be compromised. A key component for
general detection is a remote file execution detector which filters
out the majority of the rare paths in the network. We provide
separate algorithms for these subproblems and validate their
effectiveness and efficiency on two, large-scale datasets, including
one with a confirmed attack and one from a penetration test.

Index Terms—Lateral Movement, Advanced Persistent Threat

I. INTRODUCTION

Attackers are successfully penetrating governmental and
corporate computer networks with the intent of exfiltrating
sensitive data at an alarming rate. Attacks that are directed
towards organizations often begin with a spearphishing cam-
paign aimed at targeted individuals which attempts to co-
erce the potential victims into installing malware on their
computers by opening an attachment or clicking a malicious
link. Once executed, the malware typically drops a backdoor
providing the attacker with remote control over the infected
computer. Next, the attacker begins to use lateral movement
techniques to explore the network, i.e., the process an attacker
uses to move from one computer to the next in a compromised
network [1].

Lateral movement can be viewed as a set of malicious
paths corresponding to the attacker’s activity within a large
graph of benign connections created by the daily operation of
the organization’s users. Prior studies have shown that graph-
based algorithms are promising for monitoring the network
to discover vulnerabilities [2], [3] or detect anomalies [4],
[5], [8]. However, they often have strong assumptions, either
for the network, e.g., each computer has a certain defined

vulnerability state [1], or for the targeted scenario, e.g., anoma-
lous behaviors will result in unusual substructural patterns [5].
Also, most previous studies employ datasets that are either
small or contain simulated attacks.

The two most important problems that organizations face
related to lateral movement include forensics analysis and
general detection.

Forensic Analysis Problem. Forensic analysis is needed when
an organization determines that its network includes a compro-
mised account or computer which is exhibiting confirmed evi-
dence of a severe threat. In this case, the infected organization
must quickly mobilize to identify and disable all compromised
accounts and computers. For the forensic analysis problem
depicted in Figure 1, we consider both inbound and outbound
paths including the compromised computer. For inbound path
analysis, we search for the malicious path or paths that lead
to the infected computer. Similarly for outbound paths, we
search for the malicious path or paths originating from the
known infected computer.

General Detection Problem. While the forensic analysis
problem deals with the case where an infected computer is
already known, general detection involves identifying infected
computers or compromised user accounts and the malicious
lateral movement paths in the network connection graph with-
out any prior confirmed detections. Without prior detections,
analysts spend much of their time hunting for evidence of
possible intrusion including lateral movement. In other words,
the task is to first discover the initial infected computer or
compromised user account.

To address both the forensics analysis and general detection
problems, we propose Latte, a new graph-based, /ateral move-
ment defection system to discover malicious lateral movement
paths. Latte analyzes large-scale event logs collected from
operational networks. In our system, we model computers and
accounts as nodes, and computer-to-computer connections or
user logon events as directed edges.

The system first uses Kerberos [6] service ticket request
events to construct the network connection graph. Kerberos
is a computer network authentication protocol which allows
nodes communicating over a non-secure network to prove their
identity to another in a secure manner. For the forensics anal-
ysis scenario, Latte uses this connection graph in combination
with a list of confirmed malicious nodes to identify possible
malicious lateral movement. For general detection, which is
illustrated in Figure 2, Latte first correlates a number of system
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Fig. 1. Forensic Analysis. A known compromised node (denoted as a red
star) is discovered and the task is to identify the unknown compromised com-
puters and user accounts (blue nodes) along the malicious access paths (red
dashed lines). Searching for potentially compromised nodes which connect
to the known compromised node considers inbound paths, while discovering
downstream nodes which are connected to by the known compromised node
studies outbound paths.
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Fig. 2. General Detection. The figure represents all the user accounts and
computers in a large-scale network without any prior confirmed intrusions.
The figure indicates that one computer in the graph is suspicious due to the
detection of a possible remote file execution. The general detection task is to
identify the malicious lateral movement path involving the blue nodes.

and security events to indicate possible remote file execution. It
then combines these possible remote file execution detections
with rare, anomalous paths in the network connection graph
to significantly filter out benign lateral movement activity. To
aid in the detection of malicious lateral movement, the figure
indicates that one suspicious computer in the network has
generated an alert indicating a potential remote file execution
(RFE), a key component of lateral movement. When operating
in isolation on a large graph, both the RFE and the rare
path detectors can lead to many false positives. However, by
combining these separate detection event streams, Latte can
significantly reduce the number of false positives related to
detecting the initial compromised node. The lateral movement
path is then recovered from the rare paths which include the
computer involved with the remote file execution detection.
While monitoring the entire network, Latte generates alerts
when there is suspicious lateral movement detected by our
algorithm. In some conditions, Latte could be used to auto-
matically disable an account or a computer’s network access
if the detection confidence is high enough.

Unlike an earlier graph-based system designed to detect po-

tential lateral movement [7], an important design goal for Latte
is not to require any kernel mode components to be installed
on each host computer. This allows our system to be more
easily deployed in large-scale networks without the increased
attack surface, instability, and maintenance introduced by a
kernel mode component. To achieve this goal, all of Latte’s
inputs are system and security events are generated by the
production operating system. The previous system proposed
in [7] requires potential malicious lateral movement subgraphs
to be detected in a kernel mode agent. These subgraphs are
then aggregated by a central system. As noted by the authors
in [7] and confirmed by our experiments in Section IV, the
number of potential graphs increases exponentially with the
path length. Latte instead runs in a reasonable amount of time
because the most time-consuming graph processing blocks are
implemented on a large-scale MapReduce platform.

We evaluate Latte on two datasets. Both datasets include
one instance of lateral movement. The first dataset contains
events from an actual attack and was provided to us by an
anonymized organization. In some cases, the Microsoft Threat
Intelligence Center (MSTIC) conducts joint operations with
customers to better understand targeted attacks. The second
dataset contains data from an internal penetration test on
Microsoft’s computer network. Both datasets contain at least
90 days of Kerberos service ticket request events indicating
user-computer logons and computer-to-computer connections.
Moreover, the second dataset also contains additional Win-
dows system and security events which we use to detect
possible remote file execution activity.

We validate the effectiveness and efficiency of our system

on these datasets separately. For forensic analysis, our method
can promote the malicious lateral movement paths as the most
suspicious paths in most cases. For general detection, Latte is
able to initially discover nodes that were infected, and the
corresponding lateral movement paths, during the penetration
test. Key contributions of our work include the following:
o We utilize graph concepts for the problem of tracking
malicious lateral movements across computers and accounts.
o We provide an algorithm to aid analysts in the forensic
analysis scenario to help identify lateral movement paths into
and out of a newly discovered compromised computer or
account.

o We introduce a general detection algorithm for identifying
previously unknown malicious lateral movement on a net-
work by a combination of a remote file execution detector
and a rare path anomaly detection algorithm.

» We validate our algorithms on two large-scale datasets with
known lateral movement collected on operational networks.

II. SYSTEM DESIGN

We now describe Latte, our lateral movement detection
system which is illustrated in Figure 3. System and security
events are used to construct the network connection graph
and detect potential remote file executions. Latte does not
process the events stored on the local machine. To reduce the
likelihood of log tampering on the host by the attackers, these
events are instead forwarded to Windows Event Forwarding



(WEF) servers and stored in separate logs in a MapReduce
file system. The system and security events are analyzed to
identify potential Remote File Executions (RFEs) which can
be a key component of lateral movement. A detailed discussion
of the Remote File Execution Detector is presented later in
Section III. From the network connection graph, we propose
a path-rate score which provides a measure of how rare (i.e.,
anomalous) a path is in a computer network. Given a list of
one or more compromised computers or accounts, this path-
rate score is used to assist analysts in discovering additional
compromised nodes in the Forensic Analysis Module. In the
absence of any known detections, the General Detection
Module combines the output of the Remote File Execution
Detector and the path-rate score to discover new compromised
nodes. Ranking the outputs from the Forensic Analysis Module
or the General Detection Module can be used to aid analysts in
the discovery of unknown compromised nodes. In addition, the
results of the General Detection Module can lead to automatic
disabling of compromised user accounts or computers. Latte
is fully implemented on a MapReduce platform to efficiently
process the large-scale system and security event inputs. We
next discuss the details of several of the high-level blocks in
the figure in the remainder of this section.
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Fig. 3. Latte system overview. Each box with a solid outline represents a high-
level block, while the two boxes with a blue background color represent our
two detection modules. The box with the dashed boundary is a required input
feature for the forensic analysis module. The thick black arrows correspond
to system outputs.

Network Graph Construction. The network connection
graph is G = (V, E) where V denotes the set of accounts or
computers (v, vy, ...), called nodes. E is the set of connection
relationships (ey, ey, ...) between pairs of nodes, called edges,
constructed from the Kerberos Service Ticket Request events
(e.g., 4769 Windows security events). Each Kerberos record
includes a source node, a destination node, and a timestamp
indicating when this connection occurred. Since there is an
order between the connection of a pair of nodes, we employ
directed edges in the model. We then model lateral movement
as a path which is a sequence of edges connecting a set of
nodes, e.g., vi, €1, V2, €2, ...€k, Vi +1. Since the number of edges
on this path is K, this path is called a K-hop path.

The main purpose of Latte is to identify malicious lateral
movement subgraphs in the overall network connection graph.
Lateral movement paths can take several forms including linear
paths, directed acyclic graphs (DAGs), or cyclic graphs. To
facilitate accurate and efficient processing, we first search for
malicious subpaths (i.e., rare K-hop paths), and then construct
the overall malicious graph by joining these subpaths together
based on an exact match of the source node, destination node,

and timestamp. It should be noted that since the timestamps are
required to reconstruct the malicious lateral movement graph,
we cannot aggregate multiple paths to reduce the scale of the
collected data.

Thus, one input parameter to the system is K, the desired
subpath length. From experiments in Section V, we show
that the number of K-hop paths in the network increases
exponentially as K increases. From our experience, longer
subpaths with length K > 3 miss shorter lateral movement
activity and make it more difficult to identify malicious lateral
movement paths. As a result, we set K = 2. Latte also generates
all results for 1-hop paths in case the attacker fails to make a
second movement to a third node.

Some servers located on the network contribute an ex-

tremely large number of connections. In our data, the com-
puters with such a high indegree (inbound) or outdegree
(outbound) are domain controllers (DCs), AppLocker servers
and WEF servers. To prune the search space further in the
general detection scenario, we introduce an optional filtering
mechanism, Node Filtering, to remove nodes with an inbound
or outbound which is greater than or equal to the threshold
F. Node Filtering is not required in the forensic analysis
case because the graph is already filtered based on the known
compromised node. It can be disabled in the general detection
scenario but requires more time to generate and process the
connection graph. It should be noted that by including Node
Filtering, Latte will fail to detect any rare connections to
or from the high degree node. In our experiments, setting
F = 10000 is a good compromise value between reducing
the size of the graph and the false negative rate.
Path-Rate Score. To facilitate the discovery of rare paths
in the network connection graph, Latte computes a path-rate
score which represents the probability of occurrence of the
entire path over some period of time. We first assign a weight
to each directed edge, w(v,v’) = %, which represents the
probability of a daily connection from v to v’ over an X-day
history of data, where C(v,v’) denotes the number of days v
connects to v’ during a period of X days. Ideally, X will be
as large as possible to search for activity in the distant past.
In practice, X is chosen based on the costs associated with
storing the connection logs and the computation time required
to construct and process the graph.

The path-rate score, p, which represents to probability of
a K-hop path, is then calculated by the multiplication of the
weights of all of its constituent edges:

p=w, e v, e ..ex, V1) = I Wi vir). (1)

For mathematical simplicity, we compute the path-rate score
in (1) assuming the edges are independent. An idea which is
similar to the path-rate score was previously proposed in [8].

Since paths are intended to model lateral movement across
nodes within a network, we add a time constraint to filter out
impossible paths. Specifically, we require edges to be created
in sequence with time(e;) < time(e;y) for i = 1,2, ---, k-1
where time(e;) denotes the timestamp when edge e; is created.

Given enough computational and storage resources, no addi-
tional constraints are required. However even after eliminating
impossible paths, the graph can still be extremely large.



To further prune the graph, Latte includes an optional time
constraint for each pair of edges. This constraint is motivated
by discussions with analysts who believe that attackers do
not typically remain active on the network for an extended
period of time to avoid detection. Formally, this constraint
requires that each pair of edges in a path must be created
within a certain period of time, |time(e;) — time(e;—1)| < T,
where |- | represents the absolute value, and 7 is a user-defined
input threshold representing the maximum amount of time the
attacker uses to make a pair of consecutive lateral movement
hops on the network. Since T only constrains a pair of edges,
this model is able to capture much longer lateral movement
activity within a single session. For example, consider 2-hop
paths el — €2 and €2 — €3. If el — €2 is determined to
be malicious, e2 — €3 can quickly be evaluated based on an
exact match of e2.

Varying T is a tradeoff between potential false positives,

false negatives, and the number of results returned by Latte.
When T is small, the filtered subgraph is small and will
only detect quick lateral movements. However, Latte will miss
any lateral movement (i.e., a false negative) if the attacker
introduces large delays between hops. On the other hand, using
large values of T results in a large number of potential lateral
movement paths which can lead to increased false positives.
Forensic Analysis Module. The forensic analysis scenario
assumes we have a list of compromised nodes as an additional
input feature, which contains at least one known compromised
computer or user account. The goal in forensic analysis is
to quickly identify all malicious lateral movement paths into
and out of each compromised node. To do so, we set this
infected node as either the starting or ending node in the 2-
hop path, and apply the path-rate score to generate all possible
outbound or inbound paths. Because we only consider a single
malicious node, the majority of the rare 2-hop paths are filtered
out revealing an extremely limited number of suspicious paths
to investigate manually. Once we confirm a malicious lateral
movement subgraph, we add the two newly discovered nodes
to the compromised node list. When there are multiple infected
nodes in the list, Latte repeats the process for each additional
node. In some cases, these individually confirmed subpaths can
be combined to reveal the entire malicious lateral movement
graph.
General Detection Module. For the general detection prob-
lem, the task is to initially detect malicious lateral movement
without the knowledge of any previously discovered compro-
mised nodes. Initially, we tried to address the general detection
problem by simply ranking the path-rate score. However, this
approach generates too many rare, but legitimate, connection
paths to discover malicious activity.

Instead, we first analyze the event logs for signs of re-
mote file execution, a key component of lateral movement.
While the Remote File Execution Detector generates far fewer
false positives, it still requires significant manual analysis.
Furthermore, identifying remote file execution alone does not
identify the potential lateral movement paths. To overcome
these issues, the General Detection Module searches for lateral
movement using the path-rate score in combination with
possible remote file execution detections on a network. The

core idea is that, by combining these remote file execution
detections with the rare connection path detections, we can in-
crease the probability of detecting malicious lateral movement
without generating a large number of false positives. There can
be a feedback loop from the general detection module to the
forensic analysis module to further analyze potential malicious
lateral movements.

Implementation. Given the large-scale datasets, Latfe cannot
be implemented using standard techniques and efficiently
executed on a single computer. Since there are millions of
nodes and hundreds of millions of edges, we implement all
of our algorithms in a large cluster using Microsoft’s Cosmos
MapReduce framework. This framework supports a SQL-like
syntax, and includes a distributed storage component. After
parsing the users’ input code, it generates a parallel, optimized
“execution plan” for the defined queries. Latte requires 44
minutes to build the Network Connection Graph and Compute
the Path-Rate Scores, 31 minutes to execute the Remote
File Execution Detector, and 3 minutes to correlate the RFE
Detector and Path-Rate Score.

III. REMOTE FILE EXECUTION DETECTION

We next discuss how we combine the Windows system
and security events to detect possible remote file execution.
Remote file execution occurs when a user on one computer
runs a program on a second computer and is often used
by attackers during lateral movement. The PsExec tool is
commonly used by IT administrators on Windows computer
networks to execute a file on a remote computer. An account
that has administrative privileges on the remote computer -
typically a domain administrator - logs on and mounts the
ADMINS share, writes an executable to this share or one
of its subdirectories, remotely installs a service pointing to
the executable, and remotely starts the service. The result
is the remote execution of a file performing the configured
actions of the IT administrator. While mechanisms such as
the PsExec example exist to facilitate remote administration
of computers on a domain, this and similar techniques are also
used by attackers to achieve lateral movement on a computer
network. Once an attacker has obtained the credentials to a
privileged account, such as a domain administrator, Remote
File Execution (RFE) can be used to infect other computers
on the network at will.

Classes of RFE extend beyond service installation. Mis-
use of the remote registration of scheduled tasks, the WMI
Win32 Process class and the Windows Remote Management
(WinRM) have also been observed in the pursuit of lateral
movement.

Remote service installations or task registrations are imme-
diately preceded by a network logon from the user performing
the action because of the associated RPC endpoint interaction.
Additionally, when the service or task is started following
the installation, we may observe a process creation related
to the service or task that was installed. At the core of this
detection technique are the service installation (7045) and task
registration (106) events. From these events, we can correlate
backward-in-time with the logon event to identify whether



there were any network logon success events (4624) by the
user who installed the service or task. Finding a match between
these within a short time-frame is highly correlated with a
remote service installation or task registration. To bring further
context to these events, we then extend the correlation by
looking for a process creation event (4688) and any share
access event (5140) that may be associated with this activity. In
summary, we are looking for a combination of the following:
a remote logon, a service installation or task registration
resulting from that logon, a process creation event of the
executable pointed to by the service or task, and optionally,
an ADMINS share access attempt.

Logon Correlation. For a remote service installation event
(7045), the Event/System/Security@UserID contains the se-
curity identifier (SID) of the user account that installed the
service. We search backward-in-time from the installation
event to find a matching Network Logon Success (4624)
event where the TargetUserSid values match. In the case of
a task registration, we are provided with the user account that
registered the task in the UserContext field of the event. We
use this information in a similar way to trace the registration
back to any remote network logon success event for that
user by correlating UserContext with the TargetUserName and
TargetDomainName fields.

Task Correlation. In the case of the task registration
we are left with some extra work to do as the path
to the executable is not provided in this event. The
Event/System/Correlation @ ActivityID field in the XML pro-
vides a robust mechanism to find any associated “Task Created
Process” (106) events for this task. Performing a forward-in-
time correlation on the ActivityID, or where this is not avail-
able the TaskName, gives us a reliable method of obtaining
the executable’s path.

Forward Process Execution Correlation. Once we have
identified where a remote task or service installation has taken
place, we can then correlate this forward-in-time with any
associated process execution (4688) events. Given the name,
path and ID of the process from the service or task data, we
can look for the first process execution event that matches
this criterion. Additionally, restricting the user and logon ID
associated with the process execution to be a system session
with a logon ID of ‘0x3e7’ in the event indicates that it is a
service installation.

Share Access Correlation. Between the time of the remote
logon and the service or task installation, we also look for a
Share Access event (5140) for the \\W"\ADMINS$ share. We use
this as evidence that a file may have been written remotely at
the time of its execution. The Subject user details in the 5140
event correlates with the Target user details from the 4624
logon event, in addition to the IP address that is the source
of the share access and logon. The result of this process is a
high fidelity detection of a remote service or task installation,
enriched with the full logon event, resulting process execution
and, if available, the ADMINS$ share access used to write the
file that is executed. This refined RFE data can be used to
detect lateral movement on a computer network by identifying
rare or uncommon instances, as well as provide a rich, valuable
data source for analysts and incident responders.

IV. DATASETS

We utilize two datasets in this study to analyze the proposed
Latte system. Both datasets consist of Windows security and
system events plus labels from analysts for malicious activity.

An anonymized organization provided us with the first,
Attack Dataset containing a confirmed attack exhibiting lateral
movement among a collection of four computers in a large
network. This dataset only contains the Kerberos Service
Ticket Request (4769) event logs with a total of 1,190,639
active nodes and 250,614,631 connections (edges) collected
over a 90-day period leading up to the detected attack. Since
this dataset contains the connection events from the 4769
Kerberos Service Ticket request logs, it enables us to only
evaluate the Forensic Analysis Module.

The second, Penetration Test Dataset was generated by
Microsoft and includes an attack with lateral movement con-
ducted by a penetration tester. This dataset includes all of the
Windows events found in Section III. As a result, this dataset
allows us to evaluate the performance of Latte’s General
Detection Module. The penetration tester was not aware of
how Latte detects lateral movement. For a six-month period
leading up to the penetration test, the number of source nodes
is 3,412,030, and the minimum, maximum, and mean out
degree is 1, 1,631,308, and 336, respectively. Similarly, the
minimum, maximum, and mean in degree is 1, 3,273,616, and
346, respectively.
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Fig. 4. The lateral movement of a real-world attack. The arrows indicate the
connection direction. The red arrows correspond to a one-time connection, the
thin black arrow indicates there were several connections before the attack
day, and the bold black arrow means there was a regular connection pattern
before the attack day. Connections are ranked in chronological order.

RANKING OF THE TARGET PATHS (LATERAL MOVEMENTS BY
COMPROMISED NODES) WHEN DIFFERENT SOURCE NODES ARE
PROCESSED BY THE Forensic Analysis Module.

V. FORENSIC ANALYSIS RESULTS

Target Paths el — e2 e2 — e3
Path Direction Outbound Inbound Outbound Inbound
from Computer]l | to Computer3 | from Computer2 | to Computerd
# of all possible paths 1,467,837 9,243,802 1,476,721 10,009,740
# of paths within time constraints 22,793 447,828 28,219 566,693
Ranking of the target path 1 1 15 4
# of paths tied for the same rank 1 11 2 4
Top-1 Precision / Recall 1.0/1.0 Multiple Ties Multiple Ties 0.0/0.0
Top-5 Precision / Recall 02/1.0 Multiple Ties 0.25/0.5 Multiple Ties
Top-25 Precision / Recall 0.04 /1.0 0.04 /1.0 0.08 /1.0 025/1.0
TABLE I

In this section, we evaluate the performance of Latte for

the forensic analysis scenario. We test our system on one
confirmed attack and one penetration test attack initiated by a
professional tester on a very large computer network.



Path Direction Outbound Inbound
from Computer]l | to Computer3
# of paths within time constraints 16,584,643 42,079,507

Ranking of the target path 1 1
# of paths tied for the same rank 10 125
Top-10 Precision / Recall 0.1/1.0 Multiple Ties

TABLE II
RANKING OF THE TARGET PATHS IN THE FORENSIC ANALYSIS SCENARIO
FOR DETECTING LATERAL MOVEMENT DURING A PENETRATION TEST
WHEN THE Forensic Analysis Module 1S APPLIED TO DIFFERENT
REFERENCE NODES.

System Setup. We first describe the parameter settings we
use for Latte both for forensic analysis and, later, for general
detection. For all experiments, we set X = 90 days which is
the maximum duration of one of our datasets.

Path Length. We analyzed how many K-hop paths can
be constructed for different values of K for the Attack
DataSet, and found 3,162,870, 70,242,941, 1,642,110,520, and
51,625,886,182 paths for K ranging from 1 to 4, respectively.
The number of paths increases exponentially with a factor
ranging from 22 to 31 as K increases. For all values of K, we
apply aggressive node filtering with an inbound or outbound
threshold of F = 1,000. This low threshold value was required
in order to compute these results for K = 4 hops. The table
indicates that there are 3,162,870 1-hop paths. This number is
significantly less than the 250 million edges reported for this
dataset in Section IV because of this aggressive filtering. There
are clearly too many 4-hop paths for consideration; therefore,
we exclude all 4-hop paths from our remaining experiments.
Time Constraint. Unless otherwise specified, we include the
optional, consecutive hop time constraint and set 7 = 2 hours
to reduce the computational and storage burdens. While we
set the threshold between two successive movements (moving
from one node to another) to be 2 hours, it is possible that
attackers may slow their lateral movement to escape detection.
However, slowing the lateral movement also greatly increases
the risks of being caught, since attackers are forced to remain
on the network much longer.

Based on these results, we only consider 2-hop paths for

Latte, i.e., paths with three nodes (computers or accounts) and
two edges (a connection from one node to another). In general,
we find that using 2-hop paths leads to good detection rates,
and this parameter setting is much more efficient than running
Latte using path lengths with K > 3.
Case Study 1: Confirmed Lateral Movement Attack. We
first analyze the Attack Dataset using the Forensic Analysis
Module for the forensic analysis case. As depicted in Fig-
ure 4, the cybercriminal first logged on to Computerl, i.e., a
computer in a meeting room, then to another computer, i.e.,
Computer2, in a different meeting room. The attacker next
moves to Computer3, and finally to Computer4. Afterwards,
the attacker explores the network by jumping back and forth
among the four compromised computers. The entire lateral
movement process lasts for 1 hour and 8 minutes.

For the two, 2-hop paths involving malicious connections,
we apply the Forensic Analysis Module to the two reference
nodes separately, and provide the results in Table I. We include
both the outbound and inbound rankings for the same 2-hop

[ Target Paths [ &2—e3 [ ed—e3 [ el —e5 | el —eb |
Day 2 2 3 3
# of paths within time constraints | 264,581,288 264,581,288 608,156,343 608,156,343
Path-rate score 1.2345679¢-4 | 1.2345679e-4 | 3.7037037e-4 | 3.7037037e-4
Ranking of the target path 1 1 219,749,246 219,749,246
# of paths tied for the same rank 44,087,827 44,087,827 15,211,115 15,211,115
TABLE III

RANKING OF TARGET PATHS (LATERAL MOVEMENTS BY SUSPICIOUS
NODES) BY THE PATH-RATE SCORE FOR DIFFERENT MALICIOUS PATHS.

path to investigate the effects of whether the first or the last
node was identified to be malicious. For example, when it is
an outbound path for the 2-hop path from el to e2, the analyst
would be told that Computer] is the malicious node. Similarly,
Computer3 would be the identified as the malicious node for
the inbound path results. We have several key observations.
First, after adding the time constraints in the second row, the
total number of possible paths is reduced by more than 90%
compared to results in the first row without the time constraint.
Second, the outbound and inbound rankings for the same 2-
hop path show that the number of possible connections can
vary significantly depending on the malicious node. Third, our
Forensic Analysis Module generates good ranking results for
different paths and reference nodes, where all malicious paths
rank at or near the top out of millions of possible paths. Unlike
typical detection tasks, forensics analysis is a ranking task,
and the goal is for the malicious path to be included near
the top of the ranked results. Multiple 2-hop paths may have
the same path-rate score, and are therefore tied for the same
rank. We include the number of tied paths to indicate that
the analysts only need to manually investigate a small number
of potential malicious outbound or inbound paths. For this
dataset, the 2-hop path from el to e2 is either first or tied
for the first in both path directions. Also, the outbound, 2-hop
path from e2 to e3 is ranked 15th and another path shares
its path-rate score. This data indicates that 14 paths have a
lower path-rate score, some of which may be tied. Since this
is a ranking task, we include the Top-K precision and recall
results. Finally, the Forensic Analysis Module is robust even
when there are regular connections between two computers
(€3), and our model can still promote the malicious paths to
the top of the ranked list. This is important because it indicates
that both edges in the 2-hop path do not necessarily need to
have the lowest possible path-rate score to be identified. Note
that in the case of identifying the outbound path from e2 to €3,
the target malicious path is not ranked first. However, we did
find that the top ranked path is a loop from e2 to e4, which also
involves malicious lateral movement. These results validate the
effectiveness of our method in the forensic analysis scenario.

VI. GENERAL DETECTION RESULTS

To investigate whether Latte can address the general de-
tection task at large-scale, we conducted several experiments
on the Penetration Test Dataset. This dataset contains all the
events noted in Section III collected during a penetration
test on a large-scale network conducted by a professional
tester. The lateral movement graph from the penetration test
is depicted in Figure 5, and the lateral movement activity
involves one user account and four computers. The first



connection, el, was made on the first day and the third day.
The connections represented by e2, e3 and e4 occurred on the
second day while the e5 and e6 connections were generated
on the third day. We first evaluate the detection results of
the graph’s 2-hop path results ranked by the path-rate score
and Remote File Execution Detector in isolation. Then we
present Latte’s results, which processes all the events in the full
dataset. While we did not use the optional Node Filtering for
forensic analysis, we do include it for these general detection
experiments, with a connection threshold F = 10000, to prune
the graph.
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Fig. 5. Connection graph for the Penetration Test Dataset.

Case Study 2: Path-Rate Score Ranking and RFE Detec-
tions in Isolation. First, we consider graph-based detection
by only ranking the path-rate score, and the results are
summarized in Table III. After filtering all potential paths as
described in Section II, this dataset has 264 million, 2-hop
paths on Day 2 and 608 million, 2-hop paths on Day 3. Among
them, 88,175,654 paths are tied on Day 2 for the first rank and
share the same minimum path-rate score, 1/X2 =1.235¢ — 4,
since both edges on the path have just one connection during
the observation window (X = 90 days).

The results from this experiment indicate that the path-rate
score in isolation is not a good candidate for general detection.
One reason is that many of the paths are tied for the top rank.
While we found that the penetration tester’s movements were
rare in general, many other paths on the network were equally
rare or even more rare. Even though one 2-hop path was ranked
first, it was tied with millions of other paths with the same
path-rate score. Therefore, we conclude that only ranking the
path-rate score does not have high enough precision to be used
for general detection.

Next, we report the performance of the Remote File Ex-
ecution Detector. The Remote File Execution detections on
the network significantly reduce the amount of raw data that
analysts need to manually inspect to detect the penetration
testers. As shown in Table IV, there were 45 alerts of possible
remote file execution on the network on the second day of the
exercise, and two of these were due to the penetration tester’s
activity on nodes Computer3 and Computer4d in Figure 5.
There were no indications that any of the other alerts were
due to malicious lateral movement activity and are considered
to be false positives. It is worth noting that the attack graph
in Figure 4 does not include any user nodes that the analysts
could identify. Presumably this is because the attacker had
already installed a backdoor on the computer sometime in the
past. This result demonstrates that the Remote File Execution

Metric Value
# of potential remote file execution 45
events generated in the second day
Ranking of malicious path e2 — €3 1
Ranking of malicious path e4 — e3 1
# of paths tied for the top rank 2
which include a node with an RFE detection
Combined Top-1 Precision / Recall 1.0/0.2
Combined Top-5 Precision / Recall 04704

TABLE IV
RANKING OF THE TARGET PATHS BY THE General Detection Module FOR
THE PENETRATION TEST WITH ALL THE WINDOWS SYSTEMS AND
SECURITY EVENTS FOUND IN SECTION III.

Detector can be used for general detection with daily manual
inspection by analysts.

Case Study 3: General Detection Results Using All the
Data. While the previous results indicate that the RFE detector
can be used to identify malicious remote file execution with
manual inspection, there are still too many false positives to
use it for automatic account disabling. In addition, analysts
often tire from doing repetitive manual analysis day after day
without discovering malicious activity. For the twenty days of
logs preceding and including the lateral movement in Figure 5,
777 Remote File Execution events were generated on the
network. To further improve the system, we next investigate
combining the RFE detection results with the potential lateral
movement graph in the General Detection Module.

We correlated all the RFE events on Day 2 with Latte’s
daily, network connection graph. A summary of the results
for this experiment is provided in Table IV. Of the 45
potential RFE events that were generated on the second day,
we manually inspected all the 2-hop paths which included
any of these nodes. As noted in Table III, we found that
the two, 2-hop paths (e2 — €3 , e4 —> €3) with lateral
movement had the smallest path-rate score —i.e., they ranked
at the top of list. In addition, these malicious 2-hop paths were
the only two items that were tied with the smallest path-rate
score; none of the 2-hop paths involving the other RFE false
positive nodes had the smallest path-rate score. Although not
conclusive, this exercise provides evidence that it is possible
to automatically discover a detection by intersecting rare RFE
events with rare paths in Latte’s connection graph. In other
words, this experiment demonstrates that we need to combine
the RFE detection with the path-rate model to overcome the
high false positive rate for the RFE detector. RFE detection
alone is not sufficient.

VII. RELATED WORK

Lateral Movement Detection. The detection of lateral move-
ment is an understudied problem, although a few papers have
explored the topic. Neil, et al. [8] propose a graph-based
model to detect anomalous paths in a graph. An anomaly
score based on the connection’s p-value is first learned. Then
a hidden Markov model is used to identify anomalous paths.
To make our system scalable, we instead use probabilities
to construct the path score. Also, we add the RFE detector
to more effectively detect intrusions. We tested our system
on actual attack data and red team activity with confirmed



lateral movement, where Neil, er al. tested their algorithm on
simulated and network data. No attacks were confirmed in
38 detections in their network data during a 20 day period.
Authentication data is modeled in [9] using a bipartite graph,
and the authors measure the risk of credential hopping by
computing the largest connected component of this graph. In
[1], Purvine et al. assume each computer has a vulnerability
state, construct a reachability graph of the network, and then
define an impact metric to monitor the network’s security. The
authors then experiment on datasets with artificially injected
vulnerabilities. In [10], the authors propose a defense-based
zero-sum game to prevent, or at least slow down, an attacker
from reaching a target node on a computer network. Fawaz, et
al.[7] propose a hierarchical system to detect lateral movement
on a graph. The lowest-level agents in the system propose
subgraphs for each host of potential lateral movement. A
central agent then combines these local subgraphs across hosts
to recover potential lateral movement paths. Therefore, this
system requires that a custom agent be installed on each
host. Latte, on the other hand, only requires standard system
and security events already included in recent releases of the
Windows operating system. In addition this work does not
specifically address the forensic or general detection scenarios
and does not detect remote file execution. Soria-Machado,
et al. [11] suggest rules for possibly detecting pass-the-hash
attacks for the NTLM protocol and pass-the-ticket attacks for
the Kerberos protocol based on system and security events
on Windows Vista, Windows 7, and Windows Server 2008
environments. These rules attempt to identify potential lateral
movement as anomalous connections to high value computers
(e.g., domain controllers).
Cybersecurity. Several graph-based detection algorithms have
been proposed for computer security, and many of them focus
on detecting certain network vulnerabilities. Heat-ray [2] tries
to determine potential configuration changes in a network
regarding computers and user accounts as nodes, and the
privileges of source nodes on destination nodes as edges.
Attack graphs are generated in [3] where nodes represent
possible attack states while edges represent changes of state.
Recently, more studies focus on malware detection on real
large-scale data, which targets the security problem in large
enterprises. Examples include [12], [13], [14], [15], [16], [17].

VIII. CONCLUSIONS

In this paper, we propose Latte, a new graph-based system to
discover malicious lateral movement paths in a compromised
computer network. The network connection graph is con-
structed from Windows security events generated by Kerberos
service ticket requests. Our findings suggest the effectiveness
and efficiency of graph-based algorithms in detecting lateral
movement. For the forensic analysis problem, we show that
using the network connection graph processed with the path-
rate score and the Forensic Analysis Module is sufficient for
generating the lateral movement graph with the detection of
one or more confirmed malicious computers or user accounts.
For the general detection problem, relying on the path-rate
score alone leads to too many potential, but legitimate, rare

paths for manual investigation by analysts. To overcome
this problem, we propose the General Detection Module
which combines the path-rate score with possible Remote
File Execution detections to filter out most of the benign
lateral-movement paths. We demonstrate this idea by using a
remote file execution detector which correlates six additional
Windows system and security events caused by the installation
of a new service or service, or the creation of a new process.
These new tools for detecting lateral movement activity, as
well as the initial detection of a compromised node, are very
helpful for analysts in combatting this extremely challenging
problem.
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