
Protecting Sensitive Web Content from
Client-side Vulnerabilities with CRYPTONs

Xinshu Dong
Dept. of Computer Science,
National Univ. of Singapore

xdong@comp.nus.edu.sg

Zhaofeng Chen∗
Inst. of Computer Science and

Technology, Peking Univ.
chenzhaofeng@pku.edu.cn

Hossein Siadati∗
Dept. of Computer Science

and Engineering, Polytechnic
Inst. of New York Univ.
shs422@nyu.edu

Shruti Tople
Dept. of Computer Science,
National Univ. of Singapore

shruti90@comp.nus.edu.sg

Prateek Saxena
Dept. of Computer Science,
National Univ. of Singapore

prateeks@comp.nus.edu.sg

Zhenkai Liang
Dept. of Computer Science,
National Univ. of Singapore
liangzk@comp.nus.edu.sg

ABSTRACT
Web browsers isolate web origins, but do not provide direct abstrac-
tions to isolate sensitive data and control computation over it within
the same origin. As a result, guaranteeing security of sensitive web
content requires trusting all code in the browser and client-side ap-
plications to be vulnerability-free. In this paper, we propose a new
abstraction, called CRYPTON, which supports intra-origin control
over sensitive data throughout its life cycle. To securely enforce
the semantics of CRYPTONs, we develop a standalone component
called CRYPTON-KERNEL, which extensively leverages the func-
tionality of existing web browsers without relying on their large
TCB. Our evaluation demonstrates that the CRYPTON abstraction
supported by the CRYPTON-KERNEL is widely applicable to pop-
ular real-world applications with millions of users, including web-
mail, chat, blog applications, and Alexa Top 50 websites, with low
performance overhead.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection;
K.6.5 [Management of Computing and Information Systems]:
Security and Protection

Keywords
Web security, browser security, data protection

1. INTRODUCTION
Presently, web browsers are designed to isolate content between

web origins [38], preventing data owned by one origin from being
accessed by other origins. However, in practice, information pro-
cessed within a web origin’s protection domain often has different
∗Research done when visiting National University of Singapore.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2516743.

levels of sensitivity. Some application data — which we refer to as
sensitive data in this paper — is critically sensitive and more im-
portant than the rest of application data. Social security numbers,
medical reports, enterprise emails with financial data, tax-related
information, bank transactions, and user passwords are all exam-
ples of such sensitive data. Web application owners often wish to
strongly isolate sensitive data within their applications, to protect it
from vulnerabilities in the code that processes non-sensitive infor-
mation.

Under the origin-based model, web applications processing sen-
sitive data, such as password managers [43] and encrypted chat or
email clients [41], have to completely trust the client-side browser’s
origin-based isolation mechanisms and the correctness of the client-
side application code [2, 67]. Information belonging to one origin
is accessible to all the application code running within the protec-
tion domain of that origin, as well as the browser code (including
add-ons), even if they do not need to access such information. The
client-side web application and the underlying browsers consist of
millions of lines of code and have had their steady share of secu-
rity vulnerabilities historically; client-side application vulnerabili-
ties (like DOM-XSS [62]) are pervasive in client-side application
code and browser add-ons [14]. Given the scope of client-side vul-
nerabilities, protecting sensitive data within the browser environ-
ment is a serious practical concern.
Problem. The crux of the problem is that the web lacks abstrac-
tions for information owners to specify what information is sensi-
tive and how it must be processed in the client-side web browser en-
vironment. To address this problem, we envision new abstractions
that give owners control of select sensitive data over its lifetime in
the client-side browser. We term these as intra-origin data control
abstractions. In particular, we advocate that web browsers provide
these controls as first-class abstractions on the web, independently
of strengthening the browser’s origin-based isolation.

Although there has been extensive prior work on browser design,
principled mechanisms for intra-origin data control have not re-
ceived much direct attention. For instance, recent browser designs
have significantly improved privilege separation between code com-
ponents [4, 5, 16, 21, 25, 33, 46, 63, 69]. However, these techniques
do not directly allow web applications to enforce control on their
data; a compromised component with access to sensitive data can
still launder it through its export interfaces. For example, the sand-
boxed renderer process in Google Chrome [5], if compromised, can

still exploit legitimate network interfaces provided by the Chrome
kernel to leak data to attacker-controlled domains (say via an img
load) [17]. Although information control has been investigated
through language-based enforcements [22, 34, 50, 67], these mech-
anisms fail to extend the protection to the lowest level (e.g. against
attacks targeting low-level memory access). Piecemeal techniques
(such as SFI [68], JIT hardening [59], and CSP [67]) could be a
plausible basis for sensitive data protection. However, we argue
to build more direct information control primitives on the present
web.
Our solution. We design and implement a data abstraction and
browser primitive, called CRYPTON, which enables protecting sen-
sitive data throughout its lifetime in the browser. CRYPTONs are
programmed directly in existing web languages (HTML/JavaScript),
without requiring major re-engineering of existing application logic.
A CRYPTON explicitly marks a unit of sensitive data in a web page;
its semantics enforce that sensitive data and information computed
from them are tightly isolated at the lowest level (in the raw pro-
gram memory). To support rich web applications that need to ex-
ecute flexible operations on sensitive data, CRYPTONs tie sensitive
data with functions that are allowed to compute over it. These few
select CRYPTON functions are trusted to be statically verified by
web developers and are the only channels for releasing informa-
tion about sensitive web content. In addition, a CRYPTON provides
other important capabilities for protecting sensitive data in web ap-
plications — guaranteed rendering (with a proof-of-impression),
and certified delivery of user inputs to CRYPTON functions in the
browser.

Building trustworthy implementations of these abstractions is an
important, but challenging goal. The main challenge stems from
the monolithic trust model of today’s web — application servers
have to completely trust the client-side code in web browsers, add-
ons and applications.

To address this practical concern, we rethink the monolithic trust
model that web applications have on client-side code. In our de-
sign, the web server trusts a small piece of client-side code called
CRYPTON-KERNEL— a small, trusted standalone engine, which
acts as a root-of-trust for the server on the client device. The
CRYPTON-KERNEL runs in a separate OS process and sandboxes
the untrusted browser, which invokes the CRYPTON-KERNEL on-
demand to securely interpret CRYPTONs. A compromised browser
can deny access to sensitive information (denial-of-service) by re-
fusing to invoke the CRYPTON-KERNEL, but it cannot subvert the
integrity and confidentiality of sensitive data. In effect, our design
of the CRYPTON-KERNEL allows web applications to specify con-
trol on sensitive information, bootstrap rich computation on it and
build trusted paths between the user and the sensitive application
code [53].

Unlike prior research on origin-based isolation in browsers, we
do not isolate code components or memory regions; instead we
isolate sensitive data within a web application’s origin using au-
thenticated encryption. CRYPTONs make use of memory encryp-
tion [45], wherein data computed from sensitive data remains en-
crypted throughout its lifetime inside the untrusted browser’s mem-
ory. This ensures that any unintended malicious or compromised
code, whether part of the browser or the application logic, can
only access sensitive data in its encrypted form. Memory encryp-
tion allows sensitive data to be opaquely accessed by an untrusted
browser functionality (such as the network stack, data stores, lan-
guage parsers, rendering logic, and so on) as well as application
logic, without risking its confidentiality and integrity.

Therefore, the CRYPTON-KERNEL enforces its security guaran-
tees while reusing browser functionality — it does not rely on the

browser’s same-origin policy enforcement, its components such as
the HTML parser, the JavaScript/CSS engine, and the network en-
gine to ensure its security properties. The CRYPTON-KERNEL has
a TCB about 30× - 40× smaller than that of a real web browser,
such as Firefox and Google Chrome, consisting of roughly 27K
lines of code. Through manual analysis, we find that this design
can prevent more than 92.5% of known security vulnerabilities
from exfiltrating or tampering with sensitive information, in a web
browser such as Firefox (Section 4).
Evaluation on real-world applications. First, we manually mod-
ify three popular web applications to selectively use CRYPTONs to
protect sensitive web content within them, including a webmail,
a web messenger and a web forum. The results show that the
CRYPTON-KERNEL strengthens their security against a broad range
of client-side vulnerabilities, with a small (around 3-5 days of)
adoption effort. Next, we conduct an extensive macro evaluation of
the applicability of CRYPTONs on real-world web sites including
Alexa Top 50 websites, such as account signup pages like Gmail,
social networking sites like Facebook, banking sites like Bank of
America, e-commerce applications like eBay, and several others.
We treat all user inputs (form fields, text-boxes, selections, etc.)
and other manually marked content in these applications as sen-
sitive information. Our macro study shows the effectiveness of
our solution in these real-world web applications. Although not a
“turn-key” mechanism, our solution requires only moderate adop-
tion effort in the order of a few days for each application. More-
over, web developers can “opt-in” by selectively converting part
of their application logic to secure specific sensitive data or for
specific users, without breaking the rest of the application. Fi-
nally, we evaluate the performance of our prototype. Although
our WebKit-based prototype implementation is still an unoptimized
proof-of-concept, we do not perceive noticeable slowdown when
running it over real-world applications. Further evaluation also
shows that performance overhead from encryption/decryption op-
erations is also modest, less than 8% when 100% of the texts on
five test pages from the Dromaeo web benchmarks are marked as
sensitive.
Contributions. In summary, we make the following contributions
in this work.

• To the best of our knowledge, we are the first to propose a
data-centric abstraction for end-to-end data protection in web
browsers. We employ memory encryption to protect sensi-
tive data in web browsers, offering strong protection at a low
overhead.

• With the new abstraction, we propose a novel solution for
protecting sensitive web content with a small trusted com-
puting base (TCB), roughly 30× - 40× smaller than a full
browser in our prototype. Our design advocates rethinking
the monolithic (all-or-nothing) trust model between servers
and clients on the present web.

• We perform a large-scale evaluation of the applicability of
intra-origin abstractions like CRYPTONs in existing popular
applications. We demonstrate the adoptability of these ab-
stractions into a large number of real-world web sites today
with a small developer effort.

2. PROBLEM & OVERVIEW
To illustrate the need for new abstractions for sensitive data, con-

sider the example of a webmail application, such as Gmail. Cur-
rently, all code and data in client-side web applications are treated

equally in protection. However, this does not match the security
requirements in practical settings. Users may use a webmail ac-
count to access both leisure emails and corporate emails. As cor-
porate emails may contain sensitive information pertaining to trade
secrets or financial information, for corporate security, a user Al-
ice may be willing to instruct the webmail application to mark her
corporate emails as sensitive and strongly protect them from being
leaked or tampered with. Unfortunately, even if her webmail ser-
vice provider is willing, it is difficult for it to guarantee the privacy
of sensitive emails when they are processed and displayed in the
client’s web browser. The current web provides no abstractions for
webmail applications to isolate corporate emails and specify con-
trolled (but rich) computation on them at the client side.

2.1 Threat Model
In web applications like the above webmail example, sensitive

data is exposed to a large threat landscape due to vulnerabilities in
the client-side web stack. Below we discuss some of the in-scope
threats.

• Browser components. Vulnerabilities in browser components
can lead to violation of the confidentiality and integrity of
sensitive information. We measure the number of such vul-
nerabilities in Mozilla Firefox. As part of a larger study [24],
we manually examine security vulnerabilities of Firefox over
the past seven years from its bug database [29]. We find
that out of the 360 vulnerabilities accessible to us, at least
288 (80%) ones could expose sensitive information to arbi-
trary malicious script or binary code running in the browser’s
chrome privilege.

• Browser add-ons. Browser add-ons and extensions may ac-
cess sensitive data processed in browsers. Although web
browsers may prompt users to approve the permissions re-
quested by add-ons during their install time, many users may
“click-through” to grant them to the add-ons. We surveyed
the Top 30 Chrome extensions, and find that 23 request ac-
cess to Gmail; if these are installed and have vulnerabili-
ties, they can be compromised by attackers to access sen-
sitive email. 15 out of these 23 have been confirmed to
contain code-injection vulnerabilities in Carlini et al.’s recent
work [14].

• Application components. Web application components can
also access sensitive data in web applications. The Gmail In-
box page contains 171.1 KB code (including HTML, CSS,
JS), while only 1.7 KB of it needs to access email content.
However, client-side web application vulnerabilities are per-
vasive, including mixed content, unsafe evals, capability
leaks, DOM-XSS, and insufficient origin validation.1

In this paper, we focus on providing two security guarantees on
sensitive data processed in the client-side browser: integrity and
confidentiality. Our design assumes that there are client-side vul-
nerabilities in web applications (including add-ons) and browsers,
but trusts the underlying OS, its windowing and graphics interfaces.
Our defenses preclude many vulnerabilities (outlined above) from
corrupting sensitive data or leaking unprotected sensitive data to
adversaries. For instance, attackers can exploit client-side vulner-
abilities to leak sensitive emails to remote adversaries. However,
1Gmail does not include external libraries and does not mix con-
tent from HTTP sites; nevertheless, several other web applications
we study in Section 4 include external libraries and mixed content,
which poses serious threat to sensitive information.

in our solution, those emails are in encrypted form and the decryp-
tion keys are inaccessible to attackers. Several attacks are outside
the scope of the guaranteed security properties; we discuss them in
Section 2.4.

2.2 CRYPTON: A New Abstraction
We introduce a new data protection abstraction called CRYPTON.

Conceptually, CRYPTONs are akin to classes in object-oriented lan-
guages, which encapsulate sensitive data together with the opera-
tions that can legitimately operate on it. CRYPTONs provide the
following 4 main capabilities.
Information isolation. We enable transparent isolation of sensi-
tive data from other data and code in web browsers. In our web-
mail example discussed earlier, the confidentiality of the sensitive
corporate emails must be maintained by authenticated encryption.
Other examples include credit card numbers, contents of shopping
carts in e-commerce applications, user passwords in login pages,
payee accounts in online banking sites, and so on. Our assumption
is that preventing malicious code from running in the complex web
browser is not tractable; however, we aim to prevent unauthorized
leakage or tampering of sensitive data.
Controlled operations. If we isolate sensitive data from all com-
putation, it would severely disincentivize web applications from
outsourcing rich functionality to the client-side browser. There is a
trade-off between the information isolation guarantees and the rich-
ness of functionality that can operate on sensitive information. In
our webmail example, Alice should be able to use the webmail’s
interfaces on her corporate emails for reading, composing, format-
ting (configuring fonts, colors, HTML formatting or alignments),
archiving, forwarding and so on. For practical usage, we aim to
allow such owner-specified operations to compute output from sen-
sitive data. However, such output must be protected from confiden-
tiality and integrity attacks by all other code in the browser, and
thus is encrypted by default. The data owner (e.g., the webmail
server) can also specify which operations reveal computed infor-
mation; however, we leave the design and choice of these functions
up to the owner. In this work, we make encryption possible on sim-
ple data types, such as strings and integers, to limit the TCB size
— of course, more complex data types (such as arrays, formatted
HTML) can still include encrypted data in them (see Section 3.4).
Certified user inputs. In this work, we focus on enabling users
to enter sensitive text strings via a trusted keyboard2. Specifically,
we provide a trusted path for user inputs between the OS keyboard
events and the trusted web application event handlers (specified as
CRYPTON functions), through the untrusted web browser. Our fo-
cus on keyboard events is guided by the observation that a signifi-
cant fraction of sensitive data on the web pertains to user keyboard
inputs. In our webmail example, Alice signs in by using her pass-
word, composes a sensitive email by typing, and searches for key-
words also by using the keyboard.
Proof of impression. Malicious client-side code can attempt to
disable critical messages that are supposed to warn users of poten-
tial threats. For example, the webmail server may show a warn-
ing for emails suspected to be scams and banks may want to warn
of fraudulent activities. As another example, when the webmail
server detects suspicious login activities, such as simultaneous lo-
gins from different geolocations, it alerts users to change their pass-
words. Such messages are crucial, and may be helpful for users to
prevent attacks or to stop them at an early stage.

2Supporting trusted paths for other input devices, such as the
mouse, touch screen and stylus, is future work.

In this work, we focus on providing a “proof of impression” of
simple data types such as strings and byte streams. This includes
verifiable rendering of string content and bitmaps, during which
rendering of other untrusted content into the same region is tem-
porarily blocked for t seconds (t=3 by default) [36]. Such a guar-
antee is useful beyond the webmail example, such as online adver-
tisements (ads). Proof of impression can help advertisers that bill
publishers for ad impressions to disambiguate real ad impressions
from ad fraud with “laundered” traffic [26].

2.3 Design Overview
Our design changes the monolithic trust model where web servers

trust the entire browser (including add-ons) and client-side appli-
cation code. In our design, developers encapsulate sensitive data,
such as corporate emails or bank statements, into CRYPTONs and
directly embed them in HTML documents. To enforce the security
guarantees and semantics of CRYPTONs, the web server trusts a
small, standalone engine at the client called the CRYPTON-KERNEL.
The CRYPTON-KERNEL executes outside the web browser and is
protected from a compromised browser by standard OS sandbox-
ing mechanisms, similar to those used by existing browsers such as
Google Chrome [56,57]. A CRYPTON-compliant web browser rec-
ognizes CRYPTONs during HTML document parsing and delegates
their handling to the CRYPTON-KERNEL, as detailed in Section 3.

The CRYPTON-KERNEL acts as a root-of-trust to protect sen-
sitive CRYPTONs at the client-side. Specifically, the CRYPTON-
KERNEL builds three trusted paths passing through the untrusted
browser: (a) a secure communication channel between the web
server and the CRYPTON-KERNEL, (b) a trusted path from the
CRYPTONs to the user’s screen (i.e., to the software rendering pixel
maps or the GPU display buffers), and (c) a trusted path between
the user’s keyboard inputs to CRYPTON functions that handle key-
board events. These trusted (data) paths run through the untrusted
browser code, reusing existing browser functionality. As we intro-
duce later, we use authenticated encryption to protect data on these
trusted paths [45].
Secure Channel to Server. At the start of a web session exchang-
ing sensitive data, the web server uses an HTTPS frontend to es-
tablish a secure channel with the trusted CRYPTON-KERNEL. This
secure channel enables the web server to share a session key set
K with the CRYPTON-KERNEL, used by both parties to encryp-
t/decrypt CRYPTONs in the session. To avoid bloating our TCB,
the CRYPTON-KERNEL delegates all network communication to
the untrusted browser. Thus, it is important to establish a secure
channel against man-in-the-middle attacks, in case the browser gets
compromised. We use the standard mutual SSL authentication pro-
tocol to establish this channel [28]. SSL certificate verification for
server authentication is a common, backward-compatible mecha-
nisms for HTTPS sites today. To enable the server to authenticate
the CRYPTON-KERNEL’s certificate, we assume the CRYPTON-
KERNEL uses a certificate self-signed by an RSA private key stored
in the CRYPTON-KERNEL. The corresponding public key is up-
loaded by the user to the server via an out-of-band secure channel.
We discuss the potential usability challenges of this mechanism in
Section 3.5.
Secure Display. When being displayed to users, sensitive content,
such as corporate emails, must remain encrypted in the untrusted
browser until the final rendering of the content. The CRYPTON-
KERNEL provides a trusted data path between the CRYPTON con-
tent received from the server to the GPU buffer [5], which finally
render bitmaps and pixels to the screen. This trusted path is im-
plemented as part of the CRYPTON-KERNEL. To maintain the
browser’s functionality, sensitive content must be given opaque ac-

cess to the untrusted browser, say for deciding the layout dimen-
sions or for storing them in the DOM or untrusted JavaScript heaps.
Hence, the CRYPTON-KERNEL encapsulates encrypted sensitive
content into opaque objects before passing them to the web browser.
These opaque objects (e.g. encrypted string class) allow the browser
to process sensitive data as opaque blobs of text, determine the
length of the underlying plaintext for layout, but do not permit any
malicious operation that would leak plaintext data. Opaque objects
are finally rendered by the CRYPTON-KERNEL using a “sandboxed
GPU buffer” mechanism [5], which enables it to ensure that sensi-
tive content is rendered on top for at least t seconds.
Trusted Path For User Input. For sensitive content generated at
the client, such as by user keyboard inputs, the CRYPTON-KERNEL
provides a trusted path between the OS keyboard events to the
CRYPTON functions designated to handle input events. To enable
it, the CRYPTON-KERNEL intercepts all keyboard events from the
OS, similar to Chrome’s sandboxing mechanism [5]. It uses opaque
string objects to establish the trusted data paths via the untrusted
browser code.

We expect the user Alice to recognize and enter sensitive key-
board inputs (e.g., passwords or email recipients in TO and CC
list) through the CRYPTON-enabled trusted path. To help users se-
curely interact on and across multiple CRYPTON-enabled sessions,
the CRYPTON-KERNEL displays two security indicators above the
untrusted browser UI. For distinguishing when her user inputs are
going to be encrypted (vs. when she is interacting with a non-
CRYPTON-enabled session), the CRYPTON-KERNEL displays a user-
selected secret image icon. This image icon indicates that the user’s
key events will be encrypted throughout the session. This indicator
informs users whether their sensitive keystrokes are going to be en-
crypted; we expect users to enter sensitive information only when
seeing the right image icon.

Second, the CRYPTON-KERNEL displays the URL of the web-
site whose keys are being used to encrypt the keystrokes, in a spe-
cial unspoofable URL bar above the browser chrome. This allows
Alice to distinguish between multiple CRYPTON sessions and iden-
tify to which of these sessions her present keystrokes are being de-
livered. This indicator informs the user of the intended recipient of
the encrypted keystrokes; users are expected to verify this URL in-
dicator and ensure that it is the right recipient for the sensitive data
they are about to enter.

Both UI indicators are securely rendered to the screen directly
by the CRYPTON-KERNEL and can not be overlaid by the attacker.
The CRYPTON-KERNEL does not allow the untrusted browser to
inject key sequences or read sensitive GPU buffers using standard
sandboxing techniques. We discuss more details in Section 3.
Assumptions. A CRYPTON-compliant server uses an HTTPS fron-
tend as the server-side interface to the CRYPTON-KERNEL. HTTPS
frontends often handle authentication and are commonly used for
load balancing, before delegating the session to backend server —
we believe our design can be deployed in existing HTTPS fron-
tends. CRYPTON-compliant servers default-deny access to pro-
tected sensitive content outside the secure channel established with
a trusted CRYPTON-KERNEL. Otherwise, this would incentivize
attackers to fool users into accessing the sensitive content over non-
CRYPTON-enabled sessions.

To protect the CRYPTON-KERNEL, our solution leverages OS
processes and system call sandboxing to isolate the untrusted browser
from the CRYPTON-KERNEL. Robust sandboxing mechanisms are
known and used by existing browsers such as Chrome [5]. For
additional protection, especially in emerging Web OS stacks [51,
55], hardware-assisted dynamic root of trust measurement (DRTM)

(such as those provided by Intel TXT [37, 52]) can be investigated
in the future to ensure dynamic code integrity of the CRYPTON-
KERNEL.

2.4 Out-of-scope Threats
Our focus is on providing the integrity and confidentiality of

data. So, for example, our defenses cannot be used to protect
data used in server-side authorization such as CSRF tokens, ses-
sion cookies and authentication tokens (for single-sign on mecha-
nisms), as blocking these attacks require ensuring the authenticity
of the sender of sensitive data. Similarly, browser vulnerabilities
may be used to completely deny access to sensitive data (denial-
of-service); our defenses do not enforce data availability to the in-
tended recipient.

There are various attacks that can elicit sensitive information
from the user outside the trusted paths, say by confusing the user
with fake security indicators [39, 71], exploiting time-of-check-to-
time-of-use (TOCTTOU) windows in our security indicators, click-
jacking [3,36], shoulder surfing or through social coercion [8]. We
recognize that these are important channels of information loss to
consider for guaranteeing end-to-end security; however, defenses
for these specific attacks are of independent interest [20, 58].

Moreover, we point out that our design requires developers to
carefully design CRYPTON functions to avoid direct data leakage
as well as side-channels via timing and control flow, which are
declassification interfaces to sensitive data. There are also well-
studied classes of attacks on information flow and encryption sys-
tems [11, 15, 18]; tools to detect and minimize the capacity of side
channels are useful for developers [42].

3. DESIGN
We propose a novel solution with CRYPTON abstractions to pro-

tect sensitive data in an untrusted web browser. In this section, we
first introduce the definition of the CRYPTON, which can be directly
programmed into web pages. Then we elaborate the design of the
CRYPTON-KERNEL, and security invariants it enforces.

3.1 CRYPTON Definition
The CRYPTON abstraction incorporates sensitive data protected

with integrity and confidentiality, the operations permitted to de-
crypt and process the data, as well as the functional policy that
determines which keys to use for decrypting sensitive information
and for encrypting outputs.

More formally, we define a CRYPTON as a 5-tupleW =

(~D, ~F ,U ,V, I). As defined later, ~D is a sequence of informa-
tion blocks and ~F is a sequence of CRYPTON functions. U is the
web address URI of the CRYPTON-enabled web server, the HTTPS
frontend of the web server. The external verifier V is the HTTPS
web URI for the proof-of-impression functionality, as we explain
shortly. I is a unique identifier (ID) for the CRYPTON.

A CRYPTON W syntactically binds permitted operations and
sensitive data in its definition; this binding is signed by the SSL
public key corresponding to U and is verified and maintained by
the CRYPTON-KERNEL. When the CRYPTON-KERNEL first pro-
cesses a CRYPTON, it communicates with U over a secure channel
and fetches a set of symmetric encryption keys K corresponding to
that specific CRYPTON. Note that CRYPTON keys K are not sent
as part of W , which would otherwise permit them to be read by
adversaries. The set K consists of a default encryption/decryption
key κ0, an HMAC key κhmac, and optionally other keys κ1, ..., κn,
for authenticated encryption using symmetric key ciphers (256-bit
AES-GCM). These keys are kept secret and known only to the

Trusted Operating System

Untrusted Web
Browser

Manager

Keyboard
Encryptor

Secure Display

JavaScript
Engine Thin Encrypted

Memory
Interpreter (TEMI)HTML Parser

... other browser
components

Network

Crypton-Kernel

Instrumentation

IPC Channel

Crypton-
Compliant

Server

Figure 1: Overview of the CRYPTON-KERNEL, consisting of 4
components in gray, and the sandbox shown dashed.

CRYPTON-KERNEL; they are referenced by their key indices in
CRYPTON functions and information blocks as explained below.

Conceptually, each CRYPTON function Fi is a 3-tuple Fi =
(P,R, τF). The syntactic definition of Fi binds tuple elements to-
gether; these bindings are signed to ensure their integrity. P : K×
K is a set of policies defined for each Fi over keys inK∪{⊥, κint

}, where⊥means public (no encryption)3, and κint is a CRYPTON-
KERNEL-specific key to protect user inputs, such as keystrokes.
Such a policy dictates how a CRYPTON function encrypts and de-
crypts sensitive data. A policy κ1 → κ2 for a function Fi indicates
that Fi decrypts sensitive data using the key κ1. Global or local
variables written during the function execution, arguments of calls
to the untrusted browser, as well as return values, are encrypted
with the key κ2. Policies are optional; the default policy enforced
is κ0 → κ0, i.e., decryption and encryption both with the default
key. We explain the semantics of the execution of each function
in detail in Section 3.4. R optionally lists the arguments to the
function and the return value. Finally, functions have a type field
τF which separates 2 kinds of functions: (a) a proof-of-impression
(PoI) function that must be invoked to handle impression tokens,
and (b) all other functions. PoI functions compute encrypted mes-
sages over the nonce token and the impressions of sensitive mes-
sages and send them to the external verifier V .

An information block is a 6-tuple Di = (I, κ, ID,A, τD,FD).
I and ID are identifiers for the owner CRYPTON and the informa-
tion block, respectively. The encryption key for Di is specified by
κ ∈ K. A is the encrypted ciphertext of the enclosed sensitive data.
Finally, if a certain information block requires proof-of-impression
for its render value A, the field τD indicates the nonce token for
this information block, and FD refers to the function to be invoked
with the impression token by the CRYPTON-KERNEL.

3.2 CRYPTON-KERNEL Design
The CRYPTON-KERNEL provides secure processing of sensitive

web content for a CRYPTON-compliant web browser, while never
exposing decrypted data to the browser. As shown in Figure 1,
our solution needs to instrument the untrusted browser, which com-
municates with the CRYPTON-KERNEL running in another process
via IPC channels. We develop a new thin engine called the Thin
Encrypted Memory Interpreter (TEMI) to execute CRYPTON func-
tions over sensitive data. We now present a brief overview of our
solution with a hypothetical example demonstrating protecting sen-
sitive emails in a webmail application.

3The CRYPTON function can also call the enc(data, key)
programmatically to encrypt part of the outputs on demand.

When the CRYPTON-compliant web browser parses an HTML
document, it encounters the CRYPTON header, functions or infor-
mation blocks. At this time, the browser invokes the CRYPTON-
KERNEL via an IPC interface. Once invoked, the Manager com-
ponent of the CRYPTON-KERNEL processes these special tags, in-
cluding validating their integrity, and retrieving CRYPTON keys via
a secure channel from the server URLs embedded in the CRYPTON
header. The Manager component returns opaque objects to the un-
trusted browser for processed CRYPTONs. These opaque objects
encapsulate encrypted values and metadata such as the correspond-
ing CRYPTON ID and decryption key. They are propagated inter-
nally by the untrusted browser, akin to ordinary browser objects.
(Step A in Figure 2).

The untrusted browser handles the layout of web content, and
composes intermediate constructs for rendering. Another CRYPTON-
KERNEL component, called the Secure Display, intercepts render-
ing requests from the untrusted browser, and converts the layout
constructs into pixel maps written into the GPU buffer. When
opaque objects enclosing encrypted texts traverse through untrusted
code paths in the browser, and finally reach the Secure Display
component, the Secure Display decrypts them before transform-
ing them into pixel data for the GPU buffer. For example, sensitive
emails in our example are encrypted when they are downloaded
into the browser. When they are being rendered, the Secure Display
component of the CRYPTON-KERNEL decrypts them into plaintext
that is displayed to users (Step B).

To protect user inputs, the Keyboard Encryptor component of
the CRYPTON-KERNEL encrypts all user inputs for the CRYPTON-
enabled webmail application. For example, it encrypts the search
keywords while the user enters them in the untrusted browser. The
resulted opaque object containing the encrypted user inputs is fi-
nally dispatched into the event handler function searchEmail
triggered by a user click on the “Search” button. The webmail
developer marks searchEmail as a CRYPTON function with a
policy κint → κ0, allowing it to decrypt user inputs (such as
search keywords) encrypted with the CRYPTON-KERNEL’s inter-
nal key κint. When searchEmail is invoked, the untrusted
browser transmits the execution to the TEMI, a thin execution envi-
ronment in the CRYPTON-KERNEL. The TEMI decrypts the search
keywords encrypted in the opaque object during the execution of
searchEmail. This allows the function to preprocess the search
terms, such as replacing “+” with “ADD”, and encode the texts.
Then searchEmail constructs an XMLHttpRequest containing
the preprocessed search terms and sends it to the webmail server.
When the webmail server receives the request, it decrypts the search
terms and searches for them in the email database (Step C).

Subsequently, search results are returned to the untrusted browser
in JSON format where innermost email headings are encrypted.
The registered XMLHttpRequest handler function parseJson is
invoked to tokenize and validate the JSON string, and return a com-
posed HTML fragment to be rendered to the user. The email head-
ings in the HTML fragment remain as opaque objects to untrusted
code in the browser, and the Secure Display decrypts them when
rendering the headings for the webmail user (Step D).

3.3 Security Invariants
To protect the confidentiality and integrity of sensitive web con-

tent in an untrusted browser, our solution enforces the following
semantics as security invariants for CRYPTONs.

For information isolation:
P0: Maintaining Syntactic Bindings. A CRYPTON syntacti-

cally binds its elements to each other (such asK to I, P to each Fi

Crypton-Kernel

A

request
 user input

C

TEMI Secure
Display

decrypt & draw
inbox emails

render inbox emails

decrypted
user input

 construct and render
 email headings

replacement
scripts

render email headings

encrypt
user input

B

parse
crypton header

ack

encrypted user input

Keyboad
Encryptor

call parseJson

decrypt & draw
email headings

crypton object

D

OS

Untrusted
Web

Browser

request crypton keys

ack impression
(if PoI is requested)

parse crypton
info block

Web Server

crypton keys

call searchEmail

parse
crypton function

call ajax_query

Manager

list of encrypted
email headings

Figure 2: Sequence of Operations in A CRYPTON-Enabled
Webmail Session

and so on) with mentioned keys. These bindings are checked and
enforced throughout the lifetime of the CRYPTON. Authenticated
encryption ensures that any attempt to tamper with such bindings
by malicious code will be prevented.

P1: Secure Storage. All CRYPTON information blocks, func-
tions and intermediate computation by CRYPTON functions is stored
in private memory outside the browser, or encrypted when stored
in memory shared with the browser. The standard guarantees of
authenticated encryption apply to these.

P2: Secrecy ofK. The keysK are only stored in the CRYPTON-
KERNEL and not accessible to the CRYPTON-compliant browser.

For controlled operations:
P3: Functional Policy. If a function Fi is bound to a policy

κ → κ′, then all sensitive data processed by it is decrypted using
κ, and all values written byFi are encrypted with κ′, e.g., modified
global variables, local variables, arguments of calls to untrusted
browser functions, and return values. See P5 as the only exception.

P4: Non-interfering Execution. The execution of two func-
tions F1 and F2 are non-interfering on the CRYPTON-KERNEL, if
they are bound to policies κ1 → κ′1 and κ2 → κ′2 respectively, and
{κ1, κ

′
1} ∩ {κ2, κ

′
2} = ∅.

P5: Information Release. Only functions bound to policies
_→ ⊥ output plaintext to the browser4.

For certified user inputs:
P6: User Input Encryption. User keyboard inputs are en-

crypted with the CRYPTON-KERNEL’s internal key κint, and only
CRYPTON functions bound to policy κint → _ can decrypt the
inputs.

P7: Restricted Keyboard Access. The CRYPTON-KERNEL in-
tercepts all keyboard events before they are delivered to the browser.

4_ denotes any key or ⊥.

Untrusted Web
Browser

Crypton-Kernel

TEMIJavaScript
Engine

String Integer
Array String

Bool

Collection

Function

...

Private
Memory
Region

Operations on Externally Defined
Data Structures

Process
Boundary

Data Exchange

Opaque ObjectsPlaintext Data

Decrypt on
Read

Encrypt on
Write

P
ro

xy

Figure 3: TEMI: a Thin Execution Environment for CRYPTON Functions to Access Sensitive Info

For proof of impression:
P8: Proof of Impression. When an information block Di is

rendered, it should be displayed for a certain period of time without
obstruction or overlay by other UI content. The PoI function spec-
ified by the developer is invoked to compute an encrypted message
acknowledging the rendering to the verifier V in a secure channel.

P9: Restricted Display Access. The CRYPTON-KERNEL me-
diates the rendering operations initiated by the browser.

Summary. With these security invariants, CRYPTONs ensure the
confidentiality and integrity of enclosed sensitive data throughout
its lifecycle in untrusted web browsers.

3.4 Key Techniques and Security Analysis
To ensure the security invariants above, the CRYPTON-KERNEL

provides a thin engine for permitted operations on sensitive data,
and interposes browser display and keyboard events to support trusted
paths for display and user inputs.
Thin Encrypted Memory Interpreter. To execute controlled op-
erations on sensitive data, we design the Thin Encrypted Memory
Interpreter (TEMI) — a thin scripting engine. In designing TEMI,
we face a tradeoff between supporting rich functionality and min-
imizing the TCB. A full-fledged JavaScript engine typically has
200,000 (JavaScriptCore) to 400,000 (the V8 engine) LOC. How-
ever, we observe in our case studies that most of potential sensi-
tive data types on the web are integers and strings, such as user
names, passwords, entries in medical records, credit card numbers,
etc. These data types account for only a very small fraction of the
implementation of the JavaScript engine. Of course, these primi-
tive types are aggregated into higher-level abstract data types (such
as arrays, lists, objects, and so on), but much of the logic that op-
erates on the higher-level data types is agnostic or independent of
the inner nested data. By leveraging this observation, we design a
“thin” TEMI that natively supports integers and strings5, which has
a TCB of only 19, 000 lines of code.

The TEMI runs inside the CRYPTON-KERNEL’s process, com-
municating with the process(es) of the untrusted web browser via
IPC messages (shown in Figure 3). The TEMI has a private virtual
register set (for local computation) in its private memory region.
It decrypts sensitive data in opaque objects when they are loaded
into virtual registers, and re-encrypt all values written from virtual
registers to opaque objects, including global variables, arguments,
and return values. By default, the TEMI uses the default CRYP-
TON key κ0 for encryption and decryption; a developer-specified
policy κ1 → κ2 of a CRYPTON function dictates κ1 used for de-
5including regular expressions and basic indexing operations on
static arrays of integer or string elements.

cryption, and κ2 for encryption (P3)6. A CRYPTON function that
is allowed to disclose information has a policy _ → ⊥ (P5). The
TEMI retrieves CRYPTON keys from the CRYPTON-KERNEL’s pri-
vate memory storing keys transferred from the web server (P2).

During the execution of a CRYPTON-KERNEL function, any ac-
cess to higher-level abstract data types results in an IPC message
to a proxy in the JavaScript engine of the untrusted browser with
opaque objects as arguments. The proxy translates the message
into operations that are executed in the untrusted JavaScript engine.
For operations initiated by the CRYPTON-KERNEL, any string and
integer operation that emerges during execution in the untrusted
JavaScript engine is tunneled back to the CRYPTON-KERNEL for
processing opaque objects. In our running example in Section 3.2,
the parseJson function sends a message to the untrusted browser
to access complex data structures, such as arrays to perform parsing
operations. The execution then switches back to the TEMI when an
Array.toString function is invoked so that operations on sen-
sitive strings can still be processed in the decrypted form. This
unmodified CRYPTON function runs in our TEMI as it switches
back and forth between the untrusted browser and the CRYPTON-
KERNEL. For data exchange, the TEMI and the untrusted browser
passes integer and string data in the IPC messages, while only pass
references to high-level data structures as they are processed exclu-
sively at the untrusted browser side.

In our design, accessing higher-level data types defined in the
untrusted browser from the TEMI incurs no explicit data leakage,
since all arguments are encrypted (P1). Implicit control flow leak-
age is possible, while we assume it can be largely ignored in le-
gitimate code [15], such as CRYPTON functions. For compatibility
with existing browsers, when one process is running JavaScript, we
halt the other process until the running process returns.

To prevent interference between different CRYPTON functions,
the TEMI executes each CRYPTON function in a separate context,
which is destroyed upon returning of the function (P4). This in-
cludes virtual registers stored in the private memory region, as well
as encrypted intermediate variables written in the shared memory
region. Similar to garbage collectors, the TEMI clears all these
values when a CRYPTON function returns.
Secure Display. The CRYPTON-KERNEL allows automatic de-
cryption of opaque objects when they are being rendered, but pre-
vents untrusted browser code to access the decrypted information.

6Note that in principle it is possible to have explosive volumes of
encrypted data from the computation over mixed sensitive and non-
sensitive data. We did not observe such cases in our experiments
with real-world web applications, where computation over sensi-
tive data does not yield new sensitive data, but just outputs features
or portions of original data.

The Secure Display component of the CRYPTON-KERNEL can use
sandboxing techniques similar to Google Chrome [5], such as re-
stricted tokens and Windows job and desktop objects on Windows [57]
and seccomp on Linux [56], to intercept untrusted browser’s ac-
cess to the GPU buffer and graphic libraries on the OS (P9). To
render any UI content, the untrusted browser must pass the ren-
dering requests to the Secure Display. The Secure Display in turn
converts web contents and browser widgets into intermediate ren-
dering constructs (such as Glyphs that are basic shapes in text ren-
dering [13]) and sends them to the graphics library for rendering.
During this process, the Secure Display decrypts opaque objects
containing sensitive strings, with the keys specified in the opaque
objects. To prevent UI obstruction, while rendering such opaque
objects, for t seconds, the Secure Display temporarily suspends
other rendering requests to the same destination GPU buffer lo-
cation. It also invokes the PoI function for the opaque string being
rendered, if applicable. The PoI function then computes an ac-
knowledgement token encrypted with the CRYPTON’s default key
κ0 and sends it to the external verifier (P8).
Keyboard Encryptor. The Keyboard Encryptor interposes on key-
board events from the graphics toolkit that receives keystrokes. It
encrypts each keystroke event with a CRYPTON-KERNEL-specific
internal key κint before it reaches the web browser code (P6, P7).
Therefore, web applications cannot read the clear-text of user in-
puts unless by calling the CRYPTON functions with a policy like
κint → _. Together with P3, this ensures that keyboard inputs are
protected, and are available only to intended functions.
Resilience against malicious code in web browsers. Although the
CRYPTON-KERNEL closely integrates the untrusted web browser,
the security guarantee ensured by the CRYPTON-KERNEL are inde-
pendent from the untrusted web browser, i.e., all disclosure of the
sensitive information is controlled by CRYPTON functional policy.

To allow non-invasive operations that do not require plaintext,
the encrypted data in CRYPTON information blocks is stored on
the browser’s storage as opaque objects. These objects are pro-
tected by authenticated encryption for their integrity and confiden-
tiality. The keys are available only to the CRYPTON-KERNEL. Un-
trusted code has no access to the keys (P2), and thus cannot decrypt
sensitive data, unless by explicitly invoking information releasing
CRYPTON functions (P5). User inputs are automatically encrypted
before they reach the untrusted web browser (P6), so they are un-
der the same protection as sensitive data coming from web servers.
Web servers can also verify whether sensitive messages are prop-
erly displayed via proof of impression (P8).

Although malicious code cannot decrypt the sensitive data in ci-
phertext, it can tamper with it. However, this will be detected by
integrity verification built into authenticated encryption. This en-
sures the integrity of all CRYPTONs from the web and sensitive user
inputs at the client.
Attacks on CRYPTON granularity. Our solution enables web servers
to distinguish data from client side at a binary granularity — i.e.,
between authentic user inputs and everything else. Consider the
following attack. Malicious code injected into a webmail applica-
tion can create a fake login box in the victim session. This fake
login box makes the email composing input box appear as its Pass-
word field. A victim user may then enter her password into the
fake Password field, which is sent to the attacker in an email. This
is an instance of self-exfiltration attacks [17]. To defeat this attack,
the web server can mark the TO field for email recipients as sen-
sitive, and require its value to come from authentic user inputs at
the client side. Therefore, malicious client-side code has no con-
trol over to where the email will be delivered, even if it can trick

the user into entering her password as the email body. However,
our current solution only distinguishes authentic user inputs from
other data. Attackers may still confuse users between the seman-
tics of two CRYPTON-protected user input fields, such as luring
the user into entering the email body into the TO field by phish-
ing [31,72,73]. In certain applications, this could lead to delivering
emails to unintended recipients. However, we believe such attacks
are application-specific and difficult to launch. Further, extensions
of CRYPTONs with finer-grained isolation can be explored to defeat
such attacks.

3.5 Usability Implications
We discuss the usability implications that may arise from our

design. First, our solution assumes that users only enter their sen-
sitive data when security indicators state that their inputs are be-
ing encrypted for the expected web application. Previous research
has proposed various alternatives, such as Bumpy [49], where a
special key stroke sequence is required to start a secure input ses-
sion. Instead of relying on users to initiate the securing of their in-
puts, in this work, we automatically encrypt all user inputs within
a CRYPTON-compliant web session. As our solution requires users
to pay attention to secure UI indicators during keyboard input, we
expect our solution to have similar usability challenges as reported
in a prior evaluation of various alternative secure input mecha-
nisms [44]. We anticipate our solution to be usable in enterprise
settings or in mission-critical applications.

Secondly, the initial key setup in establishing a CRYPTON-KERNEL-
to-server secure channel could pose a usability challenge to non-
security-experts, as it requires key upload. Other alternatives could
be considered in a full deployment, such as adopting a trust-on-
first-use model [70] as with SSH, or the PAKE protocol [27] to es-
tablish a secure channel based on a shared secret, which have their
own pros and cons [9]. Adopting such alternatives does not af-
fect our core approach and mechanisms proposed in this work. We
choose the current setting for its strong security guarantees and its
compatibility with HTTPS. More recently, various online hosting
services, such as Github [32] and BitBucket [6], have adopted such
a mechanism to authenticate clients for more adept users. We ex-
pect a similar user experience for using a CRYPTON-enabled web-
site in enterprise settings, and a gradual broader adoption among
general web application users.

3.6 Implementation & Deployment
We implement a prototype of the CRYPTON-KERNEL integrated

with WebKit-GTK (rev 45311) with JIT disabled, for the ease of
implementation. Our prototype reuses OpenSSL code for AES-
GCM encryption/decryption. As the WebKit-GTK that we use does
not leverage hardware-accelerated rendering, we implement text
decryption and proof of impression via the software paths by inter-
cepting calls to the bridge between WebKit and the cairo graphics
library. Similarly, we intercept signal dispatch from the GTK+/Glib
to the browser to encrypt user inputs. As user input events are fired
for each keystroke, we use a stream cipher to encrypt user inputs.
Thus, positions of user input characters are maintained as original,
and this naturally supports mouse text selection. When user inputs
are sent to web servers, we use a CRYPTON function to re-encrypt
them with the AES-GCM block cipher with the specified key. Ta-
ble 2 lists the sizes of components in our prototype implementation
of the CRYPTON-KERNEL. Comparing to a web browser, such
as Firefox and Chromium, which typically has around 800K to
1,100K lines of source code, the TCB in our unoptimized proto-
type is about 30× - 40× smaller.

App Name Sensitive Data Server-side Change Client-side Change Est. Total Conversion Effort

RoundCube Mails with subject marked as
“[sensitive]” 8 LOC php 9 Functions, 0.5K LOC JS 2-3 Man-Days

AjaxIM Instant messages 6 LOC php 9 Functions, 0.4K LOC JS 2-3 Man-Days

WordPress Blogs containing “[sensitive]”
in titles and search keywords 10 LOC php 19 Functions, 1.2K LOC JS 4-5 Man-Days

Table 1: Summary of Case Studies on 3 Popular Web Apps, demonstrating modest adoption effort

CRYPTON-KERNEL Component LOC
Manager 2.9K

TEMI 18.7K
Secure Display 4.8K

Keyboard Encryptor 0.5K
Total 26.9K

Table 2: Size of TCB in CRYPTON-KERNEL Prototype

Our prototype implements functionalities sufficient to support
our studies with real-world web applications. In a full deployment,
several browser components need to be modified to propagate the
opaque objects with encrypted data, including support for untrusted
browser sandboxing, browser spell checkers, all CSS styling fea-
tures, web page printing, WebGL and GPU accelerations. Such
support has not been implemented in our current prototype.

For deployment into real web browsers, we consider an alter-
native deployment into Google Chrome’s browser kernel, lever-
aging existing privilege separation and sandboxing mechanisms in
Google Chrome. Google Chrome partitions more vulnerable com-
ponents into the renderer processes, and leave more security-sensitive
components in the browser kernel process. It has also implemented
sandboxing mechanisms to prevent renderer processes from directly
accessing UI rendering, user inputs, file systems, and network. All
such access has to go via interfaces exposed and checked by the
browser kernel. Thus, we expect it to be relatively straightforward
to implement the CRYPTON-KERNEL into the browser kernel of
Google Chrome, leveraging the existing UI and user input sand-
boxing mechanisms. If we consider such a modification to Chrome
12, the code size that can access sensitive data will be significantly
reduced. Essentially, it would eliminate more than 900K lines of
code constituting the renderer processes and all client-side applica-
tion code from the TCB for ensuring data protection.

4. EVALUATION
We apply our solution to real-word web applications to study the

applicability and adoption cost. We first manually convert 3 popu-
lar web applications to use our solution to protect typical sensitive
data in those applications, and then extend our study to Alex Top 50
web pages. Both micro and macro studies show the effectiveness
of our solution in protecting typical sensitive data on the present
web with modest adoption effort required.

4.1 Applicability to Real-world Applications
Micro-study on open-source web applications. We perform case
studies on three open-source web applications to measure two as-
pects, i.e., a) how effectively our solution can protect sensitive con-
tent in real-word applications, and b) how much developer effort is
required for adopting our solution. We choose applications of dif-
ferent categories: RoundCube [65], a webmail server, AjaxIM7,
a web-based instant messenger, and WordPress [30], a web blog
7We use the AjaxIMRPG fork [23] that is better maintained than
the trunk.

service. We manually convert the source code of the three appli-
cations by: 1) modifying the server-side code to encrypt sensi-
tive content before sending it to clients; 2) identifying client-side
JavaScript functions that need to decrypt sensitive data for opera-
tions and converting them into CRYPTON functions; and 3) rewrit-
ing client-side JavaScript functions that receive and process user
inputs into CRYPTON functions; these CRYPTON functions encrypt
user inputs before sending them to web servers. We check all tests
with a server-side proxy.

We find that with modest effort in converting these applications,
our solution can effectively protect typical sensitive data, such as
sensitive emails, instant messages, blog entries and comments. We
write a 450-line custom PHP library for common functionalities to
process CRYPTONs in PHP applications. We manually rewrite the
three web applications, leveraging the custom library to wrap sensi-
tive web content into CRYPTONs. Table 1 summarizes the results of
our case studies on the three applications. Typical client-side opera-
tions on sensitive data we observe include trimming whitespaces in
strings, serializing HTML content, emotion text replacement, URI
encoding, etc. We mark them as CRYPTON functions in our ex-
periments to support the legitimate functionalities. For brevity, we
leave out detailed steps here, and a summary of our modification to
application source-code is available online [1].
Macro-study on real-word web applications. To further evaluate
the applicability of the CRYPTON-KERNEL to other web applica-
tions, we perform a larger-scale macro study. First, we select Alexa
Top 50 web pages, and identify all of those fields that require sen-
sitive username / password inputs for signup – 18 out of the 50 ap-
plications have signup pages (Figure 4). We choose these applica-
tions because they often have client-side checking code on sensitive
passwords (e.g. checking strength requirements). Next, we select
20 popular web applications of five categories, and identify scenar-
ios where the CRYPTON-KERNEL can strengthen security against
real attacks:

• Web search pages. We select websites that allow users to
search terms. We mark search terms as sensitive because
leaking search terms may permit third-party tracking.

• Social networking sites. These sites can be used to exchange
private messages, or post comments that may be politically-
sensitive. Hence, we mark posts and comments as sensitive.

• Banking sites. Banking sites are prime targets of browser-
based attacks and several malware disguise as browser ex-
tensions. We select a local bank that uses additional authen-
tication mechanisms such as one-time PassKeys. In its web
pages, username, passwords and the one-time PassKey are
marked as sensitive. The one-time PassKey is interesting be-
cause banks are increasingly considering this as a second-
factor authentication beyond long-lived passwords.

• E-commerce sites. We test eBay, Amazon and Babylon on-
line commerce sites. On eBay, we mark the auction listing
created by a seller as sensitive. Different auction listings can

Web App Detail Sensitive Info
& Size of Functions Requiring
Decrypted Sensitive Info
[Percentage of Total Code Size]

& Size of
All JavaScript
Functions

Browser and TEMI Interactions vs.
All Calls to JS Data Types

Gmail Login Username, Password 2 (0.29 KB) [0.43%] 196 (66.5KB) 0.7% (956/141492)
Gmail Compose Email To, Subject, Content 9 (1.84KB) [0.98%] 745 (186.8KB) 0.01% (89/541883)
Gmail Read Email From, Subject, Content 2 (1.1KB) [0.64%] 730 (171.1KB) 0.02% (92/390206)
Ask Search Search Terms 3 (1.3KB) [0.31%] 569 (416.2KB) 0.01% (40/218922)
Google Search Search Terms 6 (0.92KB) [0.26%] 581 (352.9KB) 0.2% (437/206675)
Google+ Post Post Content 5 (1.01KB) [0.13%] 1150 (750KB) 0.005% (48/947254)
NetFlix Username, Password 1 (0.6KB) [0.2%] 419 (289.9KB) 0.1% (170/162853)
IMDb Search Search Terms 1 (0.24KB) [0.02%] 1131 (1.1MB) 0.1% (422/323208)
Facebook Read Post Post Content 1 (0.5KB) [0.18%] 730 (268KB) 0.02% (347/1216952)
Facebook Friend Search Search Terms 9 (1.7KB) [0.50%] 959 (336.6KB) 6.4% (60305/937108)
eBay Item List Item’s Description 8 (1.49KB) [0.62%] 725(239.2KB) 0.1% (326/241901)
Amazon Login Username, Password 2 (1.87KB) [1.28%] 240 (146KB) 0.5% (1629/321275)
Amazon Search Search Terms 9 (1.77KB) [0.24%] 485 (732.7KB) 0.1% (544/433110)
MSN Search Search Terms 5 (1.4KB) [0.08%] 1185 (1.7MB) 0.5% (2096/435124)
StackOverflow Post Content 5 (2.36KB) [1.18%] 429 (198.9KB) 0.2% (830/406328)
Twitter Login Username, Password 3 (0.61KB) [0.27%] 472 (223.6KB) 0.004% (27/622874)
Wikipedia Search Search Terms 6 (1.9KB) [0.23%] 438 (794.1KB) 0.45% (382/84818)
Babylon Purchase Email Address, Credit Card Info 3 (1.17KB) [0.70%]) 485 (165KB) 0.6% (3232/515586)
Local Bank Login Username, Password, PassKey 3 (1.49KB) [1.01%] 250 (146.3KB) ~0% (1/100037)
BankOfAmerica Login Username, Password 2 (1.01 KB) [0.23%] 780 (430.4KB) ~0% (3/441534)

Table 3: Study of 20 Popular Web Applications. < 1% of web application code needs to run in the TEMI to access sensitive info; < 1%
of all calls to JS data types trigger browser-TEMI interactions.

be loaded in the same page, and each may contain its own
JavaScript. If the listing is not protected, the script from one
seller may deface or tamper with that from another seller. We
also consider Babylon, since users can purchase items with-
out creating an account with Babylon. Therefore, by tamper-
ing with the purchaser’s email in the browser, an attacker can
have a software license purchased by a legitimate user, but
delivered to the attacker’s email address. We mark the email
address as a sensitive field on Babylon. We mark product
search terms as sensitive for Amazon.

• Gmail. It is a rich webmail client used as our running exam-
ple. We mark search terms and certain emails as sensitive.

We manually (with browser instrumentation) identify all func-
tions that legitimately operate on sensitive information, including
event handlers. Our analysis details are shown in Table 3. We as-
sign the default policy κ0 → κ0 to these functions, and all user
keyboard inputs are marked as sensitive. We mark the Gmail spam
warning message as requiring proof-of-impression. We also mark
a post on Facebook as requiring proof-of-impression.
Results. We dynamically modify these web pages to encode sen-
sitive contents into CRYPTONs using a proxy server. We find that
these applications render correctly in our CRYPTON-compliant browser
implementation, and the applications remain functional. This con-
firms our hypothesis that existing applications can be easily up-
graded to using CRYPTON-KERNEL’s functionality. Our test proxy
decodes encrypted content returned from the browser and checks
them against the expected values. It also verifies that it receives
proof-of-impression tokens.
Developer effort. Table 3 demonstrates that the developer effort to
enable this functionality is modest. On average, only 1% of the to-
tal functions in the applications need to be included in CRYPTONs;
this amounts to 2 KB of minified JavaScript per web page. The ef-
fort required to verify such code as CRYPTON functions is feasible,
around 1-9 functions for each application. Figure 4 shows similar
results that about 0-9 functions need to be verified for each signup
page.

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

WindowsLive	

Yahoo	

Amazon	

Wordpress	

AOL	

Pinterest	

Tumblr	

Ebay	

Wikipedia	

Adobe	

Paypal	

Google	

Facebook	

StackOverFlow	

Babylon	

LinkedIn	

TwiOer	

IMDB	

Info-­‐Release	
 FuncUons	

Input	
 Fields	

Figure 4: Number of User Input Fields and CRYPTON Func-
tions Required in Signup Pages

4.2 Reduction in Attack Surface
The isolation and controlled operations provided by CRYPTONs

significantly reduce the size of code that sensitive information is
exposed to. We evaluate this reduction in both web application
code as well as in browser code.
Exposure to untrusted application code reduces by 99%. As
we show in Table 3, on average less than 1% of web application
code actually needs access to sensitive information, and is thus run
in CRYPTON functions. All the rest of web application code only
has access to opaque objects with encrypted data. On the contrary,
in current web browsers, all information is exposed to the entire
web application. Any malicious or compromised JavaScript library
can steal the information and leak it to external parties. By isolat-
ing sensitive information into CRYPTONs, the CRYPTON-KERNEL
places 99% of web application outside the TCB.
Exposure to browser vulnerabilities reduced by 92.5%. In exist-
ing web browsers, sensitive information being processed is largely
accessible to browser code running in the same process. To evaluate
how the CRYPTON-KERNEL reduces such over-exposure of sensi-
tive information to browser vulnerabilities, we study how many his-

torical browser security vulnerabilities are prevented from affect-
ing the security guarantees provided by the CRYPTON-KERNEL.
From our study with historical security vulnerabilities in Firefox
reported separately [24], in total 333 vulnerabilities (92.5%) can-
not be exploited to violating the security guarantees provided by the
CRYPTON-KERNEL. The remaining vulnerabilities either reside in
our TCB (7 of them), or compromise our assumptions (another 20
vulnerabilities). The vast reduction in the exposure to browser vul-
nerabilities verifies the effectiveness of the CRYPTON-KERNEL in
information protection.

4.3 Performance
We run the CRYPTON-KERNEL over the 20 web applications

listed in Table 3, with sensitive information transformed into CRYP-
TONs. The web sites remain responsive, without any perceivable
slowdown. To further evaluate potential performance bottlenecks,
we apply microbenchmarks to measure the performance overheads
(averaged over 20 runs each) arising from encryption/decryption
operations and browser-TEMI interactions when the TEMI exe-
cutes CRYPTON functions.
Encryption/decryption overhead. Figure 5 shows the performance
overhead of the CRYPTON-KERNEL compared to a vanilla WebKit-
GTK browser. We use five CPU-intensive test pages from the Dro-
maeo benchmark. To vary the workload of encryption and decryp-
tion, we mark different portions of texts in the pages as sensitive,
ranging from zero-sensitive pages (no sensitive text) to fully sen-
sitive pages (all texts marked as sensitive). During these tests, the
browser remains responsive and shows a maximum of 7.5% per-
formance overhead. We also manually craft a test page to eval-
uate the performance of the CRYPTON-KERNEL under pathologi-
cal scenarios. The performance overhead reaches 11.7% when all
texts on the page are marked as sensitive, which requires heavy
encryption/decryption operations. Considering such performance
overhead is measured from an initial unoptimized prototype, it is
reasonable.

0	

2	

4	

6	

8	

10	

12	

0	
 20%	
 40%	
 60%	
 80%	
 100%	

Dromaeo:	
 user	
 input	
 Dromaeo:	
 hash	
 MD5	

Dromaeo:	
 regular	
 expression	
 Dromaeo:	
 SHA	
 long	
 string	

Dromaeo:	
 string	
 Manually	
 craAed	
 pages	

%
	
 C
PU

	
 O
vr
eh

ea
d	

%
	
 C
PU

	
 O
vr
eh

ea
d	

%	
 of	
 sensi2ve	
 texts	
 in	
 the	
 page	

Figure 5: Performance Overhead of CRYPTON-KERNEL with
Dromaeo Benchmarks & Manual Test Page, with varying por-
tions of sensitive texts

Overhead of browser-TEMI interactions. We run the CRYPTON-
KERNEL over the 20 web sites listed in Table 3, and measure the
number of IPC calls between the untrusted web browser and the
TEMI. The last column in Table 3 shows that for most cases, less
than 1% of all access to JavaScript data types requires crossing

the browser-TEMI boundary. Given that the overhead of sending
a message via Unix domain socket is around 5 microseconds, a
web site with 1,000 IPC messages may only incur 0.005 second
overhead.8 Thus, the design of separating the execution of CRYP-
TON functions in the TEMI does not cause any performance bottle-
neck.

5. RELATED WORK
In this section, we discuss research related to information pro-

tection in web browsers or operating systems, and key differences
with our work.
Enhancement of browser security mechanisms. There has been
extensive research on enhancing security mechanisms of web browsers.
One direction is to develop flexible and fine-grained access con-
trol on the web platform, so that untrusted JavaScript can be re-
stricted to access only limited resources in a web page [40, 54, 74].
A recent work proposes a multi-layered architecture for enforc-
ing mandatory access control policies, with a label-enforcing web
browser [35]. As with other in-browser security mechanisms [47,
50], these solutions do not prevent compromised browser code from
directly reading the data stored in the browser’s memory.
Privilege separation & trusted paths. Privilege separation is a
fundamental mechanism to enforce basic security principles [60].
Several research works have been proposed to facilitate [7] or au-
tomate [12] privilege separating legacy applications. Recently, im-
proving separation of privileges in web browsers has become an
active area of research [4, 5, 16, 21, 25, 33, 46, 63, 69]. These so-
lutions isolate software components into partitions, thus reducing
the potential damage to sensitive data from a compromised com-
ponent. Nevertheless, they do not provide first-class abstractions
to control access to sensitive data, in terms of which information
can be disclosed to which entity. Further more, privilege separa-
tion does not provide sustained control on sensitive data. Once any
information is disclosed to a partition, any code in the partition can
further leak it to others. In contrast, our solution focuses on estab-
lishing several critical trusted paths in an untrusted web browser.
Our proposal is orthogonal to the underlying mechanisms of priv-
ilege separation, and to our best knowledge, is the first in bringing
data-centric trusted paths to the web. In our threat model, we trust
the operating system beneath the web browser. Thus, our solu-
tion differs from other trusted path research on the x86 platform,
where the operating system is untrusted, and additional sources of
trust such as the hypervisor [75] or hardware root of trust [49] is
required.
Information flow analysis. Information flow tracking has also
been used for detecting and preventing information leakage in web
applications [66]. However, without controlling the usage of sensi-
tive information of client-side JavaScript, once disclosed, the infor-
mation can be leaked by malicious scripts via self-exfiltration at-
tacks [17]. Moreover, such solutions rely on the trust of browsers.
On the contrary, our solution is based on a small TCB, and protects
sensitive data against threats from all untrusted code or scripts in
the browser.
Cryptographic techniques. Cryptographic techniques have long
been protecting security in different systems. Lie et al. [45] pro-
8Outliers are Facebook Friend Search and WindowsLive Signup,
with high browser-TEMI interactions. A closer look at them re-
veals that they are caused by a particular CRYPTON function in each
of them, which processes both sensitive and non-sensitive infor-
mation. We separate each function into two versions accordingly,
and browser-TEMI interactions fall below 1% among all JavaScript
data type accesses.

pose an abstract machine of execute-only memory (XOM) to pre-
vent tampering of instructions stored on memory. Borders et al.
propose Storage Capsules [10] to allow users to edit files on an
untrusted computer without risking leakage of the file content. Al-
though similar in concept, our solution protects data on the web,
which are finer-grained, and computation over it is not packaged
as applications, but scattered across different functions. This work
addresses such challenges in protecting sensitive web content while
being functionally compatible with existing web applications.

A recent work [19] further applies memory encryption to data
confidentiality, similar to the concept of Data Capsules [48]. It al-
lows unvetted programs to use sensitive data while enforcing policy
to confine activities they can perform on the data. The high-level
application-specific policy is translated into low-level tags enforced
by the underlying hardware. One issue with this approach is: once
the plaintext is disclosed to certain code, it is difficult to control
information leakage any further, such as via implicit control flows.
Our solution prevents it by limiting the plain-text only to CRYPTON
functions, whose return values are also encrypted by default.

CleanOS [64] uses information flow tracking and encryption to
protect mobile devices against threats to data when the mobile de-
vice is lost. Policy-sealed data [61] is a recent proposal on building
trusted cloud services that protects data from unintended access.
Their abstractions and cryptographic primitives (attribute-based en-
cryption) are well suited for the cloud environment. However, un-
like on the cloud, where environments can be summarized as con-
figurations, in web browsers, there is no static context or environ-
ment. Code from multiple sources with various privileges are run-
ning in and molding the mixed browser environment. Therefore,
we need more dynamic mechanisms to control data access and pro-
cessing.

6. CONCLUSION
In this paper, we present a novel abstraction, CRYPTON, which

protects sensitive web content and allows rich computation over it.
Based on this data-centric abstraction, we propose a solution that
integrates with the present web browser without trusting its code.
Instead, the security guarantees provided by our solution are solely
enforced by a small standalone engine, called CRYPTON-KERNEL,
which interprets sensitive web content in CRYPTONs and allows
trusted functions to securely compute over the sensitive data. Our
large-scale evaluation demonstrates our solution can effectively pro-
tect sensitive web content in real-world web applications, with rea-
sonable performance.

7. ACKNOWLEDGMENTS
We thank anonymous reviewers for their helpful feedback, and

our shepherd Nicolas Christin for his insightful comments and sug-
gestions on preparing the final version of the paper. This research
is partially supported by research grant R-252-000-495-133 from
Ministry of Education, Singapore. Any opinions, findings, and con-
clusions or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the Ministry
of Education, Singapore.

8. REFERENCES
[1] Summary of source code modification in case studies.

http://compsec.comp.nus.edu.sg/crypton/
summary.pdf.

[2] D. Akhawe, P. Saxena, and D. Song. Privilege separation in
html5 applications. In Proceedings of the 21st USENIX
Security Symposium, 2012.

[3] M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and
C. Kruegel. A solution for the automated detection of
clickjacking attacks. In Proceedings of the 5th ACM
Symposium on Information, Computer and Communications
Security, ASIACCS ’10, 2010.

[4] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting
browsers from extension vulnerabilities. In Proceedings of
the 17th Annual Network and Distributed System Security
Symposium, NDSS ’10, 2010.

[5] A. Barth, C. Jackson, C. Reis, and T. G. C. Team. The
security architecture of the chromium browser. http:
//seclab.stanford.edu/websec/chromium/
chromium-security-architecture.pdf.

[6] Bitbucket. https://bitbucket.org/.
[7] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge:

splitting applications into reduced-privilege compartments.
In Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’08, 2008.

[8] H. Bojinov, D. Sanchez, P. Reber, D. Boneh, and P. Lincoln.
Neuroscience meets cryptography: designing crypto
primitives secure against rubber hose attacks. In Proceedings
of the 21st USENIX Security Symposium, 2012.

[9] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano. The
quest to replace passwords: A framework for comparative
evaluation of web authentication schemes. In Proceedings of
the 2012 IEEE Symposium on Security and Privacy, 2012.

[10] K. Borders, E. V. Weele, B. Lau, and A. Prakash. Protecting
confidential data on personal computers with storage
capsules. In Proceedings of the 18th USENIX Security
Symposium, 2009.

[11] D. Brumley and D. Boneh. Remote timing attacks are
practical. In Proceedings of the 12th USENIX Security
Symposium, 2003.

[12] D. Brumley and D. Song. Privtrans: automatically
partitioning programs for privilege separation. In
Proceedings of the 13th USENIX Security Symposium, 2004.

[13] CairoGraphics. cairo_glyph_t.
http://cairographics.org/manual/
cairo-text.html#cairo-glyph-t.

[14] N. Carlini, A. P. Felt, and D. Wagner. An evaluation of the
google chrome extension security architecture. In
Proceedings of the 21st USENIX Security Symposium, 2012.

[15] L. Cavallaro, P. Saxena, and R. Sekar. On the limits of
information flow techniques for malware analysis and
containment. In Proceedings of the 5th International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA ’08, 2008.

[16] E. Y. Chen, J. Bau, C. Reis, A. Barth, and C. Jackson. App
isolation: get the security of multiple browsers with just one.
In Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS ’11, 2011.

[17] E. Y. Chen, S. Gorbaty, A. Singhal, and C. Jackson.
Self-exfiltration: The dangers of browser-enforced
information flow control. In Proceedings of the Workshop of
Web 2.0 Security & Privacy 2012, 2012.

[18] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel
leaks in web applications: A reality today, a challenge
tomorrow. In Proceedings of the 2010 IEEE Symposium on
Security and Privacy, 2010.

[19] Y.-Y. Chen, P. A. Jamkhedkar, and R. B. Lee. A
software-hardware architecture for self-protecting data. In

Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, 2012.

[20] Y. Cheng and X. Ding. Virtualization based password
protection against malware in untrusted operating systems.
In Proceedings of the 5th International Conference on Trust
and Trustworthy Computing, TRUST ’12, 2012.

[21] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen. A
safety-oriented platform for web applications. In
Proceedings of the 2006 IEEE Symposium on Security and
Privacy, 2006.

[22] S. Crites, F. Hsu, and H. Chen. Omash: enabling secure web
mashups via object abstractions. In Proceedings of the 15th
ACM Conference on Computer and Communications
Security, CCS ’08, 2008.

[23] A. R. Developers. Ajaxim rpg.
http://ajaximrpg.sourceforge.net/.

[24] X. Dong, H. Hong, Z. Liang, and P. Saxena. A quantitative
evaluation of privilege separation in web browser designs. In
Proceedings of the 18th European Conference on Research
in Computer Security, ESORICS ’13, 2013.

[25] X. Dong, M. Tran, Z. Liang, and X. Jiang. Adsentry:
comprehensive and flexible confinement of javascript-based
advertisements. In Proceedings of the 27th Annual Computer
Security Applications Conference, ACSAC ’11, 2011.

[26] DoubleVerify. Doubleverify uncovers ad fraud tied to
copyright infringement sites, costing online advertisers $6.8
million per month.
http://www.doubleverify.com/resources/
research/DV-Fraud-Lab-Report-2013-05/,
May 2013.

[27] J. Engler, C. Karlof, E. Shi, and D. Song. Is it too late for
pake? In Proceedings of Web 2.0 Security and Privacy
Workshop 2009, 2009.

[28] I. E. T. Force. Rfc 6101: The secure sockets layer (ssl)
protocol version 3.0.
http://tools.ietf.org/html/rfc6101, 2011.

[29] M. Foundation. Mozilla foundation security advisories.
http:
//www.mozilla.org/security/announce/.

[30] W. Foundation. Wordpress. http://wordpress.org/.
[31] S. Garera, N. Provos, M. Chew, and A. D. Rubin. A

framework for detection and measurement of phishing
attacks. In Proceedings of the 2007 ACM Workshop on
Recurring Malcode, WORM ’07, 2007.

[32] Github. https://github.com.
[33] C. Grier, S. Tang, and S. King. Designing and implementing

the op and op2 web browsers. ACM Transactions on the Web,
2011.

[34] M. Heiderich. Towards elimination of xss attacks with a
trusted and capability controlled dom.
http://heideri.ch/thesis.

[35] B. Hicks, S. Rueda, D. King, T. Moyer, J. Schiffman,
Y. Sreenivasan, P. McDaniel, and T. Jaeger. An architecture
for enforcing end-to-end access control over web
applications. In Proceedings of the 15th ACM Symposium on
Access Control Models and Technologies, SACMAT ’10,
2010.

[36] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schechter, and
C. Jackson. Clickjacking: attacks and defenses. In
Proceedings of the 21st USENIX Security Symposium, 2012.

[37] Intel. Trusted compute pools with intel R© trusted execution
technology. http://www.intel.com/txt.

[38] Internet Engineering Task Force (IETF). Rfc 6454: The web
origin concept.
http://www.ietf.org/rfc/rfc6454.txt.

[39] C. Jackson, D. R. Simon, D. S. Tan, and A. Barth. An
evaluation of extended validation and picture-in-picture
phishing attacks. In Proceedings of the 11th International
Conference on Financial Cryptography and 1st International
Conference on Usable Security, FC’07/USEC’07, 2007.

[40] K. Jayaraman, W. Du, B. Rajagopalan, and S. J. Chapin.
Escudo: A fine-grained protection model for web browsers.
In Proceedings of the 30th International Conference on
Distributed Computing Systems, ICDCS ’10, 2010.

[41] N. Kobeissi, A. Breault, and E. Gill. Cryptocat.
https://crypto.cat/.

[42] B. Köpf and M. Dürmuth. A provably secure and efficient
countermeasure against timing attacks. In Proceedings of the
2009 22nd IEEE Computer Security Foundations
Symposium, CSF ’09, 2009.

[43] LastPass. Lastpass password manager.
https://lastpass.com/.

[44] A. Libonati, J. M. McCune, and M. K. Reiter. Usability
testing a malware-resistant input mechanism. In Proceedings
of the 18th Annual Network and Distributed System Security
Symposium, NDSS ’11, 2011.

[45] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for copy
and tamper resistant software. In Proceedings of the 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS-IX, 2000.

[46] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan.
Adjail: practical enforcement of confidentiality and integrity
policies on web advertisements. In Proceedings of the 19th
USENIX Security Symposium, 2010.

[47] T. Luo and W. Du. Contego: capability-based access control
for web browsers. In Proceedings of the 4th International
Conference on Trust and Trustworthy Computing, TRUST
’11, 2011.

[48] P. Maniatis, D. Akhawe, K. Fall, E. Shi, S. McCamant, and
D. Song. Do you know where your data are?: secure data
capsules for deployable data protection. In Proceedings of
the 13th Workshop on Hot Topics in Operating Systems,
HotOS-XIII, 2011.

[49] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage for
passwords and other sensitive data. In Proceedings of the
16th Annual Network and Distributed System Security
Symposium, NDSS ’09, 2009.

[50] L. A. Meyerovich and B. Livshits. Conscript: Specifying and
enforcing fine-grained security policies for javascript in the
browser. In Proceedings of the 2010 IEEE Symposium on
Security and Privacy, 2010.

[51] Mozilla. Firefox os. https://developer.mozilla.
org/en-US/docs/Mozilla/Firefox_OS.

[52] C. Nie. Dynamic root of trust in trusted computing.
http://www.tml.tkk.fi/Publications/C/25/
papers/Nie_final.pdf.

[53] D. of Defense Standard. Department of defense trusted
computer system evaluation criteria, 5200.28-std, 1985.

[54] K. Patil, X. Dong, X. Li, Z. Liang, and X. Jiang. Towards
fine-grained access control in javascript contexts. In
Proceedings of the 31st International Conference on
Distributed Computing Systems, ICDCS ’11, 2011.

[55] T. C. Projects. Chromium os.
http://www.chromium.org/chromium-os.

[56] T. C. Projects. Linuxsandboxing.
https://code.google.com/p/chromium/wiki/
LinuxSandboxing#The_seccomp-bpf_sandbox.

[57] T. C. Projects. Sandbox. http://www.chromium.org/
developers/design-documents/sandbox.

[58] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang,
and C. Cowan. User-driven access control: Rethinking
permission granting in modern operating systems. In
Proceedings of the 2012 IEEE Symposium on Security and
Privacy, 2012.

[59] C. Rohlf and Y. Ivnitskiy. Attacking clientside jit compilers.
http:
//www.matasano.com/research/Attacking_
Clientside_JIT_Compilers_Paper.pdf.

[60] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. In Proceedings of the
IEEE, 1975.

[61] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu.
Policy-sealed data: A new abstraction for building trusted
cloud services. In Proceedings of the 21st USENIX Security
Symposium, 2012.

[62] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song. A symbolic execution framework for javascript. In
Proceedings of the 2010 IEEE Symposium on Security and
Privacy, 2010.

[63] S. Tang, H. Mai, and S. T. King. Trust and protection in the
illinois browser operating system. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’10, 2010.

[64] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu,
and N. Sarda. Cleanos: limiting mobile data exposure with
idle eviction. In Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation, OSDI
’12, 2012.

[65] T. R. Team. Roundcube.
http://www.roundcube.net/.

[66] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Cross-site scripting prevention with dynamic
data tainting and static analysis. In Proceedings of the 14th
Annual Network and Distributed System Security
Symposium, NDSS ’07, 2007.

[67] W3C. Content security policy 1.0.
http://www.w3.org/TR/CSP/.

[68] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. In Proceedings of the
14th ACM Symposium on Operating Systems Principles,
SOSP ’93, 1993.

[69] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The multi-principal os
construction of the gazelle web browser. In Proceedings of
the 18th USENIX Security Symposium, 2009.

[70] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives:
improving ssh-style host authentication with multi-path
probing. In USENIX 2008 Annual Technical Conference,
ATC ’08, 2008.

[71] Z. E. Ye and S. Smith. Trusted paths for browsers. In
Proceedings of the 11th USENIX Security Symposium, 2002.

[72] C. Yue and H. Wang. Anti-phishing in offense and defense.
In Proceedings of the 2008 Annual Computer Security
Applications Conference, ACSAC ’08, 2008.

[73] Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: a
content-based approach to detecting phishing web sites. In
Proceedings of the 16th International Conference on World
Wide Web, WWW ’07, 2007.

[74] Y. Zhou and D. Evans. Protecting private web content from
embedded scripts. In Proceedings of the 16th European
Conference on Research in Computer Security, ESORICS
’11, 2011.

[75] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune.
Building verifiable trusted path on commodity x86
computers. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy, 2012.

