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ABSTRACT 
We propose a computer vision system that can automatically 
detect people in dynamic real-world scenes, enabling people 
with vision impairments to have more awareness of, and 
interactions with, other people in their surroundings. As an 
initial step, we investigate the feasibility of four camera 
systems that vary in their placement, field-of-view, and 
image distortion for: (i) capturing people generally; and (ii) 
detecting people via a specific person-pose estimator. Based 
on our findings, we discuss future opportunities and 
challenges for detecting people in dynamic scenes, and for 
communicating that information to visually impaired users. 
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INTRODUCTION 
Recent research into the design of computer vision (CV) 
systems to assist people with visual impairments (VI) has 
started to move beyond supporting independent activities of 
daily living (e.g., recognizing text [13] or objects [19], and 
aiding navigation [8]), and toward a closer consideration of 
how people with VI are inter-connected with, and supported 
by, others [5, 6, 14, 23, 24, 26, 30]. Examples include crowd-
sourced answers to visual questions [4, 9] and CV-assisted 
social experiences—for example making the capture [18, 25] 
or editing and sharing of photos [3] more appealing to people 
with VI. Wu et al. [27] used computer vision to automatically 
integrate accessible alt-text information with Facebook 
photos, allowing blind users to feel more included and 
engaged with conversation around photos. Moving from 
online photo consumption to real-world situations, Zhao et 
al. [28] developed a Facebook Messenger bot that processes 
images from a smartphone camera in real-time to provide 
users with information about the number of people in front 
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of them, and offers additional information such as the 
identity, relative location, and facial features of Facebook 
friends via a screen reader.  

Building on this research, we investigate the use of CV to 
detect people in dynamic, real-world situations. Our aim is 
to help people with VI gain awareness of the people in their 
immediate surroundings to facilitate social interactions [10, 
24, 28] and to protect their privacy and personal safety [1, 7]. 
Advancing research by Zhao et al. [28], we seek to develop 
a model of peoples’ identities, locations, and movements in 
3D spaces based on continuous processing and recognition 
using body-worn or stationary cameras. Building a live 
model of other people nearby may mitigate the challenge of 
requiring users to frame people in front of a camera, and it 
enables technology to automatically provide important 
context information to a user that otherwise could be missed. 

While previous work in CV has explored challenges such as 
how to integrate different vision modules to reliably detect 
people [15], or how to track the behaviour of crowds [21] in 
the real world, we wanted to better understand—as a first 
step—how the choice of camera can impact the accuracy of 
people detection. Comparing four different camera systems, 
we derive: (i) insights into their feasibility for detecting 
people; and (ii) key challenges for intersecting CV and 
interaction design to help guide future research in this space. 

CAPTURING PEOPLE: A CAMERA COMPARISON PILOT 
In our feasibility pilot, we compared the performance of two 
head-mounted wearable cameras, a HoloLensi and a Rico 
Thetaii, and two stationary cameras, an iPhone with a 238˚ 
wide-angle lens and a 360˚ Polycomiii conferencing system 
(Figure 1 left). These cameras further varied in their field-of-
view (from narrow 45˚ to spherical 360˚) and imaging 
capabilities (frame size, resolution, distortion; Figure 1 
center), thus representing a breadth of possible camera 
systems. To test their performance, we set up a small, semi-
controlled meeting scenario (Figure 1 right), that involved 
five participants (P1–P5) who were instructed to: (1) arrive 
individually, (2) take a seat at the table, talk to each other for 
a few minutes, and (3) then to depart in pairs. An additional 
person, the user, was wearing the HoloLens and Ricoh Theta on 
their head along with a blindfold to simulate the experience of 
restricted sight. This method can be useful in early usability-
focused (rather than empathy/ability-focused) system testing 
[17, 20], but we acknowledge that the head movements of a 
blindfolded user can be quite different from those of a blind 
person. We simultaneously recorded video with each of the four 
cameras and an overhead camera to establish a ground truth for 
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       Figure 1. Left: Camera placement and field-of-view (FoV); Center: Sample images from each camera; Right: Test scenario set-up. 

each person’s position. While our test scenario was only brief 
(8 mins, 14 secs), the resulting video stream of the five 
cameras consisted of over 65,000 individual frames. To 
efficiently and reliably annotate these frames, we 
implemented Cao et al.’s [12] state-of-the-art pose-detection 
algorithm to automatically recognize multiple people in RGB 
images, corrected any false outputs, and added additional labels 
manually via a simple custom-built interface. 

FINDINGS 
Unsurprisingly, the two 360˚ cameras performed best in 
terms of ensuring each participant was visible at all times, 
while the iPhone with wide-angled lens captured the majority 
of the room except for one participant seated behind it (P5). 
The HoloLens, with its narrow 45˚ field-of-view (FoV), only 
captured the two participants who sat in front of the user (P2 
and P3) with any regularity, and at best for 75% of the 
frames. This confirms the importance of a camera’s field-of-
view and position for capturing people in a real-world scene. 

Next, we assessed the person detection performance for the 
frames where a person was visible. The detection algorithm 
achieved a high average accuracy for most cameras (up to 
96.9%), aside from the HoloLens (avg. 56.8%). In 31.2% of 
the HoloLens frames, the user’s head was tilted too low, cutting 
off participants’ heads. Interestingly, the detection algorithm 
still functioned reasonably well for detecting torsos (up to 
73.5%), even when a person’s head and legs were occluded. 
Further, false positive rates for the automated detection 
algorithm were very low across all cameras (≤ 2%), and almost 
non-existent for the Ricoh Theta (~0.1%). This result was 
surprising considering the radial and fisheye lens distortions 
of the wide-angle and 360˚ cameras (Figure 1). This suggests 
that camera systems with such distortions do not need to be 
excluded from automatic image processing but can be beneficial 
for capturing people in a dynamic scene due to their wider FoV. 

DISCUSSION & CHALLENGES FOR FUTURE WORK 
While limited in scope, and excluding important factors such 
as the distance, density, and movements of people, our pilot 
shows the effects of camera positioning, field-of-view, and 
distortion for detecting people in a dynamic scene. We close 
with a discussion of implications for future vision systems 
designed to increase awareness of others for people with VI. 

Beyond Capture: Anchors to Assist in Data Interpretation 
In our pilot, the 360˚ Ricoh Theta performed best at capturing 
and detecting people, avoiding challenges with aiming the 
camera, and, as a wearable, providing an ego-centric rather 
than stationary frame of reference. Beyond capture, we will 

need to consider how to best convey data about the relative 
positions and movements of other people to the user. In Zhao 
et al. [28], the phone acted as a ‘frame of reference’. 
Identifying a focus to spatially anchor available information 
about people—their positions in relation to the user and each 
other—is more complicated for a live 360˚ system, however. 
Here, a body-worn camera, especially if head-mounted, has 
an advantage, allowing the system’s focus to be aligned with 
the user’s head or gaze-direction to help anchor information 
in a dynamic scene. However, a head-worn design may also 
present barriers to social acceptance [29], suggesting more 
subtle designs would be preferable (i.e., [16]). Yet, if the 
design is too subtle, others may not recognize the camera, 
impacting potential choices to opt out, or protect privacy.  

From Calibration to Collaboration with a Vision System 
Most detection errors in the HoloLens data related to the 
orientation of the user’s head. Camera calibration challenges 
are addressed in designs for blind photography [2, 18] and 
other camera-related detection tasks [22] that often provide 
audio cues or haptic vibrations to assist in image framing and 
to prevent blur. Our pose-detection algorithm performed well 
in detecting people despite occluded body parts (e.g., torso 
detected, but no head), suggesting that this information could 
be used to signal users to look up to help improve detection 
accuracy. Constant calibration and collaboration with a 
system are more complicated in dynamic scenes, where 
people move continuously, requiring efficient and intuitive 
interactions that do not become burdensome or distracting.  

Beyond a Vision Snapshot: Accounting for Temporality 
All context-aware systems [11] based on sensing should 
account for changes due to motion as well as technology 
errors in detections (e.g., algorithm uncertainty, restricted 
field-of-view and occlusions). We believe that by developing 
a continuous model of nearby people that tracks each person 
and their location, we can achieve more robust in-situ person 
detection. Further, temporal information about when a 
person was last ‘seen’ by the system (e.g., just now vs. 15  
secs ago), could prompt the user to either look around to 
assist in a re-detection of the person, or to be more cautious 
in interpretations of system feedback (e.g., the person may 
have left the scene). Future work will need to explore how 
factors such as temporality can best be communicated to aid 
a user’s understanding of a social scene in meaningful ways. 
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