Programming by Examples: PL. meets ML

Sumit Gulwani ?, Prateek Jain®

A Microsoft Corporation, Redmond, USA
bMicrosoft Research, Bangalore, India

Abstract. Programming by Examples (PBE) involves synthesizing intended pro-
grams in an underlying domain-specific programming language (DSL) from
example-based specifications. This new frontier in Al enables computer users, 99%
of whom are non-programmers, to create scripts to automate repetitive tasks. PBE
can provide 10-100x productivity increase for data scientists, business users, and
developers for various task domains like string/number/date transformations, struc-
tured table extraction from log files/web pages/PDF/semi-structured spreadsheets,
transforming JSON from one format to another, repetitive text editing, repetitive
code refactoring and formatting. PBE capabilities can be surfaced using GUI-based
tools, code editors, or notebooks, and the code can be synthesized in various target
languages like Java or even PySpark to facilitate efficient execution on big data.

There are three key components in a PBE system. (i) A search algorithm that
can efficiently search for programs that are consistent with the examples provided
by the user. We leverage a divide-and-conquer based deductive search paradigm
that inductively reduces the problem of synthesizing a program expression of a
certain kind that satisfies a given specification into sub-problems that refer to sub-
expressions or sub-specifications. (ii) Program ranking techniques to pick an in-
tended program from among the many that satisfy the examples provided by the
user. (iii) User interaction models to facilitate usability and debuggability.

Each of these PBE components leverage both symbolic reasoning and heuristics.
We make the case for synthesizing these heuristics from training data using appro-
priate machine learning methods. In particular, we use neural-guided heuristics to
resolve any resulting non-determinism in the search process. Similarly, our ML-
based ranking techniques, which leverage features of program structure and pro-
gram outputs, are often able to select an intended program from among the many
that satisfy the examples. Finally, Our active-learning-based user interaction mod-
els, which leverage clustering of input data and semantic differences between mul-
tiple synthesized programs, facilitate a bot-like conversation with the user to aid us-
ability and debuggability. That is our algorithms that deeply integrate neural tech-
niques with symbolic computation can not only lead to better heuristics, but can
also enable easier development, maintenance, and even personalization of a PBE
system.

Keywords. Program synthesis, Programming by Examples, Search algorithm,
Program ranking, Active learning, Data wrangling

OThis is an extended version of the article with the same title that appeared in the proceedings for APLAS
2017 as an invited-talk contribution and was published by Springer [13]. This revision includes more than 5
pages of new content, which includes new figures and references along with expansion and better phrasing of
some earlier content.

Sumit Gulwani and Prateek Jain /
1. Introduction

Program Synthesis is the task of synthesizing a program that satisfies a given specifi-
cation [15]. The traditional view of program synthesis has been to synthesize programs
from logical specifications that relate the inputs and outputs of the program. A typical
academic exercise in program synthesis is to synthesize complicated algorithms such as
sorting algorithms [43], graph algorithms [18], and bitvector algorithms [19]. For in-
stance, the logical specification for a sorting algorithm would state that the sorting al-
gorithm takes as input an array A[l :: n| and outputs another array B[l :: n s.t. B is a
permutation of A, and B is sorted, i.e.,

V1<i<n:B[i] <Bli+1] A
Jdo, a permutation of 1...7n such that V1 <i < n: B[i] = A[o(i)]

Programming by Examples (PBE) is a sub-field of program synthesis, where the
specification consists of input-output examples, or more generally, output properties over
given input states [11]. PBE has emerged as a favorable paradigm for two key reasons: (i)
the example-based specification in PBE makes PBE more tractable than general program
synthesis because it involves reasoning over concrete program states (Section 4 discusses
the underlying search techniques). As a result, we can synthesize more complicated and
larger programs than what was possible earlier, and we can do that very efficiently and
often in real-time to facilitate usability. (i) Example-based specifications are much eas-
ier for the users to provide in many scenarios. This not only increases the usability of
synthesis technologies for developers, but also broadens the applicability to end users.
This is highly significant since 99% of computer users do not know programming and
would find it extremely difficult to write down logical specifications.

The advantages of PBE also present some unique challenges. First, examples are
highly ambiguous form of user’s intent. There are too many programs that match a small
number of examples. Requiring the user to provide a large number of examples to narrow
down the ambiguity affects the usability of such systems. We discuss (in Section 5) how
program ranking techniques can be designed to guess an intended program from among
the many that satisfy a few representative user-provided examples. Secondly, we need
technologies that can help the user identify representative inputs on which to provide
examples. We discuss this in Section 6.

This article is organized as follows. Section 2 discusses some key applications of
PBE. In Section 3, we provide our perspectives on how PBE differs from Machine Learn-
ing (ML), both of which aim to learn from examples. We make the case that instead of
thinking about ML and PBE as alternatives, ML can actually be used to create better PBE
systems. The next few sections discuss opportunities for such an integration for each of
the three key components of PBE: search algorithm (Section 4), ranking (Section 5), and
interactivity (Section 6). Section 7 presents some directions for future work.

2. Applications

The two killer applications for programming by examples today are in the space of data
transformations/wrangling and code transformations.

Sumit Gulwani and Prateek Jain /

[l PROSE Playground x 4+ - 8 x

C @ localhost393 Q@ % §1 @ O :

PROSE Playground ﬂ E n pROS,fbsozt

Program Synthesis using Examples SDK “yyq fie Reset Undo Learn Settings Result

[. + EEE Output | Program viewer | Disambiguation
BlueLabel Label Yelowlabel OrangeLabel 49 rows 3 columns
style=" lign: center;"| {{Sort|01]]{ Jibs BlueLabel GreenlLabel YellowLabel
((Dts[1967) January|15)}
st ckground:#d0e7ff:"|{{Sort|Green Bay Packers 01|[[1966 Green Bay Packers season|Green Bay Super Bowl | 1967 35-10
style="text-align: center;"| {{Sort|3510|) Super Bowl Il 1968 33-14
style="background:#fcc;"[{{Sort|Kansas City Chiefs 01|[[1966 Kansas City Chiefs season|Kansas City Ch
({Sort|Los Angeles Memorial Coliseum 01|([Los Angeles Memorial Coliseum][}} Super Bowl Il 1969 16-7
{{Sort|Pasadena, California 01|[[Los Angeles]}, [[Californial}{{#tag:ref|Both [[Los Angeles, CalifornialLos A Super Bowl IV 1970 237
style="text-align: center:"| {{Sort|061946|61,946}
style="text-align: center-"|<ref>{{Cite journal | |first=Tex Jurl= cnn.comivat Super Bowl V 1971 16-13
- Super Bowl VI 1972 24-3
="text-align: " B 1o r
(?lDy‘lse”thxtuaalL‘guna,rcen\er | {(Sort|02|[[SUREEBOWI 1])))<!—During the AFL-NFL merger, As the Colts mo\ Super Bowl VIl 1973 147
8| Y143}
style="background:#d0e7ff;"|{{Sort|Green Bay Packers 02[[[1967 Green Bay Packers season|Green Bay Super Bowl VIl 1974 247
xt-align: center;"| {{Sort|3314{33-14))
ckground:#fec;”|{{Sort|Oakland Raiders 01[[1967 Oakland Raiders season|Oakland Raiders]j<s Super Bowl IX 1975 16-6
{({Sort/Orange Bowl 01][[Miami Orange Bowl|Orange Bowl]}}} Super Bowl X 1976 21-17
{{Sort|Miami, Florida 01]({Miamil}, [[Florida]}{{#ag:ref|[[Miami Gardens, Florida|Miami Gardens]] was incor -
style="text-align: center;"| {{Sort|075546|75,546}} Super Bowl XI 1977 32-14
style="text-align: center:"|<ref>{{Cite journal [url=! 12008-01-15/super-t Super Bowl XIl 1978 27-10
style="text-align: center:"| {{Sort|03|[{SUPERBOWI I} Super Bowl XIll__ 1979 35-31
{{Dts[1969January|12)} Super Bowl XIV 1980 31-19
style="background:#fcc;"[{{Sort|New York Jets 01][[1968 New York Jets season|New York Jets]j<sup>A</: .
style="text-align: center;"| {{Sort|1607[16-7Rnbsp:)} Super Bowl XV 1981 2710
style=" d0e7ff,"|{{Sor Colts 01][[1968 Baltimore Colts season|Baltimore Colts]j< Super Bowl XVI 1982 26-21
{({Sort/Orange Bowl 02[Orange Bow! (2)}} Super Bowl XVIl 1983 2717
[{{Sort|Miami, Florida 02|Miami, Florida (2)<ref group=note name=b />}}
style="text-align: center;"| {{Sort|075389|75,389}} Super Bowl XVIII 1984 389
style="text-align: center."|<ref>{{Cite journal |url=http://www.sportingnews.com/archives/superbowl/3.htmi Super Bowl XIX 1985 3816
<includeonly> }</includeonly></onlyinclude>
- Super Bowl XX 1986 46-10
| sglej"é;xtlahgn’ ceWmer‘"\ {{Sortjo4|[{SuperBowl Vi VI Super Bowl XXI 1987 39-20
t: 1
IOrs{870}anuary 1)) Super Bowl XXIl_ 1988 210

Figure 1. Consider the task of extracting a structured table (shown on the right side) from the custom text file
(shown on the left side). This would typically require writing a complicated parsing script involving regular
expressions. In contrast, the FlashExtract PBE technology [22] allows automation of such tasks from few
examples. This figure illustrates a user experience around this PBE technology. Once the user highlights few
examples (often one or two) of a field (using a color unique to that field), FlashExtract synthesizes a program
and executes it to extract the other instances and arranges them in a new column in the output table.

2.1. Data wrangling

Data Wrangling refers to the process of transforming the data from its raw format to
a more structured format that is amenable to analysis and visualization. It is estimated
that data scientists spend 80% of their time wrangling data. Data is locked up into doc-
uments of various types such as text/log files, semi-structured spreadsheets, webpages,
JSON/XML, and PDF documents. These documents offer their creators great flexibility
in storing and organizing hierarchical data by combining presentation/formatting with
the underlying data. However, this makes it extremely hard to extract the underlying data
for several tasks such as processing, querying, altering the presentation view, or trans-
forming data to another storage format. PBE can make data wrangling easier and faster.

Extraction: A first step in a data wrangling pipeline is often that of ingesting or ex-
tracting tabular data from semi-structured formats such as text/log files, web pages, and
XML/JSON documents. These documents offer their creators great flexibility in storing
and organizing hierarchical data by combining presentation/formatting with the underly-
ing data. However, this makes it extremely hard to extract the relevant data. The FlashEx-
tract PBE technology allows extracting structured (tabular or hierarchical) data out of
semi-structured documents from examples [22]. For each field in the output data schema,
the user provides positive/negative instances of that field and FlashExtract generates a
program to extract all instances of that field. The FlashExtract technology ships as the
ConvertFrom-String cmdlet in Powershell in Windows 10, wherein the user provides ex-
amples of the strings to be extracted by inserting tags around them in test. The FlashEx-

Sumit Gulwani and Prateek Jain /

1 [yt g Column 2 .

2 Nancy.FreeHafer@fourthcoffee.com freehafer, nancy
3 ‘Andrew.Cencici@northwindtraders.com lcencici,andreM |

4 Jan.Kotas@litwareinc.com
Mariya.Sergienko@gradicdesigninstitute.com
Steven.Thorpe@northwindtraders.com
Michael.Neipper@northwindtraders.com

| Robert.Zare@northwindtraders.com

O 0 N o wn

Laura.Giussani@adventure-works.com

10 Anne.HL@northwindtraders.com

11 Alexander.David@contoso.com

12 Kim.Shane@northwindtraders.com

13 'Manish.Chopra@northwindtraders.com

14 Gerwald.Oberleitner@northwindtraders.com

15 Amr.Zaki@northwindtraders.com

16 7Yvonne.McKay@northwindtraders.com

17 Amanda.Pinto@northwindtraders.com)
Figure 2. Consider the collection of email addresses in the first column. Suppose the user wants to ex-
tract last name and first name and format them as illustrated in the second column. The Flash Fill fea-
ture [10] in Excel 2013 (and onwards) allows automation of such repetitive string transformations from
few examples. In this case, once the user performs one instance of the desired transformation (row 2, col-
umn 2) and proceeds to transforming another instance (row 3, column 2), Flash Fill learns a program con-
cat(ToLower(substr(v,WordToken,12), conststr(", "), ToLower(substr(v,WordToken,1))) that extracts
the first two words in input string v (first column), converts them to lowercase, and concatenates them separated
by a comma and space.

A B C D E e R
1 value | year | value | year Comments
2 | Albania 1,000 | 1950 930 | 1981 FRA |
3 | Austria 3,139 | 1951 | 3,177 | 1955 FRA 3
4 | Belgium 541 | 1947 601 | 1950
5 | Bulgaria 2,964 | 1947 | 3,259 | 1958 FRA 1
6 | Czech... | 2,416 | 1950 | 2,503 | 1960 NC

(a) Input: Semi-structured spreadsheet

A B C D
Albania | 1,000 | 1950 | FRA |
Albania 930 | 1981 | FRA 1

[

5 | Austria 3,139 | 1951 | FRA3
6 | Austria | 3,177 | 1955 | FRA3

9 | Belgium 541 | 1947
10 | Belgium 601 | 1950

(b) Output: Relational table

Figure 3. Consider the task of extracting a relational table (b) from the semi-structured spreadsheet (a). The
FlashRelate technology [4] allows automation of such tasks from few examples. In this scenario, once the user
provides a couple of examples of tuples in the output table (for instance, the highlighted ones), FlashRelate
synthesizes a script and executes that script to extract other similar tuples from the input spreadsheet.

Sumit Gulwani and Prateek Jain /

def product(n, term):
total, k =1, 1 def product(n, term):
while k<=n: if(n == 1):
- total = total * k return 1
+ total = total * term(k) - return product(n-1, term)*n
k=k+1 + return product(n-1, term)*term(n)
return total

k - term(k) n » term(n)
|

<name> - term(<name>)

)

Figure 4. This figure shows two incorrect student attempts to a programming problem with a similar kind
of fault, wherein the student missed applying the term function. The incorrect statement in each attempt is
colored red while the teacher’s correction is shown in blue. The Refazer tool [33] can generalize such similar
teacher corrections to a more general rule that can be applied to automatically fix other students’ attempts with
a similar fault.

tract technology also ships in Azure OMS (Operations Management Suite), where it en-
ables extraction of custom fields from log files. Figure 1 illustrates use of this technology
to extract structured tabular data from a text file with custom format.

Transformation: The Flash Fill feature, released in Excel 2013 and beyond, is a PBE
technology for automating syntactic string transformations, such as converting “First-
Name LastName” into “LastName, FirstName” [10]. Figure 2 provides an illustration of
the Flash Fill feature. PBE can also facilitate more sophisticated string transformations
that require lookup into other tables [36]. PBE is also a very natural fit for automating
transformations of other data types such as numbers [37] and dates [39].

Formatting: Another useful application of PBE is in the space of formatting data tables.
This can be useful to convert semi-structured tables found commonly in spreadsheets
into proper relational tables [4], or for re-pivoting the underlying hierarchical data that
has been locked into a two-dimensional tabular format [16]. Figure 3 provides illustrates
use of a PBE technology for performing example-based formatting. PBE can also be
useful in automating repetitive formatting in a PowerPoint slide deck such as converting
all red colored text into green, or switching the direction of all horizontal arrows [31].

2.2. Code Transformations

There are several situations where repetitive code transformations need to be performed
and examples can be used to automate this tedious task.

A standard scenario is that of general code refactoring. As software evolves, devel-
opers edit program source code to add features, fix bugs, or refactor it for readability,
modularity, or performance improvements. For instance, to apply an API update, a de-
veloper needs to locate all references to the old API and consistently replace them with
the new API. Examples can be used to infer such edits from a few examples [33].

Another important scenario is that of application migration—whether it is about
moving from on-prem to the cloud, or from one framework to another, or simply moving

Sumit Gulwani and Prateek Jain /

using System;

public class Program {

using System; public static int[] Puzzle(int[] a) {
public class Program { int front, back, temp;
)) . . r front = 0;
public static int[] Puzzle(int[] a) {

back = a.Length-1;

int [] b= new int[a.Length];

for (int c

!
1

b[a.Length-T}sa[i-1]

< a.length

1++) { a[back]

arrront];
a[front] = temp;

N front <= back
’ 1 =1 temp

1
¥

i <= a.Length return a;
’) --back

return b; alEachl

-

Figure 5. This figure shows two incorrect student attempts to the problem of reversing an array. The Auto-
Grader tool [40] can find small edits to an incorrect attempt (shown in red) that transforms the program into a
version that satisfies a given reference set of test cases.

from an old version of a framework to a newer version to keep up with the march of
technology. A significant effort is spent in performing repetitive edits to the underlying
application code. In particular, for database migration, it is estimated that up to 40% of
the developer effort can be spent in performing repetitive code changes in the application
code.

Yet another interesting scenario is in the space of feedback generation for program-
ming assignments in programming courses. For large classes such as massive open online
courses (MOOCs), manually providing feedback to different students is an unfeasible
burden on the teaching staff. We observe that student submissions that exhibit the same
fault often need similar fixes. The PBE technology can be used to learn the common
fixes from corrections made by teachers on few assignments, and then infer application
of these fixes to the remaining assignments, forming basis for automatic feedback [33].
Figure 4 illustrates such a use case. Another possibility is to search for a set of small
edits to the student’s incorrect attempt to make it pass a reference set of test cases, as
illustrated in Figure 5.

3. PL meets ML

It is interesting to compare PBE with Machine learning (ML) since both involve
example-based training and prediction on new unseen data. PBE learns from very few
examples, while ML typically requires large amount of training data. The models gen-
erated by PBE are human-readable (in fact, editable programs) unlike many black-box
models produced by ML. PBE generates small scripts that are supposed to work with
perfect precision on any new valid input, while ML can generate sophisticated models
that can achieve high, but not necessarily perfect, precision on new varied inputs. Hence,
given their complementary strengths, we believe that PBE is better suited for relatively
simple well-defined tasks, while ML is better suited for sophisticated and fuzzy tasks.

Sumit Gulwani and Prateek Jain /

Logical .
gica’. --> Written by developer
strategies v
Intelligent
software - Features/Insights
Creative
heuristics | ~~" | . Learned and maintained by

ML-backed runtime

Figure 6. A proposal for development of intelligent software that facilitates increased developer productivity
and increased software intelligence.

Recently, neural program induction has been proposed as a fully ML-based alterna-
tive to PBE. These techniques develop new neural architectures that learn how to gen-
erate outputs for new inputs by using a latent program representation induced by learn-
ing some form of neural controller. Various forms of neural controllers have been pro-
posed such as ones that have the ability to read/write to external memory tape [9], stack
augmented neural controller [20], or even neural networks augmented with basic arith-
metic and logic operations [27]. These approaches typically involve developing a contin-
uous representation of the atomic operations of the network, and then using end-to-end
training of a neural controller or reinforcement learning to learn the program behavior.
While this is impressive, these techniques aren’t a good fit for the PBE task domains of
relatively simple well-defined tasks. This is because these techniques don’t generate an
interpretable model of the learned program, and typically require large computational
resources and several thousands of input-output examples per synthesis task. We believe
that a big opportunity awaits in carefully combining ML-based data-driven techniques
with Programming Languages (PL)-based logical reasoning approaches to improve a
standard PBE system as opposed to replacing it.

3.1. A perspective on PL meets ML

Al software often contains two intermingled parts: logical strategies + creative heuris-
tics. Heuristics are difficult to author, debug, and maintain. Heuristics can be decom-
posed into two parts: insights/features + model/scoring function over those features. We
propose that an Al developer refactors their intelligent code into logical strategies and
declarative features while ML techniques are used to evolve an ideal model or scoring
function over those insights with continued feedback from usage of the intelligent soft-
ware. This has two advantages: (i) Increase in developers productivity, (ii) Increase in
systems intelligence because of better heuristics and those that can adapt differently to
different workloads or unpredictable environments (a statically fixed heuristic cannot
achieve this).

Figure 6 illustrates this proposed modular construction of intelligent software. De-
veloping an ML model in this framework (where the developer authors logical strate-
gies and declarative insights) poses several interesting open questions as traditional ML
techniques are not well-equipped to handle such declarative and symbolic frameworks.
Moreover, even the boundary between declarative insights and ML-based models may be

Sumit Gulwani and Prateek Jain /

Refined Intent

Example

Search
based —1 alqorithm |, Ranked ——{ Debugger — Intended
Intent 9 Program set Program in D

I | [amiaor]

. Test inputs
Ranking DSLD
function

Intended Program in
R/Python/C#/C++/...

Figure 7. Programming-by-Examples Architecture. The search algorithm, parameterized by a domain-specific
language (DSL) and a ranking function, synthesizes a ranked set of programs from the underlying DSL that
are consistent with the examples provided by the user. The debugging component, which leverages additional
test inputs, interacts with the user to refine the specification and the synthesis process is repeated. Once an
intended program has been synthesized, it can be translated to a target language using standard syntax-directed
translation.

fluid. Depending on the exact problem setting as well as the domain, the developer might
want to decide which part of the system should follow deterministic logical reasoning
and which part should be based on data-driven techniques.

3.2. Using ML to improve PBE

There are three key components in a PBE engine: search algorithm, ranking strategy, and
user interaction models. Each of these components leverage various forms of heuristics.
ML can be used to learn these heuristics, thereby improving the effectiveness and main-
tainability of the various PBE components. In particular, ML can be used to speed up the
search process by predicting the success likelihood of various paths in the huge search
space [21]. It can be used to learn a better ranking function [26]. It can be used to cluster
test data and associate confidence measure over the outputs generated by the synthesized
program to drive an effective active learning session with the user for debuggability [28].

4. Search Algorithm

Figure 7 shows the architecture of a PBE system. The most involved technical component
is the search algorithm, which we discuss in this section. Section 4.1 and 4.2 describe
the two key ingredients that form the foundation for designing this search algorithm.
These ingredients are based on deterministic logical reasoning. Section 4.3 then discusses
and speculates how machine learning can further help exploit the traditional PL-driven
logical reasoning to obtain an even more efficient, real-time search algorithm for PBE.

Sumit Gulwani and Prateek Jain /

String Expression E:=concat(E;, E;) | substr(E, P, P2) | conststr(String)
Position P:= Integer | pos(x, Ry, Ry, k)

Figure 8. Anexample Domain Specific Language (DSL).substr, concat are operators to manipulate the string
and conststr represents a constant string. pos operator identifies position of a particular pattern in the input x.
String is any constant string and Integer is an arbitrary integer that can be negative as well.

4.1. Domain-specific Language

A key idea in program synthesis is to restrict the search space to an underlying domain-
specific language (DSL) [1,12]. The DSL should be expressive enough to represent a
wide variety of tasks in the underlying task domain, but also restricted enough to allow
efficient search. We have designed many functional domain-specific languages for this
purpose, each of which is characterized by a set of operators and a syntactic restriction
on how those operators can be composed with each other (as opposed to allowing all
possible type-safe composition of those operators) [11]. A DSL is typically specified
as a context-free grammar that consists of one or more production rules for each non-
terminal. The right hand side of a production rule can be either another non-terminal or an
explicit set of program expressions or a program operator applied to some non-terminals.

For illustration, we present an extremely simple string manipulation grammar in
Figure 8; this DSL is a heavily stripped down version of Flash Fill DSL [10]. The lan-
guage has two key operators for string manipulations: a) substr operator which takes as
input a string x, and two position expressions P and P, that evaluate to positions/indices
within the string x, and returns the substring between those positions, b) concat which
concatenates the given expressions. The choice for position expression P includes the
pos(x,R1,Rz,k) operator, which returns the k' h position within the string x such that (some
suffix of) the left side of that position matches with regular expression R; and (some
prefix of) the right side of that position matches with regular expression R;.

For example, program given by,
concat(substr(Input, €, “ 7, 1), substr(Input, “ ”, €, -1), conststr(“@cs.colorado.edu’))
maps input “evan chang” into “evanchang@cs.colorado.edu”. Note that we overloaded
concat operator to allow for more than 2 operands.

IRl

4.2. Deductive Search Methodology

A simple search strategy is to enumerate all programs in order of increasing size [1] by
doing a bottom-up enumeration of the grammar. This can be done by maintaining a graph
of reachable values starting from the input state in the user-provided example. This sim-
ply requires access to the executable semantics of the operators in the DSL. Bottom-up
enumeration is very effective for small grammar fragments since executing operators for-
ward is very fast. Some techniques have been proposed to increase the scalability of enu-
merative search: (i) divide and conquer that decomposes the problem of finding programs
that satisfy all examples to that of finding programs, each of which satisfies some sub-
set, and then combining those programs using conditional predicates [2]. (ii) operator-
specific lifting functions that can compute the output set from input sets more efficiently
than point-wise computation. Lifting functions are essentially the forward transformer
for an operator [30].

Unfortunately, bottom-up enumeration does not scale to large grammars because
there are often too many constants to start out with. Our search methodology combines

Sumit Gulwani and Prateek Jain /

bottom-up enumeration with a novel top-down enumeration of the grammar. The top-
down enumeration is goal-directed and requires pushing the specification across an oper-
ator using its inverse semantics. This is performed using witness functions that translate
the specification for a program expression of the kind F (e, ;) to specifications for what
the sub-expressions e and e, should be. The bottom-up search first enumerates smaller
sub-expressions before enumerating larger expressions. In contrast, the top-down search
first fixes the top-part of an expression and then searches for its sub-expressions.

The overall top-down strategy is essentially a divide-and-conquer methodology that
recursively reduces the problem of synthesizing a program expression e of a certain kind
and that satisfies a certain specification y to simpler sub-problems (where the search is
either over sub-expressions of e or over sub-specifications of y), followed by appropri-
ately combining those results. The reduction logic for reducing a synthesis problem to
simpler synthesis problems depends on the nature of the involved expression e and the
inductive specification y. If e is a non-terminal in the grammar, then the sub-problems
correspond to exploring the various production rules corresponding to e. If e is an oper-
ator application F(ej,e;), then the sub-problems correspond to exploring multiple sub-
goals for each parameter of that operator. As is usually the case with search algorithms,
most of these explorations fail. PBE systems achieve real-time efficiency in practice by
leveraging heuristics to predict which explorations are more likely to succeed and then
either only explore those or explore them preferentially over others.

Machine learning techniques can be used to learn such heuristics in an effective
manner. Below, we provide more details on one such method for a guided search in the
deductive strategy [21].

4.3. ML-based Search Algorithm

A key ingredient of the top-down search methodology mentioned above is grammar enu-
meration where while searching for a program expression e of the non-terminal kind, we
enumerate all the production rules corresponding to e to obtain a new set of search prob-
lems and recursively solve each one of them. The goal of this work [21] was to determine
the best production rules that we should explore while ignoring certain production rules
that are unlikely to provide a desired program. Now, it might seem a bit outlandish to
claim that we can determine the correct production rule to explore before even exploring
it!

However, many times the provided input-output specification itself provides clues
to make such a decision accurately. For example, in the context of the DSL mentioned
in Figure 8, lets consider an example where the input is “evan” and the desired output
is “evan@cs.colorado.edu”. In this case, even before exploring the productions rules,
it is fairly clear that we should apply the concat operator instead of substr operator; a
correct program is concat(Input, conststr(“@cs.colorado.edu’)). Similarly, if our input
is “xinyu feng” and the desired output is “xinyu” then it is clear that we should apply the
substr operator; a correct program is substr(Input, 1, pos(Input, Alphanumeric, “”, 1)).

But, exploiting the structure in input-output examples along with production rules
is quite challenging as these are non-homogeneous structures without a natural vector
space representation. Building upon recent advances in natural language processing, our
ML based approach uses a version of neural networks to exploit the structure in input-
output examples to estimate the set of best possible production rules to explore. For-

Sumit Gulwani and Prateek Jain /

LSTM Model
LSTM LSTM LSTM | Newal |
Network
Input Output Non- .
Example Example Terminal Embedding
WSIM | | score;
Model
LST™ »score;
Model
LSTM
Model [——"Scorey
Figure 9. LSTM based model for computing score for the candidate set of production rules P, ..., P during

the grammar expansion process. The top figure shows details of the ML model used to compute score for a
candidate production rule when placed in the context of the given input-output examples.

mally, given the input-output examples represented by v, and a set of candidate produc-
tion rules P;,Ps,...,P, whose LHS is our current non-terminal e we compute a score
s; = score(y, P;) for each candidate rule P,. This score reflects the probability of syn-
thesis of a desired program if we select rule P; for the given input-output examples V.
Note that input-output example specification y changes during the search process as we
decompose the problem into smaller sub-problems; hence for recursive grammars, we
need to compute the scores every time we wish to explore a production rule.

For learning the scoring model, similar to [6], our method embeds input-output ex-
amples in a vector space using a popular neural network technique called LSTM (Long
Short-Term Memory) [17]. The embedding of a given input-output specification essen-
tially captures its critical features, e.g., if input is a substring of output or if output is
a substring of input etc. We then match this embedding against an embedding of the
production rule P; to generate a joint embedding of (y,P;) pair. We then learn a neu-
ral network based function to map this joint embedding to the final score. Now for pre-

diction, given scores s1,S52,...,5t, we select branches with top most scores with large
enough margin, i.e., we select rules B, ,...,P;, for exploration where s;; > s;, -+ > s,
and s;, — s;, a2 TT> 0 is a threshold parameter that we discuss later.

See Figure 9 for an overview of our LSTM based model and the entire pipeline.

To test our technique, we applied it to a much more expressive version of the Flash
Fill DSL [10] that includes operators over richer data types such as numbers and dates.
For training and testing our technique, we collected 375 benchmarks from real-world
customer scenarios. Each benchmark consists of a set of input strings and their corre-
sponding outputs. We selected 300 benchmarks for training and remaining 75 for testing.

Sumit Gulwani and Prateek Jain /

Metric PROSE DC RF NGDS
Accuracy (% of 73) 67.12 3288 1644 68.49
Speed-up (x PROSE) 1.00 1.51 0.26 1.67

Table 1. (Table 1 of [21]) Accuracy and average speed-up of NGDS vs. baseline methods. Accuracies are
computed on a test set of 73 tasks. Speed-up of a method is the geometric mean of it’s per-task speed-up (ratio
of synthesis time of PROSE and of the method) when restricted to a subset of tasks with PROSE’s synthesis
time is > 0.5 sec.

For each training benchmark, we generated top 1000 programs using existing top-
down enumerative approach and logged relevant information for our grammar enumer-
ation. For example, when we want to expand certain grammar symbol (say expr in Fig-
ure 8) with the goal of mapping given inputs to required outputs, we log all the relevant
production rules P;, Vi (i.e., rules in Line 1 of Figure 8). We also log the score s; of the top
program that is generated by applying production rule P;. That is, each training instance
is (y, P, s;) for a given node with input-output examples y. We use standard DNN tools
to train the model for grammar enumeration. That is, whenever we need to decide on
which production rule to select for expansion, we compute score for each possible rule
P; and select the rules whose scores are higher than the remaining rules by a margin of 7.

Threshold 7 is an interesting knob that helps decide between exploration vs exploita-
tion. That is, smaller 7 implies that we trust our ML model completely and select the
best choice presented by the model. On the other hand, larger 7 forces system to be more
conservative and use ML model sparingly when it is highly confident. For example, on
the 75 test benchmarks, setting T = 0 i.e. selecting ML model’s predicted production
rule for every grammar expansion decision, we select the best production rule 92% of
the instances. Unfortunately, selecting wrong production rule 8% of the times might lead
to synthesis of a relatively poor program or in worst case, no program. However, by in-
creasing T = 0.1 we can increase our chances of selection of the best production rule
to 99%. Although in this case, for nearly 50% instances the ML model does not differ-
entiate between production rules, i.e., the predicted scores are all within T = 0.1 length
interval. Hence, we enumerate all the rules in about 50% of the grammar expansion in-
stances and are able to prune production rules in only 50% cases. Nonetheless, this itself
leads to impressive computation time improvement of up to 12x over naive exploration
for many challenging test benchmarks. Table 1 presents average speed-up obtained by
our method (NGDS) over the naive exploration technique used by the PROSE system
as well as two of the existing deep learning based techniques: RobustFill [6] and Deep-
Coder [3]. RobustFill (RF) does not leverage the deductive search structure and instead
tries to synthesize programs end-to-end using deep learning. As seen by the table, the
accuracy of such a system is not very good and in fact, even the overall computation cost
is also significantly worse than NGDS. DeepCoder (DC) is a technique that imposes a
static priority over operators to be explored during deductive search. So unlike NGDS,
DeepCoder does not change the priority list over operators with each step’s input-output
pair.

5. Ranking

Examples are a severe under-specification of the user’s intent in many useful task do-
mains. As a result, several programs in an underlying DSL are consistent with a given

Sumit Gulwani and Prateek Jain /

set of training examples, but are unintended, i.e., they would produce an undesired out-
put on some test inputs. Usability concerns further necessitate that we learn an intended
program from as few examples as possible.

PBE systems address this challenge by leveraging a ranking scheme to select be-
tween different programs consistent with the examples provided by the user. Ideally, we
want to bias the ranking of programs so that natural programs are ranked higher. While
the notion of naturalness of programs is highly subjective, still in practice, one can see
certain succinct patterns associated with natural programs that one can try to capture via
real-world training datasets.

The ranking can either be performed in a phase subsequent to the one that identifies
the many programs that are consistent with the examples [38], or it can be in-built as part
of the search process [25,3]. Furthermore, the ranking can be a function of the program
structure or additional test inputs.

5.1. Ranking based on Program Structure

A basic ranking scheme can be specified by defining a preference order over program
expressions based on their features. Two general principles that are useful across vari-
ous domains are: prefer small expressions (inspired by the classic notion of Kolmogorov
complexity) and prefer expressions with fewer constants (to force generalization). For
specific DSLs, more specific preferences or features can be defined based on the opera-
tors that occur in the DSL.

5.2. Ranking based on test inputs

The likelihood of a program being the intended one not only depends on the structure
of that program, but also on features of the input data on which that program will be
executed and the output data produced by executing that program. In some PBE settings,
the synthesizer often has access to some additional test inputs on which the intended
program is supposed to be executed. Singh showed how to leverage these additional test
inputs to guess a reduction in the search space with the goal to speed up synthesis and
rank programs better [35]. Ellis and Gulwani observed that the additional test inputs can
be used to re-rank programs based on how similar are the outputs produced by those
programs on the test inputs to the outputs in the training/example inputs provided by the
user [7].

For instance, consider the task of extracting years from input strings of the kind
shown in the table below.

Input Output
Missing page numbers, 1993 | 1993
64-67, 1995 1995

The program P1: “Extract the last number” can perform the intended task. However, if
the user provides only the first example, another reasonable program that can be synthe-
sized is P2: “Extract the first number”. There is no clear way to rank P1 higher than P2
from just examining their structure. The above However, the output produced by P1 (on
the various test inputs), namely {1993,1995,...,} is a more meaningful set (of 4 digit
numbers that are likely years) than the one produced by P2, namely (which manifests

Sumit Gulwani and Prateek Jain /

greater variability). The meaningfulness or similarity of the generated output can be cap-
tured via various features such as IsYear, numeric deviation, IsPersonName, and number
of characters.

5.3. ML-based Ranking Function

Typically, natural or intended programs tend to have subtle properties that cannot be cap-
tured by just one feature or by an arbitrary combination of the multiple features identified
above; empirical results presented in Table 2 confirms this hypothesis where the accu-
racy of the shortest program based ranker or a random ranker is poor. Hence, we need
to learn a ranking function that appropriately combines the features in order to produce
the intended natural programs. In fact, learning rankers over programs/sub-expressions
represents an exciting domain where insights from ML and PL can have an interesting
and impactful interplay.

Below, we present one such case study where we learn a ranking function that ranks
sub-expressions and programs during the search process itself [26]. We learn the ranking
function using training data that is extracted from diverse real-world customer scenar-
ios. However learning such a ranking function that can be used to rank sub-expressions
during the search process itself poses certain unique challenges. For example, we need
to rank various non-homogeneous sub-expressions during each step of the search pro-
cess but the feedback about our ranking decisions is provided only after synthesis of
the final program. Moreover, the ranking function captures the intended program only if
the final program is correct, hence, a series of “correct” ranking decisions over various
sub-expressions might be nullified by one incorrect ranking decision.

To solve the above set of problems, we implement a simple program embedding
based approach. Consider a program P whose AST is given by ./ (P). Then the em-
bedding of P is computed recursively where ¢ (< (P)) =Y, w;¢ (<7 (P;)), P; are the chil-
dren of P in &/ (P). Now leaf nodes of &/ (P) are embedded in d-dimensions using a
few operator-specific features. We now pose the ranking problem as: find 6 € R s.t.
Y;0;0(P);>Y;6;¢(P,); where P, is a “correct” program, i.e., it produces desired out-
put on training datasets and P, is an “incorrect” program. 6; and ¢ (P) ; represents the j' h
coordinate of 6 and ¢ (P) respectively.

Now recall that our goal is to ensure that all the ranking decisions in benchmark are
correct, so we need to use a different metric than the standard classification metric (see
[26] for more details).

For learning 0 as well as weights w;, we use training benchmarks where each bench-
mark consists of a set of inputs and their corresponding outputs. For each benchmark,
we synthesize 1000 programs using the first input-output pair in that benchmark, treat-
ing it as an example input-output pair. We categorize a synthesized program as “correct”
if it generates correct output on all the other benchmark inputs, and “incorrect” other-
wise. We then embed each sub-expression and the program in d-dimensional space using
hand-crafted features. Our features reflect certain key properties of the programs, e.g.,
length of the program etc. We then use straightforward block-coordinate descent based
methods to learn 0, w;’s in an iterative fashion.

Empirical Results: similar to search experiments, we learn our ranking function us-
ing a collection of important benchmarks from real-world customer scenarios. We se-
lect about 100 benchmarks for training and test our system on the remaining 640 bench-

Sumit Gulwani and Prateek Jain /

RANKING METHOD Acc@l1 Acc@10

m=1|m=2 | m=1| m=2

RANDOM 0.22 0.60 0.38 0.67

(A) SHORTEST PROGRAM 0.37 0.69 0.49 0.80
(B) FEWER CONSTANTS 0.38 0.60 0.59 0.80
(A) and (B) 0.44 0.72 0.60 0.87
ML-based Ranker 0.65 0.81 0.79 0.92

Table 2. Ranking: table compares precision@1 and precision@ 10 accuracy for various methods when sup-
plied different number of input-output example pairs (m = 1,2). Our ML-ranker provides significantly higher
accuracy and estimates correct program for 65% test benchmarks using just one input-output example.

marks. We evaluate performance of our ranker using precision k metric. That is, preci-
sion k is the fraction of test benchmarks in which at least one “correct” program lies in
the top-k programs (as ranked by our ranker). We also compute precision k for different
specification sizes, i.e., for different number of input-output examples being supplied.

Table 2 compares accuracy (measured in precision@k) of our method with four
baselines: a) random ranker that at each node selects a random sub-expression, b) short-
est program which selects programs with the smallest number of operators. ¢) program
that selects the smallest number of constants. d) a linear combination of the shortest and
smallest constants heuristics. Note that with 1 input-output example, our method is al-
most 50% more accurate than baselines. Naturally with 2 examples, baselines’ perfor-
mance also improves as there fewer programs that satisfy 2 examples.

Additionally, we can learn individual 6 for each user/organization thus leading to
personalized ranker. For example, our method can learn processing an input string as
“European” style date-time instead of ”American” style date-time.

6. Interactivity

While use of ranking in the synthesis methodology attempts to avoid selecting an unin-
tended program, it cannot always succeed. Hence, it is important to design appropriate
user interaction models for the PBE paradigm that can provide the equivalent of debug-
ging experience in standard programming environments. There are two important goals
for a user interaction model that is associated with a PBE technology [24]. First, it should
provide transparency to the user about the synthesized program(s). Second, it should
guide the user in resolving ambiguities in the provided specification.

In order to facilitate transparency, the synthesized program can be displayed to the
user. In that context, it would be useful to have readability as an additional criterion
during synthesis. The program can also be paraphrased in natural language, especially to
facilitate understanding by non-programmers.

In order to resolve ambiguities, we can present multiple synthesized programs to the
user and ask the user to pick between those. More interestingly, we can also leverage
availability of other test input data on which the synthesized program is expected to be
executed. This can be done in few different ways. A set of representative test inputs can
be obtained by clustering the test inputs and picking a representative element from each
cluster [28]. The user can then check the results of the synthesized program on those

Sumit Gulwani and Prateek Jain /

representative inputs. Alternatively, clustering can also be performed on the outputs pro-
duced by the synthesized program. Yet, another approach can be to leverage distinguish-
ing inputs [19]. The idea here is to synthesize multiple programs that are consistent with
the examples provided by the user but differ on some test inputs. The PBE system can
then ask the user to provide the intended output on one or more of these distinguishing
inputs. The choice for the distinguishing input to be presented to the user can be based
on its expected potential to distinguish between most of those synthesized programs.
There are many heuristic decisions in the above-mentioned interaction models that
can ideally be learned using ML techniques such as what makes a program more read-
able, or which set of programs to present to the user, or how to cluster the input or output
column. Below, we discuss one such investigation related to clustering of strings.

6.1. Clustering of Strings

We propose an agglomerative hierarchical clustering based method for clustering the
strings. Intuitively, we want to cluster strings together which can be represented by a spe-
cific but natural regular expression. For example, given strings {1990, 1995,210BC,450BC},
we want to find the two clusters represented by regular expressions Digit* and
Digit? - BC.

We find the tightest and natural regular expression representing a given set of strings
using program synthesis over a regular expression specific language. [28]. Our algorithm
randomly samples a few strings and then finds the most likely regular expressions by
synthesizing them using pairs of strings. The most highly rates regular expressions can
be thought of as cluster representatives. We then define a distance function that computes
distance of a string to a regular expression. Using this distance function, we then apply
standard agglomerative hierarchical clustering algorithm to obtain representative regular
expressions.

For example, given strings from a dataset containing postal codes such as: {99518,
61021-9150, 2645, KOK 2C0, 61604-5004...}, our system finds clusters such as:

e Digit’

e Digit*

e UpperCase - Digit - UpperCase Digit - UpperCase - Digit

e 61Digit® — Digit*

e S7K7K9
Note that the regular expressions are able to capture the key clusters such as Digit> etc,
but it also captures certain anomalies such as S7TK7K9. We also evaluate our system
over real-world datasets using Normalized Mutual Information (NMI) metric which is a
standard clustering metric. We observe that if given enough computation time, our system
is able to obtain nearly optimal NMI of ~ 1.0. Moreover, by appropriately sampling
and synthesizing regular expressions, we can speed up the computation by a factor of 2
despite recovering clusters with NMI of 0.95. We refer the interested readers to [28] for
more details.

7. Future Directions

Applications Robotic Process Automation (RPA) can be another killer application for
program synthesis. The goal in RPA is to automate high-volume rules-driven business

Sumit Gulwani and Prateek Jain /

processes that often connect different applications. These typically require logging into
IT systems and copying and pasting data across systems. For instance, consider the task
of opening an invoice in a PDF format that is received as an attachment in an email, ex-
tracting various fields from the invoice, and entering them inside multiple systems. Pro-
gram synthesis technologies can help synthesize such scripts from few demonstrations
by the business user.

Another interesting application of program synthesis can be in the space of pro-
gramming real-world robots. General-purpose programmable robots may be a common
household entity in a few decades from now. Each household will have its own unique
geography for the robot to navigate and a unique set of chores for the robot to perform.
Example-based training could be an effective means for programming robots for person-
alized tasks and personalized household environments.

Performant Synthesis The synthesized scripts might need to be executed on big data.
In such a scenario, it is desirable to synthesize not just a correct program that meets the
intent, but one that is also efficient and hence does not waste computational resources.

Often there are many different programs to accomplish a particular task. These pro-
grams may not be semantically equivalent but they have the same behavior on the kinds
of inputs they are expected to be executed on. The ranking schemes in program synthe-
sis are generally tuned to pick any of these correct programs. However, some of these
programs may be much more efficient than the other, and it may be desirable to pick
one such efficient program. For instance, suppose the goal is to extract LastName from
inputs of kind “FirstName LastName”. One correct program to accomplish such a task
can operate by extracting the second word, while another correct program to accomplish
the same task can operate by extracting all characters after the last space. It turns out that
the latter program is much more efficient than the former since it avoids use of regular
expressions.

Readable Synthesis The synthesized scripts might need to be readable and modifiable.
In some scenarios, it is not important to inspect the code of the synthesized program,
especially when the goal is to execute the script for a one-off task and wherein the cor-
rectness of the underlying transformation can be verified by visual inspection over small
input data. Applying Flash Fill [10] on small-sized input columns is an example of such
a scenario, wherein an end user may simply inspect the derived column to verify that the
string transformation has been performed correctly. However, if the input on which the
synthesized script is to be executed is large, or if the synthesized script needs to be exe-
cuted multiple times in the future, then the user may want to inspect, and possibly even
edit the code of the underlying synthesized program. In such scenarios, it is important to
synthesize code that is readable. Furthermore, such a code may need to be synthesized
in a specific target language desired by the user. This leads to many interesting research
challenges such as leveraging idiomatic patterns and libraries that the user is familiar
with, choice of variable names, and formatting of code. Another interesting concern re-
lates to maintainability of such synthesized code. For instance, if the user provides ad-
ditional examples in the future to adapt the behavior of the code on new additional in-
puts, then what happens to any changes that the user may have made in the old synthe-
sized code? One interesting possibility is to ensure that the newly synthesized code is as
similar to the old synthesized code as possible, which can be regarded as automation of
test-driven development [29].

Sumit Gulwani and Prateek Jain /

Synthesizing readable code in specific target languages shall allow PBE technolo-
gies to be integrated inside main-stream coding workflows such as IDEs or notebooks.

Multi-model intent specification While this article has focused on leveraging examples
as specification of intent, certain class of tasks are best described using natural language
such as spreadsheet queries [14] and smartphone scripts [23]. The next generation of
programming experience shall be built around multi-modal specifications that are natural
and easy for the user to provide. The new paradigm shall allow expressing intent using
combination of various means [32] such as examples, demonstrations, natural language,
keywords, and sketches [42].

Predictive Synthesis For some task domains, it is often possible to predict the user’s
intent without any input-output examples, i.e., from input-only examples. For instance,
extracting tables from web pages, PDF documents, or log files, or splitting a column
into multiple columns [30]. While providing examples is already much more convenient
than authoring one-off scripts, there are scenarios where providing examples can be quite
tedious overall. For instance, consider the task of extracting fields from a log file. If the
number of fields is large, then providing examples for each field would be quite tedious.
Having the system guess the user’s intent without any examples can also power novel
user experiences such as enabling question-answering on semi-structured data, wherein
the system can automatically infer the underlying relational tabular structure without
requiring the user to provide any examples.

Adaptive Synthesis Another interesting future direction is to build systems that learn
user preferences based on past user interactions across different programming sessions.
For instance, the underlying ranking can be dynamically updated. This can pave the
way for personalization of PBE technologies to specific users, as well as enable learning
across users in a given organization or cloud. Tasks that required more examples earlier
can now be accomplished with fewer examples. In fact, this can also facilitate predictive
synthesis. For instance, consider the task of parsing a custom log file or extracting a table
from a web page. Initially, a user may have to provide some examples. In the future,
when the same user or even a different user, is faced with the same task but on a different
input of the same format, the underlying adaptive synthesis system should be able to
handle the task predictively, i.e., without any examples.

PL meets ML While PL has democratized access to machine implementations of pre-
cise ideas, ML has democratized access to discovering heuristics to deal with fuzzy and
noisy situations. The new Al revolution requires frameworks that can facilitate creation
of Al-infused software and applications. Synergies between PL and ML can help lay the
foundation for construction of such frameworks [34,5,8,41].

For instance, language features can be developed that allow the developer to express
non-determinism with some default resolution strategies that can then automatically get
smarter with usage. As opposed to traditional Al based domains such as vision, text,
bioinformation, such self-improving systems present entirely different data formats and
pose unique challenges that foreshadow an interesting full-fledged research area with op-
portunity to impact how we program and think about interacting with computer systems
in general.

Sumit Gulwani and Prateek Jain /
8. Conclusion

PBE is a new frontier in Al and is set to revolutionize the programming experience. The
technology has already matured to the extent that it can provide 10-100x productivity
increase in many task domains for both data scientists and developers. The two killer ap-
plications for PBE today are: data wrangling and code refactoring. Data scientists spend
80% time wrangling data while developers spend up to 40% time refactoring code in a
typical application migration scenario. Another significant aspect of PBE is its potential
to enable programming for the masses, given that 99% people who use computers do not
know programming.

We have leveraged inspiration from both logical reasoning and machine learning to
build usable and practical PBE systems. The Microsoft PROSE SDK ! exposes generic
search and ranking algorithms, allowing advanced developers to construct PBE capabil-
ities for new task domains. This SDK has been used to build product-quality implemen-
tations of many PBE capabilities that have shipped through multiple Microsoft products
across Office, Windows, SQL, and Azure.

A key challenge in PBE is to search for programs that are consistent with the ex-
amples provided by the user. On the symbolic reasoning side, our search methodology
in PBE leverages two key ideas: restrict the search to a domain-specific programming
language (PL) specified as a grammar, and perform a goal-directed top-down search that
leverages inverse semantics of operators to decompose a goal into a choice of multi-
ple sub-goals. However, this search can be made even more tractable by learning tactics
(using ML) to prefer certain choices over others during both grammar exploration and
sub-goal selection.

Another key challenge in PBE is to understand the user’s intent in the face of ambi-
guity that is inherent in example-based specifications, and furthermore, to understand it
from as few examples as possible. For this, we leverage use of a ranking function with
the goal of the search now being to pick the highest ranked program that is consistent
with the examples provided by the user. The ranking is a function of various symbolic
features of a program such as size, number of constants, use of a certain combination of
operators. The ranking is also a function of the outputs generated by the program (non-
null or not, same type as the example outputs or not) and more generally the execution
traces of the program on new test inputs. While various PL concepts go into defining the
features of a ranking function, ML-based techniques can be used to build models over
these different classes of features.

A third challenge relates to debuggability: provide transparency to the user about the
synthesized program and help the user to refine the specification in an interactive loop.
We have investigated user interaction models that leverage concepts from both PL and
ML including active learning based on synthesis of multiple top-ranked programs (each
of which is consistent with the user’s specification) and leveraging their differences, clus-
tering of inputs to identify various input classes and hence representative inputs, clus-
tering of outputs to identify any potential discrepancies, and navigation through a large
program set represented succinctly as a grammar.

The above-mentioned directions highlight opportunities to design novel techniques
that combine logical reasoning based symbolic methods developed in the PL community

Uhttps://microsoft.github.io/prose/

Sumit Gulwani and Prateek Jain /

with ML methods to solve various challenges that arise in construction of efficient, ro-
bust, and usable PBE systems. We believe that the ongoing Al revolution shall further
drive novel synergies between PL and ML to facilitate creation of intelligent software
in general. PBE systems, and more generally program synthesis systems, that relate to
real-time intent understanding are a great case study for investigating ideas in this space.

Programming has evolved from use of punched cards and low-level assembly lan-
guage programming to programming with high-level languages in beautiful code editors.
The next evolution will leverage advances in program synthesis techniques to take pro-
gramming closer to natural human communication, wherein it will become multi-modal
and will involve use of various forms of intent expression including examples and natural
language. Today, examples are already present in programming in the form of test cases,
and comments are nothing but natural-language-based specifications. However, these ar-
tifacts, namely test cases and comments, are today constructed after code has been writ-
ten in order to test code or to document code. The next frontier will lift these artifacts to
first-class citizens for the process of authoring code itself.

References

[1] R. Alur, R. Bodik, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-Gazit, P. Madhusudan, M. M. K.
Martin, M. Raghothaman, S. Saha, S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa.
Syntax-guided synthesis. In Dependable Software Systems Engineering, pages 1-25. 2015.

[2] R.Alur, A. Radhakrishna, and A. Udupa. Scaling enumerative program synthesis via divide and conquer.
In TACAS, pages 319-336, 2017.

[3] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deepcoder: Learning to write
programs. In ICLR, 2017.

[4] D.W. Barowy, S. Gulwani, T. Hart, and B. G. Zorn. FlashRelate: extracting relational data from semi-
structured spreadsheets using examples. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, pages 218—
228, 2015.

[5] P Bielik, V. Raychev, and M. T. Vechev. Programming with "’big code”: Lessons, techniques and appli-
cations. In st Summit on Advances in Programming Languages, SNAPL 2015, May 3-6, 2015, Asilomar,
California, USA, pages 41-50, 2015.

[6] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A. Mohamed, and P. Kohli. Robustfill: Neural program
learning under noisy I/O. In ICML, 2017.

[7]1 K. Ellis and S. Gulwani. Learning to learn programs from examples: Going beyond program structure.
In IJCAI, pages 1638-1645, 2017.

[8] J. K. Feser, M. Brockschmidt, A. L. Gaunt, and D. Tarlow. Neural functional programming. CoRR,
abs/1611.01988, 2016.

[9] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwinska, S. G. Colmenarejo,
E. Grefenstette, T. Ramalho, J. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols, G. Ostrovski, A. Cain,
H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Hassabis. Hybrid computing using a
neural network with dynamic external memory. Nature, 538(7626):471-476, 2016.

[10] S. Gulwani. Automating string processing in spreadsheets using input-output examples. In POPL, pages
317-330, 2011.

[11] S. Gulwani. Programming by examples - and its applications in data wrangling. In Dependable Software
Systems Engineering, pages 137-158. 2016.

[12] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation using examples. Commun.
ACM, 55(8):97-105, 2012.

[13] S. Gulwani and P. Jain. Programming by examples: PL meets ML. In Programming Languages and
Systems - 15th Asian Symposium APLAS, Suzhou, China, volume 10695 of Lecture Notes in Computer
Science, pages 3-20. Springer, 2017.

[14] S. Gulwani and M. Marron. Nlyze: interactive programming by natural language for spreadsheet data
analysis and manipulation. In SIGMOD, pages 803-814, 2014.

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]

Sumit Gulwani and Prateek Jain /

S. Gulwani, O. Polozov, and R. Singh. Program synthesis. Foundations and Trends in Programming
Languages, 4(1-2):1-119, 2017.

W. R. Harris and S. Gulwani. Spreadsheet table transformations from examples. In PLDI, pages 317—
328, 2011.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735-1780, Nov.
1997.

S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. A simple inductive synthesis methodology and its
applications. In OOPSLA, pages 3646, 2010.

S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based program synthesis. In
ICSE, pages 215-224, 2010.

A. Joulin and T. Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets. In NIPS,
pages 190-198, 2015.

A. Kalyan, A. Mohta, O. Polozov, D. Batra, P. Jain, and S. Gulwani. Neural-guided deductive search for
real-time program synthesis from examples. In International Conference on Learning Representations,
2018.

V. Le and S. Gulwani. FlashExtract: a framework for data extraction by examples. In PLDI, pages
542-553, 2014.

V. Le, S. Gulwani, and Z. Su. Smartsynth: synthesizing smartphone automation scripts from natural
language. In The 11th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys), pages 193-206, 2013.

M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, O. Polozov, R. Singh, B. G. Zorn, and S. Gulwani.
User interaction models for disambiguation in programming by example. In UIST, pages 291-301,
2015.

A. K. Menon, O. Tamuz, S. Gulwani, B. W. Lampson, and A. Kalai. A machine learning framework for
programming by example. In Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 187-195, 2013.

N. Natarajan, N. Datha, D. Simmons, S. Gulwani, and P. Jain. Learning natural programs from a few
examples in real-time. In AlStats, 2019.

A. Neelakantan, Q. V. Le, and I. Sutskever. Neural programmer: Inducing latent programs with gradient
descent. CoRR, abs/1511.04834, 2015.

S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. D. Millstein. Flashprofile: a framework
for synthesizing data profiles. PACMPL, 2(O0OPSLA):150:1-150:28, 2018.

D. Perelman, S. Gulwani, D. Grossman, and P. Provost. Test-driven synthesis. In PLDI, pages 408418,
2014.

M. Raza and S. Gulwani. Automated data extraction using predictive program synthesis. In AAAI, pages
882-890, 2017.

M. Raza, S. Gulwani, and N. Milic-Frayling. Programming by example using least general generaliza-
tions. In AAAI, pages 283-290, 2014.

M. Raza, S. Gulwani, and N. Milic-Frayling. Compositional program synthesis from natural language
and examples. In IJCAI, pages 792-800, 2015.

R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and B. Hartmann.
Learning syntactic program transformations from examples. In Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pages
404-415, 2017.

C. Simpkins. Integrating reinforcement learning into a programming language. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-
15, 2010, 2010.

R. Singh. Blinkfill: Semi-supervised programming by example for syntactic string transformations.
PVLDB, 9(10):816-827, 2016.

R. Singh and S. Gulwani. Learning semantic string transformations from examples. PVLDB, 5(8):740-
751,2012.

R. Singh and S. Gulwani. Synthesizing number transformations from input-output examples. In CAV,
pages 634-651, 2012.

R. Singh and S. Gulwani. Predicting a correct program in programming by example. In Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I, pages 398—414, 2015.

Sumit Gulwani and Prateek Jain /

[39] R. Singh and S. Gulwani. Transforming spreadsheet data types using examples. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 343-356, 2016.

[40] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback generation for introductory program-
ming assignments. In PLDI, pages 15-26, 2013.

[41] R. Singh and P. Kohli. AP: artificial programming. In 2nd Summit on Advances in Programming
Languages, SNAPL 2017, May 7-10, 2017, Asilomar, CA, USA, pages 16:1-16:12, 2017.

[42] A.Solar-Lezama. Program Synthesis by Sketching. PhD thesis, University of California, Berkeley, 2008.

[43] S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program synthesis. In POPL,
pages 313-326, 2010.

