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Abstract
Distributed file systems often exhibit high tail latencies,
especially in large-scale datacenters and in the presence
of competing (and possibly higher priority) workloads.
This paper introduces techniques for managing tail la-
tencies in these systems, while addressing the practical
challenges inherent in production datacenters (e.g., hard-
ware heterogeneity, interference from other workloads,
the need to maximize simplicity and maintainability). We
implement our techniques in a scalable distributed file
system (an extension of HDFS) used in production at
Microsoft. Our evaluation uses 70k servers in 3 datacen-
ters, and shows that our techniques reduce tail latency
significantly for production workloads.

1 Introduction
Motivation. Large-scale distributed systems exhibit un-
predictable high-percentile (tail) latency variations, which
harm performance predictability and may drive users
away. Many factors may cause these variations, such
as component failures, replication overhead, load im-
balance, and resource contention [18, 21, 33, 35, 49].
The problem is exacerbated when systems run on har-
vested resources. Resource-harvesting datacenters co-
locate latency-sensitive services (e.g., search engines)
with batch jobs (e.g., data analytics, machine learning)
to improve resource utilization [24, 50, 58, 61]. In these
datacenters, performance isolation mechanisms [20, 24,
29, 36, 50, 56, 58, 61] throttle or even deny resources to
the batch jobs when the services need them.
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Figure 1. Run times of 300 copy jobs over 2 weeks. All
days are overlayed over their 24 hours.

Many papers have addressed tail latency management
in distributed systems. For example, they have tackled
straggler tasks in data analytics frameworks [9, 10, 43,
59] and requests in multi-tier services [31], tail laten-
cies in distributed file/storage systems [34, 44], and en-
forced service-level objectives (SLOs) for compute or
storage [33, 37, 47, 51–53, 62].

Unfortunately, the prior works do not account for some
important challenges and constraints of real production
systems (Sections 2 and 7). For example, the server
hardware in datacenters is heterogeneous in terms of
resources and storage configurations (static heterogene-
ity). The performance isolation mechanisms of resource-
harvesting datacenters produce another form of (dynamic)
heterogeneity. Thus, tail latency management techniques
evaluated in the absence of such static and dynamic het-
erogeneity may miss important effects. Datacenters are
also very large; evaluating ideas on small systems side-
steps many scalability challenges, e.g. difficulties with
using centralized components. Perhaps most importantly,
production systems must be simple and maintainable.
Complex techniques (e.g., relying on sophisticated per-
formance modeling) are undesirable, as they require ex-
pertise and skills that most engineers are not trained on.
Our work. In this paper, we focus on tail latencies in dis-
tributed file systems under these production constraints.
In particular, we address the challenging scenario where
the distributed file system only stores data for the batch
workloads, but the latency-sensitive services have full
priority over the shared resources (e.g., CPUs, local disk
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bandwidth) on the same machines. Thus, we seek the best
possible file system tail latency for the batch workloads;
service performance is protected by isolation techniques
(e.g., [29, 36]) and are not a topic of this paper.

Though the batch jobs have more relaxed performance
constraints than the services, lowering their tail latency
is important because: (1) completing them faster frees up
capacity for other jobs to run; (2) lower tail latency im-
proves performance predictability and user satisfaction;
and (3) batch jobs may be rendered useless if they take
excessively long. As an illustration of the performance
variation we observe, Figure 1 shows the run times of
300 executions of a simple I/O-bound job (distributed
copy of a 200-GB file) on 4k servers in a production
datacenter over 2 weeks. As we can see, job performance
may vary 60× or more, due to tail data access latencies.

These performance variations occur despite the fact
that speculative execution (SE) is enabled in our jobs. SE
tracks the tasks’ durations and issues duplicate tasks for
managing tail latencies in batch workloads [9, 10, 59].
Unfortunately, SE cannot tackle all sources of storage-
level tail latencies without a stronger coupling between
compute and storage layers [43]. Worse, SE may harm
performance when resources are scarce [8, 39, 41, 43,
45], a common scenario in resource-harvesting datacen-
ters. Thus, managing storage-level tail latencies indepen-
dently is more attractive, leads to simpler systems (less
coupling), and reduces the need for speculative tasks.

Along these lines, we first characterize the sources of
storage-level tail latency impacting the run times of I/O-
bound jobs shown in Figure 1 (Section 3). The character-
ization shows that data read and write accesses exhibit
the most performance variation, not metadata operations.
In addition, long disk queues and server-side throttling
are the main culprits, not the utilization of the network,
CPU or memory.

We then propose two client-side techniques for man-
aging tail data access latencies: “fail fast” for writes, and
“smart hedging” for reads (Section 4). Both techniques
are oblivious to the source of variations, and rely on
simple server-side performance reporting and careful re-
active policies, while leveraging the existing replication
and fault-tolerance mechanisms in distributed file sys-
tems. Many systems use chain replication [48] for data
writes, where each write request (possibly broken into
chunks called “packets”) is pipelined serially across the
servers that store a replica of the block [1, 2, 11, 13, 14,
22, 23, 46]. In such systems, a slow server in the pipeline
can significantly degrade write latency. However, prior
works have almost always assumed that writes happen
“in the background” (buffered writes). In contrast, our

characterization shows that, in practice, several concur-
rent block writes on the same server can overflow the
write buffer and significantly impact tail latencies.

To reduce data write tail latencies, our fail fast tech-
nique detects and replaces the slowest server in a pipeline.
The new server must receive all packets that have already
been written before writing can resume. However, aggres-
sive server replacements may overload the system. In fact,
since replacements are expensive, fail fast estimates the
cost of replacing a server and performs a replacement
only if it would indeed reduce write latencies overall.

Our smart hedging technique for data reads monitors
the server’s performance on a per-packet basis, and starts
a “hedge” (duplicate) request [18] when performance
starts to degrade. Since aggressive hedging may cause
overload, we hedge adaptively and (exponentially) back-
off from a server that does not complete a hedge before
the original request.
Implementation and results. To experimentally evalu-
ate our techniques, we implement them in Hadoop Dis-
tributed File System (HDFS) [1], a popular file system
for frameworks such as MapReduce [19] and Spark [12],
and call the result “CurtailHDFS” (Section 5).

Our evaluation uses (1) synthetic workloads on a 4k-
server testbed; and (2) production workloads in 3 datacen-
ters with a total of 70k servers (Section 6). We compare
CurtailHDFS to baselines that include typical server-side
techniques for managing latency, such as tracking server
performance. The results show that CurtailHDFS can re-
duce 99th-percentile latency by 19× compared to HDFS
for I/O-bound jobs. For the more balanced production
workloads, CurtailHDFS reduces the 99.9th-percentile
write latency by 2× compared to HDFS, and the average
read latency by 1.4× compared to state-of-the-practice
hedging. These are significant improvements, especially
given the limited scope of our changes, on top of existing
techniques (e.g., speculative task execution).

Though we evaluate our techniques in highly heteroge-
neous resource-harvesting datacenters, they are general
and applicable in other contexts as well. In fact, we are
contributing our techniques to open-source HDFS, so
they will immediately benefit frameworks and workloads
that currently use it in any datacenter.
Summary. Our contributions are:
• We characterize the tail latency of batch jobs running
on production HDFS in resource-harvesting datacenters.
• We propose general client-side techniques for manag-
ing tail latencies in distributed file systems, and imple-
ment them in HDFS. Our write technique uses an entirely
new approach to shortening tail latencies, whereas our
read technique improves on prior works.
• We evaluate our techniques extensively, and show that
they lower tail latencies significantly.
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2 Production challenges and constraints
There are many challenges to manage tail latency in
production distributed file systems, here we enumerate
several we encountered.
Massive scale. At datacenter scale, systems are more
prone to transient misbehaviors or failures that cause
latency tails. Moreover, they must avoid centralized com-
ponents. So, systems with a single primary metadata man-
ager, such as HDFS, must be extended. Our production
HDFS federates multiple HDFS sub-clusters by placing
multiple software “routers” in front of the sub-cluster
metadata managers, as proposed by Misra et al. [38].
High heterogeneity. Datacenter hardware is often het-
erogeneous, with at least a few server generations with
different performance characteristics. Even servers of the
same generation may use multiple types (SSD, HDD,
or both) or configurations of storage media (e.g., raided
with different numbers of devices). There are 12 server
configurations in the datacenters we study in this paper.
Resource harvesting. Our production HDFS uses two
isolation mechanisms to protect the co-located services:
(1) throttling of the data access throughput of the server
(at 60MB/sec), and (2) a “busy” flag that informs the
corresponding metadata manager and clients that the
server cannot take more access load. We find that ∼20%
of servers may concurrently become unavailable because
of such activity.
Background replication. On server or disk failures, the
lost replicas must be re-created in the background, which
increases server load. The problem is exacerbated in our
datacenters because the operators of the latency-sensitive
services may reformat disks at any time. To prevent data
loss, our production HDFS stores the replicas of each
block on servers that run different services, as proposed
by Zhang et al. [61]. Despite doing this, it is common to
have to re-create 25TB monthly, with peaks of 128TB.
Load imbalance. At scale, data servers and/or metadata
managers may become overloaded and provide poor per-
formance. Our production HDFS deployments create an
average of 2 blocks per second with spikes of more than
100. During these spikes, some servers are idle while
others show more than 20 concurrent data accesses.
High hidden costs. Datacenter operators are careful to
limit complexity in their systems, to lower labor and
maintenance costs. Similarly, new system components
and data pipelines are expensive to produce, operate,
and maintain. Complexity and new infrastructure must
produce significant benefits to justify their costs.

3 Characterizing performance variation
This section characterizes the performance variations we
observe in real datacenters and their sources. We base
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Figure 2. Pipeline to write a block in HDFS.

our study on HDFS, but our observations directly apply
to other well-known systems, such as Cosmos Store [17]
and GFS [23], that have similar structure.

3.1 HDFS overview
HDFS is a popular open-source system that is used in
companies like Yahoo, Microsoft, and Twitter. It com-
prises a primary metadata manager called the “Name
Node” (NN), and its per-server block storage node called
“Data Node” (DN). The NN manages the namespace and
maps files to their blocks. HDFS replicates each block
(across three DNs, by default) for redundancy. Next, we
describe write and read operations on a file.
Writes. Writes append data to an existing file, i.e. there
are no writes-in-place. The client first asks the NN for the
creation of a new block (256MB in our deployments) and
specifies the replication factor for it. The NN returns an
ordered set of DNs that should store the block’s replicas;
it selects the DNs based on a pre-configured policy (e.g.,
balance free space). The DNs form a write pipeline.

HDFS writes the data in a pipeline at a packet granular-
ity (64kB). Figure 2 shows the steps involved in writing a
packet. The client sends the packet to the first DN, which
writes it to its local file system and propagates it to the
next downstream DN, and so on. Upon receiving the
packet, the last DN sends an ack that propagates all the
way back to the client, thereby completing the operation.

To speed up the process, the client sends multiple (64)
packets concurrently. In the event of failures, the client
asks the NN for replacements and uses an existing DN
in the pipeline for transferring all committed data to the
new DNs. Writing can resume after the new DNs have
been brought to a consistent state.
Reads. Reads involve fewer steps. First, the client asks
the NN for the block’s locations, and the NN returns a
list of DNs that store the replicas; the list is sorted based
on proximity to the client. Then, the client establishes
a connection with the first DN on the list and reads one
packet (1MB) at a time. In case of errors (e.g., DN failure
or data corruption), the client tries reading the remaining
packets from the next DN on the list.
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Concurrency. HDFS uses a single-writer, multiple-reader
model. An HDFS client that opens a file for writing is
given write ownership of the file by the NN and no other
client can write to the file until the writer relinquishes
ownership. However, write ownership does not prevent
other clients from reading the file; a file can have many
concurrent readers.
Consistency. Although HDFS allows multiple readers
and a writer to access the same file concurrently, it pro-
vides no guarantees about the visibility of writes to a file
under modification. However, HDFS does guarantee that
all writes become immediately visible to any reader after
the writer closes the file and relinquishes the write own-
ership. Thereafter, HDFS provides strong consistency: a
client can read the latest data from any replica (DN) that
stores the recently created/appended file block(s) [? ].
Extensions. As we mention in Section 2, our production
HDFS uses two main extensions to the standard open-
source version: (1) the replica placement algorithm from
Zhang et al. [61]; and (2) the sub-cluster federation tech-
niques from Misra et al. [38]. Writes and reads happen
as we describe above, below the routers at the federation
layer. Neither extension has a relevant impact on tail
latency or on our techniques to manage it.

3.2 Methodology
Experimental setup. For our next experiments, we de-
ploy our production HDFS on 4k servers across 4 sub-
clusters in a resource-harvesting datacenter. The servers
have 12-32 cores, 32-128GB of memory, 10-Gbps NICs,
and a 6TB RAID consisting of 4 15k-RPM HDDs. In
some servers, we also use a 1TB RAID of 2 SSDs to store
the file system data. The NN in each sub-cluster repli-
cates each block across 4 DNs in the same sub-cluster;
replicas of a block may be stored on HDDs, SSDs or
some combination of the two storage mediums.
Workload. Our experiment profiles a DistCP [4] job that
spawns 200 tasks for copying a 200GB file between 2
sub-clusters. We run this experiment every 2 hours, for a
week. Each run spans a few thousand servers; speculative
task execution is enabled in each run. We use TeraGen [5]
to re-create the source file before each run. See Section 6
for our study of other workloads.
Monitoring infrastructure. We extended HTrace [3] to
profile I/O operations at a packet granularity and collect
system load metrics. We are contributing our extensions
to open-source HDFS [6, 7].

3.3 Job/task performance variation
Figure 3a presents the CDF of the DistCP job run times.
The average job run time is 20 minutes and the standard
deviation is 27 minutes. More strikingly, the fastest job
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Figure 3. Performance of DistCP jobs and file accesses.

takes 2 minutes whereas the 99th percentile is 120 min-
utes. To understand this huge variation, we consider the
running times of tasks within a job.

Figure 3a also shows a CDF of the task run times
across all DistCP jobs. Though each task does the same
amount of work (copies 1 GB), their run times vary sig-
nificantly. The average task run time is 334 seconds and
the standard deviation is 730 seconds. The fastest task
takes 32 seconds whereas the 99th percentile is ∼1 hour.

To explore whether there are common job slowdown
patterns, we consider the task run times within a job. Fig-
ure 3b shows the results for a few DistCP jobs. Clearly,
a few hotspots slow down jobs in some cases and heavy
load on the entire system has an impact in others. For
example, a few stragglers slow down Job 5. In contrast,
more than 75% of the tasks are an order of magnitude
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Table 1. Correlating latency and DN resource utilization.

Resource type
Spearman coefficient (ρ)

Reads Writes
CPU utilization (%) 0.23 0.31

Memory utilization (%) 0.29 0.25
Disk queue length 0.7 0.65

Network bandwidth (MB/s) 0.14 0.11

slower than the fastest task in Job 4, indicating that the
system is under heavy load. This is also corroborated by
the fact that the fastest task in Jobs 4 and 5 has similar
run times (∼50 seconds), but the median task run time in
Job 4 (1000 seconds) is 20× slower than the fastest task
and 15× slower than the median task run time in Job 5
(70 seconds). The other jobs show similar behavior.

These extreme variations in run times are less likely to
occur in other settings. For example, in smaller clus-
ters lacking server heterogeneity [26, 43, 44, 57], or
when experiments (e.g., background load) are tightly
controlled. Datacenters exhibit more static and dynamic
heterogeneity, non-uniform server load distributions [29],
interference from co-located applications, and server re-
imaging/restart by cluster management systems.

3.4 Sources of performance variation
In this section, we analyze the traces of slow tasks to
determine operations that cause tasks to slowdown. Fig-
ure 3c shows a CDF of the operation latencies. We clas-
sify operations into block read, block write and block
metadata. Reads and writes suffer major slowdowns:
the 99th percentile latencies are an order of magnitude
greater than the median, but metadata operations have
little impact since the 99th percentile metadata operation
latency is similar to the fastest reads and writes.

Next, we look at individual traces of writes and reads
to determine the causes for slowdown.
Writes. We correlate between block write latencies and
the DNs’ utilization metrics in Table 1. The table shows
that there is a strong correlation between write latencies
and disk queue length, indicating that disk contention (ei-
ther from latency-sensitive services or other batch jobs)
and the resulting queuing delays have a substantial im-
pact on performance variation. Interestingly, this correla-
tion is strong even though a packet write at each server
completes as soon as it is written to the local buffer cache.
Several HDFS blocks concurrently being written to the
same server are enough to overflow the buffer cache.
(HDFS block reads and I/O load from the local latency-
sensitive service may also put pressure on the cache.)
Again, this effect is less likely to occur in smaller scale
systems with less contention/imbalance or in the absence
of co-located applications. The correlation between write
latencies and other DN resources is weaker.
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Figure 4. Sample write and read timelines. Each color
represents a block. Each point depicts a set of bytes
transferred during a write or read. Time is on the Y axis.

Figure 4a illustrates the write performance variation.
It shows the observed latencies while writing the packets
of the four blocks in a file, each represented with a dif-
ferent color. Block 3 suffers a huge slowdown because
of high write latencies through its pipeline, taking more
than 2 minutes to complete. Two servers exhibit large
disk queues during the writing of this block. The 99th
percentile of packet write latencies is almost 100ms for
this block, but less than 16ms for the others.
Reads. Like writes, our correlation analysis of read la-
tencies and DN resource utilization shows that disk con-
tention is a primary cause for performance variation (Ta-
ble 1). Figure 4b shows the packet latencies while reading
four blocks. As we can see, block 2 takes significantly
longer (more than 1 minute) to read. However, long disk
queues are not the only reason. Another factor is server-
side throttling that limits the overall DN throughput at
60MB/s (instead of the many hundreds of MB/s we can
get from the RAIDed storage devices), regardless of how
many clients are accessing the server. This effect would
not have occurred in dedicated clusters or other setups
where there is no resource harvesting.
Other sources. We find cases where contention for other
resources (e.g., CPU, network bandwidth) has an impact
on performance, but they are rare.
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3.5 Summary
We find that: (1) job running times are highly variable and
without clear slowdown patterns, such as time of day; (2)
load from both latency-critical services and other batch
jobs impacts performance; (3) data read and write ac-
cesses exhibit the most performance variation, not meta-
data operations; and (4) long disk queues and server-side
throttling introduce the most variation, not the utilization
of the network, CPU or memory. These effects are more
likely to occur in large production systems.

As Figures 4a and 4b show, long disk queues and throt-
tling can last for minutes, whereas other block accesses
take seconds. In addition, although not seen in our charac-
terization study, contention for other resources can cause
similar performance variation for data accesses, e.g., con-
tention for CPU in erasure-coded systems and/or due to
high demand from co-located CPU-bound applications.
This means that, regardless of the source of the delay,
it is important to react, i.e. direct accesses away from
these slow servers. However, we need to react carefully
so (1) transient effects do not cause unneeded reactions;
(2) older, less-performant servers can still be used; and
(3) we avoid reactions when all servers are overloaded.

4 Managing tail latencies
In this section, we present our techniques for tackling
the sources of performance variability from Section 3.
Throughout the section, we use the general terms “meta-
data server” and “block server”, as our techniques apply
to distributed file systems beyond just HDFS.

4.1 Basic principles
Both techniques leverage information available at the
distributed file system client library to make decisions.
At a high level, they proceed through the following
phases: track latency, check for slowness, decide whether
to act, and take action. In the track phase, the client stores
the packet and block latencies for each block server with
which it is communicating. It then uses these tracked la-
tencies in the check phase to determine whether a server
is slow. This check needs to be agnostic of the source
of the delay and, simultaneously, loose enough to avoid
reacting to transient conditions or older, less-performant
servers. The client runs the check phase for the first time
after it has collected enough latencies to make a meaning-
ful decision. If the check determines that a server is slow,
the client decides whether to take a mitigation action
(i.e., a fail fast for a write or a hedge for a read). This
decision includes backing off from overloaded servers
(reads) and avoiding actions that would not produce a
clear latency benefit (writes). If the client decides that it

will be beneficial to act, it takes the action and goes back
to the tracking phase.

Our approach adapts to dynamic load changes by only
considering recent requests in the check phase (load may
have changed recently at the servers), and by compar-
ing the server’s request latency against those of other
servers (all servers may be highly loaded). Moreover, the
approach is agnostic to the reason for slowness, e.g. de-
lays due to other file system requests, latency-sensitive
service activity, or throttling.

Importantly, these basic principles conform to the con-
straints of production environments. First, they enable
a client to make local decisions and do not require any
centralized infrastructure in the decision-making process.
Therefore, they do not pose any impediment to scalabil-
ity. Second, they adapt to dynamic changes and do not
make any assumptions about the system, which makes
them amenable to run on harvested and heterogeneous
resources. Third, they can be easily deployed and inte-
grated into existing systems, since our techniques are
simple and do not require invasive server-side changes.

Below, we detail each technique and discuss the alter-
nate approaches we considered in Section 4.4.

4.2 Fail fast for writes
Fail fast dynamically replaces the slowest server in a
data write pipeline. The client treats the slowest server
as having failed (hence the name fail fast), and leverages
the existing replication and fault-tolerance mechanisms
in the file system for replacing the server.

In more detail, the client records the packet latencies
from the block servers in a pipeline (track). Next, it uses
the recorded latencies to determine whether the slow-
est server is substantially slower than the fastest server
(check). Specifically, the check compares a high per-
centile latency of the slowest server against a multiple
of the same high percentile latency of the fastest server
to determine if the slowest server is too slow. (In our
HDFS implementation, the default high percentile is the
95th and the multiplicative factor is 3×.) If the slowest
server is deemed too slow, the client uses a cost function
to decide whether replacing it would be beneficial, given
the high cost of reconstructing the already-written data
of the block on a different server (decide). If it deems the
replacement to be beneficial, the client asks the metadata
server for a replacement, disconnects the current pipeline,
rebuilds the block on the replacement server, and finally,
resumes writing the remainder of the block with the new
pipeline (action). Figure 5 illustrates the action phase of
fail fast operation: the client observes that Block Server
2 is exhibiting high packet write latencies and replaces
it in the pipeline. Different distributed file systems may
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implement the replacement protocol slightly differently,
but the principle is the same.

The cost function deserves more explanation. It pre-
dicts two completion times for the write: without re-
placement and with replacement of the slowest server.
Assuming no replacement, we multiply the average write
latency of the slowest server by the number of packets
remaining to be written. For predicting completion time
with replacement, we first predict the time to reconstruct
the committed data in the block on a new server. We com-
pute this value using the latencies of the fastest server in
the pipeline as the source for reconstruction. Next, we
compute the time to complete the write with the new
pipeline using the average of the write latencies of the
remaining servers in the pipeline. The time to complete
the write with replacement is the sum of these two pre-
dicted values. The client replaces the slowest server if the
predicted completion time with replacement is less than
the projected completion time for the current pipeline.

Under heavy load, the time for reconstructing the block
on the replacement server might substantially exceed the
expected time. In such cases, the action phase aborts
the current reconstruction and restarts with a new re-
placement server. It also changes the source server and
increases the expected reconstruction time linearly with
each abort. Finally, we stop attempting a replacement af-
ter a threshold number of unsuccessful tries. (By default,
our HDFS deployments try 5 times before giving up.)

4.3 Smart hedging for reads
Request hedging [18] leverages the multiple copies of
data for cutting read tail latencies. A popular approach is
to issue a hedge request, if the latency of the current re-
quest is greater than a static threshold. Figure 6 illustrates
read hedging, where a client switches to another replica
(server 2) after observing a high read latency (from server
1). Although this static approach can cut tail latencies,
its effectiveness depends on the value of the threshold:
an excessively high value may result in infrequent hedg-
ing, whereas an excessively low value could overload

Packet read latency

Time

Block
Server 2

Block
Server 1

Client

Packet read replyPacket read request

Figure 6. Read hedging.

the system. We actually observed the latter behavior in
production (Section 6.4). Moreover, even a finely-tuned
threshold value may require readjustment under varying
load conditions (dynamic heterogeneity).

Thus, our smart hedging technique uses a per-client
dynamic threshold along with a retry policy to control the
hedging rate. Each client constantly records the latency
of the packets it reads from servers (track). Initially, it
uses a static threshold to trigger hedging and over time
leverages the tracked latencies to adjust the threshold
(check). The check compares the latency of the server
against a multiple of a high percentile of the latencies
the client has experienced from other servers. In this
case, the multiplicative factor compensates for variability
in request service times [44] or queueing delays [27].
(Like for fail fast, the default high percentile is the 95th
and the multiplicative factor is 3×.) As the value of this
high percentile latency changes, the hedging threshold
for each client changes as well.

If a request is taking too long, the client considers
sending a hedge request to the next server on the replica
list for the block (decide), say server 2. Before issuing
the hedge, it checks whether the last hedge to server 2
completed after the corresponding non-hedge request
(i.e., the last hedge to server 2 was unsuccessful). If so,
it exponentially backs off from server 2 and considers
the next one on the list. Otherwise, it issues the hedge
to server 2 (action). Exponential backoff ensures that we
do not attempt to access an already overloaded server,
and works well in practice. Specifically, our smart client
waits for an exponentially increasing number of packets
before re-attempting a hedge request to a server who
failed a hedge in the past attempt.

4.4 Alternative techniques we discarded
Eventually-consistent writes. To reduce write tail laten-
cies, we considered making a client write to all replicas
in parallel and completing the write as soon as a pre-
configured subset of the replicas acknowledge the write.
The remaining replicas would receive the write in the
background (from the client or other consistent repli-
cas) and become consistent eventually. However, this
approach would have required a client to read from mul-
tiple replicas to provide strong consistency for reads.
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The extra reads would increase the system load and
could degrade the read tail latency. Moreover, with fewer
consistent replicas, consistency and durability could also
become concerns, especially in a resource-harvesting dat-
acenter where a service operator can inadvertently wipe
any replica before background replication is complete.
For these reasons, we discarded this approach.
Fail fast without replacement. To eliminate recreation
of committed data, we considered just removing the slow-
est server from a pipeline without adding any replace-
ment and let the file system recreate the missing replica
in the background. This approach differs from eventually-
consistent writes because all remaining replicas are in a
consistent state, so a client can read the latest write from
any replica. However, like eventually-consistent writes,
durability was a concern with this approach because of
the reduced number of replicas.
Cloning writes. We also considered writing to multiple
pipelines at the same time and discarding those that com-
plete the write late. We decided against this approach
because it would generate a large amount of potentially
unnecessary disk and metadata traffic.
Variable-sized blocks. We considered using variable-
sized blocks to avoid recreating committed data. In this
approach, a client, upon observing slow packet writes,
could seal the current block and start writing to a new one
with a new pipeline. Though this feature exists in some
distributed file systems, we decided against it for two
reasons: it could dramatically increase the metadata space
requirement if premature sealing is frequent, and move
the bottleneck from data writes to metadata accesses.
Centralized controller. Instead of making independent,
local decisions about contention, the clients could access
this information in a central repository maintained by
the metadata manager. However, this approach would
be highly dependent on the freshness of the load estima-
tions. If the estimation window is too large, the manager
would provide stale data and may not reduce tail laten-
cies. On the other hand, a small window could provide
accurate information but may overwhelm the manager.
As others have observed in production [38], centralized
components often harm scalability.
OS-based improvements. A design goal of many large-
scale distributed systems, such as HDFS or Spark, is
to provide portability across platforms. Thus, we focus
on improving file system performance in the user space,
rather than modifying the underlying software or requir-
ing features that few operating systems provide.

5 Implementation in HDFS
We implement our techniques in HDFS and call the re-
sulting system “CurtailHDFS”. We create a new client

library that applications can use. The library allows each
technique to be enabled independently, which is key for
assessing their benefits in production. Moreover, adop-
tion can be incremental as users slowly deploy our client.

Our client keeps a configurable amount of the recent
history of packet and block latencies. For fail fast, we
use the existing pipeline latency reporting mechanism
to piggyback each DN packet processing latency with
each ack. On the client side, we determine the slowest
DN and leverage the pipeline error-handling mechanism
to perform a DN replacement. We enhance the error han-
dling to select the fastest DN for reconstruction and use
timeouts for the reconstruction process. For smart hedg-
ing, we extend HDFS’s static hedging option [54, 55].
In both implementations, we avoid using any DN that
has flagged itself as “busy” (a latency-sensitive service
needs the server’s resources). We discuss the impact of
the techniques’ parameters in Section 6.2.

Finally, our code is modular and easy to add/remove/-
configure, as needed for maintainability in production.

6 Evaluation
In this section, we describe our experimental methodol-
ogy and results. We conclude with a discussion of our
experience bringing CurtailHDFS to production.

6.1 Methodology
Experimental setup. We evaluate CurtailHDFS in two
environments: the 4k-server experimental testbed we de-
scribe in Section 3.2; and 3 large production deployments,
each with 20k to 30k servers spread across 6 to 10 feder-
ated sub-clusters. These deployments use the same server
configurations as the testbed, but exhibit more sharing
with latency-sensitive services. The replication factor is
4 in the testbed and production deployments.

Evaluating our techniques in production deployments
is difficult, because both the batch and latency-sensitive
service loads are constantly changing. To do so accu-
rately, we take an “A/B testing” approach where we run
multiple techniques simultaneously. Specifically, we con-
figure some clients to run the technique(s) we are eval-
uating while other clients run the baseline(s) for com-
parison. To simplify log processing, all clients on the
same machine run the same technique(s). In addition,
the deployments experience periods of relative inactiv-
ity that are uninteresting. Thus, we collect file system
telemetry in 10-minute periods, and focus our evaluation
on those periods that experience both more than 1000
full-block reads and 1000 full-block writes. These are
the minimum number of accesses we need to compute
99.9th percentiles for each access type. Table 2 lists the
percentage of time these intervals represent.
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Table 2. Characteristics of production deployments.

Metric DC0 DC1 DC2
#servers 25.2k 32.4k 19.0k
#server configs 4 4 4
#local storage configs 3 3 3
%servers shared with services 66.5% 29.4% 28.7%
%time in 10-min intervals 29.2% 72.0% 36.0%
#reads 2.6M 43.3M 38.6M
#writes 2.3M 8.3M 9.0M
#compute frameworks 4 4 4

Workloads. We use either synthetic or production work-
loads. For our synthetic workload, we extend DistCP in
three ways. First, we allow one of the sides of the copy to
be main memory, so that we can either only read file data
or only write file data. Second, we allow the setting of
the number of tasks that should use each technique (e.g.,
1000 map tasks should read blocks using smart hedging
and 1000 map tasks should use static hedging). Third,
we instrument the code to collect key metrics from the
client, such as latency and number of hedges. We call
the resulting program ExtendedCP. We also implement
a MapReduce job that creates a pre-defined amount of
background file system load (i.e., amount of HDFS open
connections) in our testbed. The job monitors the load
in the cluster and generates/terminates read/write oper-
ations to maintain a constant load over time. Moreover,
we ensure that the distribution of load it generates across
DNs is the same as in the production workloads.

In contrast, the production workloads are organic to
our deployments and come from multiple engineering
teams. They comprise various data analytics frameworks
and applications. Spark and machine learning training,
respectively, being the most common. The number of
tasks in each job varies from a few to tens of thousands,
whereas the tasks’ lifespans vary from a few seconds
to hours. Another common application is moving data
between systems (e.g., Cosmos to HDFS) for other ap-
plications (e.g., training of machine learning models) to
use. Section 6.3 details the patterns of these workloads.
A large percentage (> 90%) of the jobs access the dis-
tributed file system with our extended client, but others
still use older clients.
Monitoring infrastructure. In Section 3.2, we describe
our HTrace-based fine-grained monitoring infrastructure.
The data provided by this infrastructure is extremely de-
tailed, which leads to high collection, aggregation and
processing times. So, it is only suitable for characteriza-
tion and troubleshooting. Our synthetic and production
workloads do not need this much detail. For our synthetic
workloads, we use the metrics we collect from Extend-
edCP. For the production workload, we extend the client
to log per-block statistics (i.e., total bytes, time of the op-
eration, and throughput) for each read/write operation [7].
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Figure 7. Latency of 1000 writes under heavy load.

We rely on the existing Hadoop infrastructure to collect
and store these logs in a repository (in HDFS). To speed
up our analysis process, we implement a MapReduce job
that parses all application logs and gets statistics related
to (1) the throughput of each access, (2) hedges (tried and
successful), and (3) fail fast replacements. In production,
we parse these logs, aggregate the data, and expose the
statistics as performance counters.

6.2 Synthetic workload results
We first evaluate CurtailHDFS with our ExtendedCP job
in the 4k-server experimental testbed.
Writes. We evaluate fail fast writes against our produc-
tion HDFS baseline. We run experiments where an Ex-
tendedCP job writes 1TB of data using 1000 clients (each
client writes 1GB) in parallel. For comparison, we run
10 experiments without background file system load and
10 with background file system load produced by 5k
clients (similar to background load in production). Each
experiment produces a distribution of write times.

In the absence of background load, both fail fast and
the baseline exhibit a median 99th-percentile write la-
tency (i.e., the median value of the 99th-percentile write
latencies across the experiments) of 155 seconds, as there
are no DN replacements. The benefits of fail fast become
significant with background load. In this case, the medi-
ans of the 99th-percentile write latencies are 2826 sec-
onds for the baseline, but only 751 seconds for fail fast.
Figure 7 shows one of these experiments, where the 99th-
percentile write latency for the baseline is more than 22
minutes whereas that for fail fast is only 611 seconds.
Writes sensitivity analysis. There are three parameters
for fail fast: (1) the latency percentile that we use to com-
pare server performance; (2) the multiplicative factor
by which a server needs to be slower than others to be
considered slow; and (3) the number of recent requests
we consider in making the replacement decision. Lower
percentiles increase the tail latency when writing; ac-
cording to our exploration of this parameter, the 95th
percentile produces the best trade-off: low latency with
small number of DN replacements. Similarly, we find
the best slowness factor to be a difference of 3× between
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Figure 8. Latency (top) and hedges (bottom) of 1000
reads under heavy load.

the fastest and slowest DNs. The number of requests re-
quired for a replacement decision has a strong impact.
Small values can produce high overhead and include too
few samples of actual disk accesses (recall that writes
are buffered), whereas large values may take too long to
produce a decision. Our sensitivity analysis for this pa-
rameter shows that 100 samples provides enough history
for informed reactions.
Reads. We now evaluate smart hedging against the base-
line and the baseline with static hedging (100ms thresh-
old), using the same setup as above but reading 1GB files.
Without background file system load, the medians of
the 99th-percentile read latencies are 36 seconds for the
baseline, 22 seconds for static hedging, and 32 seconds
for smart hedging. The static version triggers a median
of 56 hedges whereas the smart approach uses only 22.
This trade-off becomes starker as the load increases. We
run 10 more experiments with 30k clients generating
high background load by reading from HDFS. (Reads
are less expensive than writes, so they need more clients
for the same amount of load.) In this case, the medians
of the 99th-percentile latencies are more than 22 minutes
for the baseline, 81 seconds for static hedging, and 89
seconds for smart hedging. In addition, static hedging
triggers a median of 97 hedges whereas smart triggers
only 21. Figure 8 shows the latency (top) and the hedging
(bottom) statistics for one of these experiments. In the
hedging graph, the vertical ranges go from the minimum
to the maximum number of total and successful hedges,
whereas the blue boxes range from the 25th to the 75th

percentiles. The horizontal line across the boxes is the
median value. The figure shows that smart hedging is ef-
fective at lowering the latency with a much lower number
of hedges. Overall, the tail latency for static and smart
hedging is similar at higher loads, while the number of
hedges is much smaller under smart hedging.

Static hedging depends on a single parameter: the time
to wait for a read before triggering a hedge. This thresh-
old can be too conservative thereby offering little benefit,
or too aggressive thereby increasing the load on the sys-
tem. For example, we have observed scenarios where,
under heavy load, the common-case read latency was
greater than the timeout in the static technique. In such
cases, the clients kept bouncing between replicas.

In general, we observe that static hedging thresholds
longer than 100ms degrade latency, especially under low
background load. However, in a production environment
with many co-located latency-sensitive services, it makes
sense to use a higher value (e.g., 500ms as in our de-
ployments) to reduce the amount of hedging load. Smart
hedging does not depend strongly on this parameter as it
only uses the static value for bootstrapping.
Reads sensitivity analysis. Smart hedging has the same
three parameters as fail fast, as well as the retry policy.
Higher percentiles and higher slowness factors do not
impact latency significantly, but do reduce the number
of hedges. As for writes, the best trade-off is to use the
95th percentile and a factor of 3×. The number of recent
requests to consider does not have a significant impact
and medium numbers (e.g., 20 samples) provide a good
trade-off. Finally, the retry policy has a large impact
on both latency and number of hedges. The best policy
is exponential with 3 retries, which provides a latency
comparable to static hedging with fewer hedges. Thus, it
provides low latency without excessively increasing the
system load. In contrast, a highly restrictive retry policy
(e.g., never retrying a failed hedge) reduces significantly
the number of hedges, but latency increases substantially.
Reads and writes. We now evaluate the combined effect
of our read and write techniques by running ExtendedCP
with the same settings as above. In the absence of back-
ground load, the medians of the 99th-percentile latencies
are 376 seconds for the baseline, 194 seconds for smart
hedging, 227 seconds for fail fast, and 189 seconds when
using both techniques. In this setup, smart hedging re-
duces tail latency the most, and combining the techniques
produces 2× lower tail latency than the baseline system.
In contrast, under high background load, fail fast is more
much beneficial than smart hedging. We increase the
load by having 10k clients generate reads and writes. In
this case, the medians of the 99th-percentile latencies are
5708 seconds for the baseline, 4994 seconds for smart
hedging, 685 seconds for fail fast, and 297 seconds when
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the two techniques are combined. Under these settings,
CurtailHDFS reduces the median tail latency by 19×.
Figure 9 shows one of these experiments. Overall, the
combination of both techniques in CurtailHDFS substan-
tially reduces tail latency, under various load conditions.

6.3 Production results
Table 2 lists the main characteristics of our production
deployments and workloads for one month. The work-
load data includes only the 10-minute intervals for which
we report results. Recall that our evaluation focuses on
time intervals with enough file system load to meaning-
fully compute 99.9th-percentile latencies. Most rows in
the table are self-explanatory. The three local storage
configurations are SSD RAID only, HDD RAID only,
and both SSD and HDD RAIDs. The “%time in 10-min
intervals” row lists the percentage of the month that we
are reporting about in the 10-minute intervals. The four
compute frameworks include Spark and MapReduce. As
we can see from the table, our deployments are large and
heterogeneous in terms of hardware and software.

Figure 10 illustrates the characteristics of the produc-
tion workloads (again only accounting for the 10-minute
intervals) in each deployment. The graphs on the left
show the numbers of jobs (top) and blocks accessed (bot-
tom) in log scale. We split the job data into jobs with read
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Figure 11. Throughput in the production deployments.

accesses and write accesses; the two sets overlap, but not
every job reads data and not every job writes data in our
intervals. The graphs on the right show the distribution
of reads and writes across jobs (top) and blocks (bottom)
in log scale. For example, the leftmost bar in the top right
graph shows the number of reads that the job with the
minimum number of reads performed in DC0. Similarly,
the leftmost bar in the bottom right shows the minimum
number of reads that a block received in DC0. On both
sides, the bars with solid and dashed contours represent
reads and writes, respectively.

Unlike our synthetic jobs, the figure shows significant
skew in the distributions of the number of accesses across
jobs, and even greater skew in the distribution of the
popularity of blocks for reading. Blocks only get written
more than once when the first write does not write the
entire block. Our intervals include any access to 256MB
or more, but in some cases users define their blocks to be
larger than 256MB. That is why the maximum number
of writes per block is more than 2 in our deployments.

Although we do not illustrate this, the production
workloads are more balanced than our ExtendedCP job,
using much more compute cycles per file system access.

Figure 11 shows the aggregate client write and read
access throughputs (in MB/second) in our intervals. In
all deployments, throughputs vary significantly (up to
3 orders of magnitude) over time, and read throughput
tends to be higher than write throughputs.

In the context of these deployments, Figure 12 sum-
marizes the latency results in log scale for writes (top)
and reads (bottom) across many percentiles; the leftmost
bars show the average results. The write bars compare
fail fast with regular writes in HDFS, whereas the read
bars compare smart hedging against static hedging (we
cannot use regular reads in production, as users are al-
ready accustomed to the lower tail latency of hedging).
The height of the bars is the average value for the per-
centile/average across the 10-minute intervals, whereas
the vertical ranges go from the 5th to the 95th percentiles
of the distributions of the 10-minute intervals.
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The results show that fail fast significantly reduces la-
tency in the highest percentiles, 99.9th and max. At those
percentiles, the reduction is ∼ 2× on average and the
entire distributions improve. In contrast, smart hedging
reduces latency in the middle percentiles (25th to 95th),
as we are comparing it to static hedging configured for
low traffic with a threshold of 500ms. (As we mention in
Section 6.4, the initial setting of 100ms for static hedg-
ing was generating too much traffic in production, so it
had to be increased to 500ms.) For these percentiles, the
improvements to the low end of the distributions (bottom
end of the vertical ranges) is particularly pronounced.
On average, smart hedging reduces latency by 1.4× com-
pared to static hedging.

These improvements are remarkable for two main rea-
sons: (1) our baselines already include techniques that
help mitigate tail latencies (e.g., speculative task execu-
tion, static hedging, servers warn clients and metadata
managers when they are busy); and (2) they embody all
challenges of production systems (e.g., need to be sim-
ple, high heterogeneity, extreme scale, real workloads,
interference from services).

To understand these results at a deeper level, we next
detail the impact of our techniques for writes and reads.
Writes. Figure 13 shows the distribution of the 99.9th-
percentile latencies in log scale (left) and of the average
number of fail fast operations per request (right), across
the intervals. The left figure shows improvements across
nearly all intervals. The right figure shows that the av-
erage number of fail fast operations per block is very
small for most requests. Across all intervals, the average
is 0.15 and the worst case is 5 operations per block.
Reads. Figure 14 shows the distribution of the average
read latencies (left) and the distribution of the average
number of hedges per block request (right), across the
10-minute intervals. Clearly, the average read latency
is lower in nearly all intervals. Hence, smart hedging
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reduces tail latencies without negatively impacting the
average read latency.

Figure 14 also shows a side-effect of smart hedging:
slightly more hedges per request on average compared to
static hedging. The static hedging threshold in production
deployments is 500ms, up from the 100ms threshold in
the 4k-server testbed (Section 6.2). A higher threshold
in production reduces the number of hedges, which is
especially important under heavy load (Section 6.4). In
contrast, smart hedging uses the 500ms threshold only
for bootstrapping and later adapts the threshold based
on observed read latencies. This approach reduces tail
latencies, but can also cause more hedges in scenarios
where the load across replicas is non-uniform (e.g., high
for a few and low across the remaining replicas).
Coming full circle. We motivated the paper by showing
that I/O-bound jobs using our production HDFS (plus
static hedging) exhibit large performance variations in
one of our production deployments (Figure 1). Figure 15
shows the same data, and CurtailHDFS results for these
jobs in the same deployment; speculative task execution
is enabled in jobs on both systems. CurtailHDFS signif-
icantly improves performance across most of the spec-
trum, but especially in the high percentiles (by ∼ 3×).

Unfortunately, we cannot perform the same analysis
with production jobs, as we do not know whether two
executions of a job use the same data (we expect that
they do not) or even the same code.
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6.4 Experiences in production
Our experience taking CurtailHDFS from the 4k-server
testbed to production illustrates issues that are often over-
looked in the literature. We first experimented extensively
with I/O-bound jobs in the testbed, always observing sig-
nificant improvements from our techniques.

In February 2018, we brought fail fast to production
in one datacenter, but the initial results were disappoint-
ing: write latency did not improve in the common-case
load and degraded significantly under heavy load. So,
we quickly turned it off. After some investigation, we
realized that the larger percentage of servers shared with
latency-sensitive services in our production deployments
(Table 2) was causing much more throttling than in the
testbed. We also realized that the write latency reporting
was not detailed enough for the client to identify the throt-
tling cases. With the change in reporting, we deployed
the version we study in this paper in March 2018.

In June 2017, we deployed static hedging in produc-
tion in one datacenter with a threshold of 100ms. Read
latency improved significantly and we enabled it in all de-
ployments after 3 months. However, after a few months,
in November 2017, we started to observe periods when
some servers were becoming overloaded. After some in-
vestigation, we realized that this behavior was caused by
the high number of hedges under high load. To mitigate
this issue, we increased the threshold to 500ms. This
significantly reduced the load, but it also reduced the
effectiveness of the technique. As a result, tail latencies
were still reduced significantly, but the average latency
increased. Clearly, static hedging is heavily dependent on
its threshold and load. So, we introduced smart hedging
in February 2018 to reduce read tail latencies, without
negatively impacting the average latency.

We concluded the A/B testing in June 2018 and en-
abled our two tail-mitigation techniques by default in the
modified HDFS client. The techniques have improved
the user experience significantly and many users have
already switched to our client.

7 Related work
To our knowledge, no prior work has addressed all the
practical challenges of production systems (Section 2).
Nevertheless, our work is related to the following efforts.
Tail latency in distributed file/storage systems. Most
prior works have assumed that writes to persistent storage
occur in the background (buffered writes), so write tail
latency has not received much attention. An exception is
CosTLO [53], which issues redundant writes (and reads)
in key-value stores. CosTLO’s approach is similar to the
cloning write pipelines technique (Section 4.4) that we
considered but discarded. We opted for fail fast, because
it operates at a finer granularity (slow server replacement
in a pipeline). In addition, fail fast is much simpler to
implement as it leverages existing replication and fault-
tolerance mechanisms.

In contrast, several works addressed read tail laten-
cies [16, 40, 44, 46, 54, 55]. C3 [44] proposes a replica
selection algorithm that uses server-side information and
rate limits. However, C3 is not scalable as it needs to
store server load data on ephemeral clients. Rein [40]
targets key-value stores and schedules concurrent reads
of multiple keys. CRAQ [46] improves read throughput
and latency under chain replication by enabling read-
ing from any replica in the chain, while still provid-
ing strong consistency. Smart hedging is orthogonal to
CRAQ and can reduce its read tail latencies. Other works
propose techniques that run at pre-defined intervals. For
example, Cassandra uses dynamic snitching [16], which
periodically ranks servers based on observed latencies
and server-reported loads to select the best replica for a
read. HDFS’s static hedging starts a hedge request after
a threshold amount of time. Unfortunately, these tech-
niques cannot tackle dynamic heterogeneity since the
interval/threshold might be inappropriate at run time. In
smart hedging, each client determines when to react at
run time, and uses back-off to prevent overload.

Earlier works [25, 32, 42, 47, 51, 60, 62] manage re-
sources to meet tail latency SLOs and ensure fair sharing.
They are orthogonal to our techniques, and often rely on
centralized components and/or complex modeling.
Tail latency in local file systems. Other works have char-
acterized storage latencies (e.g., [15, 27]), and proposed
techniques for cutting latency tails (e.g., [28]). Such tech-
niques are complementary to our work.
Tail latency in data analytics frameworks. Mantri [10],
LATE [59], Dolly [9], and PBSE [43] improve running
times via SE. Our techniques handle storage-level bottle-
necks independently from computation, while avoiding
greater compute-storage coupling.

13



8 Conclusion
We introduced techniques for managing tail latencies in
production distributed file systems, implemented them
in a popular system, and evaluated them extensively.
Our results demonstrate large latency improvements with
I/O-bound jobs, and smaller improvements with more
balanced production workloads. The results also illus-
trate that it is easy to overlook important effects in non-
production systems. We conclude that it is possible to
devise effective techniques while considering the chal-
lenges and constraints of real datacenters.
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