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ABSTRACT
Today, a modern data center hosts a wide variety of applica-
tions comprising batch, interactive, machine learning, and
streaming applications. A largemajority of these applications
can be abstracted as a “distributed dataflow” graph. Even
though this commonality exists and can be exploited in the
applications’ design and implementation, each application is
typically written from scratch, resulting in significant ineffi-
ciencies in developer productivity. In this paper, we factor out
the commonalities for many types of big data applications,
into a generic dataflow layer called Common Runtime for
Applications (CRA). In parallel, another trend, with container-
ization technologies, has taken a serious hold on cloud-scale
data centers, with direct implications on the design, imple-
mentation, and deployment of next-generation of data-center
application. Container engines (e.g., Docker and CoreOS)
and cloud-scale container orchestrators (e.g., Kubernetes and
Docker Swarm) are two important technologies that enable
this trend. Container orchestrators have made deployment a
lot easy, and they solve many infrastructure level problems,
e.g., service discovery, auto-restart, and replication. For best
in class performance, there is a need tomarry the next genera-
tion applications with containerization technologies. To that
end, CRA leverages and builds upon containerization and
resource orchestration capabilities of Kubernetes/Docker,
and makes it easy to build a wide range of cloud-edge appli-
cations on top. To the best of our knowledge, we are the first
to present a cloud native runtime for building data center ap-
plications. To show the practicality of our approach, we built
a distributed analytics engine on top of CRA, namely Quill.
We show through in-depth micro- and macro-benchmark
results, that CRA provides significant performance improve-
ment over an unoptimized implementation on modern cloud
platforms. CRA is available as open source, and can be down-
loaded at https://github.com/Microsoft/CRA.

1 INTRODUCTION
With the growth in data volumes acquired by businesses
today, there is a need to deploy rich dataflows over the data.
A dataflow consists of a graph of computation vertices that
each hold state and read/write data to other vertices in the
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graph. Dataflows can operate on both historical (bounded)
and real-time (unbounded) datasets. In this paper, we start
with the premise that such distributed stateful dataflows are
a very general primitive, and encompass a wide range of
applications deployed over the cloud and edge today. For
example, a scan-based analytics system reads data from stor-
age or in-memory caches (input vertices) and runs an ana-
lytics query using a dataflow of relational operator vertices.
A streaming pipeline directly maps to an acyclic dataflow,
whereas machine learning computations map to dataflows
with iterative cycles in the dataflow graph. Consider an ap-
plication in a completely different domain of microservices.
These systems consist of a dataflow of compute instances
(actors) that communicate with one another using remote
procedure calls that directly map to a dataflow abstraction.
Similarly, Web and cloud-edge [24] applications consist of
client vertices that communicate with Web frameworks such
as PHP and NodeJS running on vertices in the cloud, which
communicates result requests back to the clients – another
instance of a distributed dataflow.

1.1 Problem and Today’s Solutions
Given the importance of (distributed) dataflows across di-
verse application domains, there is a strong need to make
it easy for application developers to author dataflows that
are distributed, efficient, scalable, resilient, and potentially
long-running. Several frameworks and software layers have
been proposed by the data processing and systems communi-
ties, in order to help create and deploy such applications. At
the lowest level of the stack, we have raw virtual machines
(e.g., in Infrastructure-as-a-Service cloud offerings) which are
hard to deploy, manage, and program in a distributed setting.
Most applications instead use a layer above the machine: data
intensive applications such as map-reduce have historically
used YARN [3] as a resource manager, whereas microservices
are deployed on Kubernetes [14] and Docker [12]. There is
increasing interest in running data-intensive applications on
Kubernetes (often abbreviated as k8s) and Docker as well.
Unfortunately, both YARN and Kubernetes offer bare-

bones compute abstraction with no support for customized
dataflows that are: (a) easy to deploy, (b) usable for offline
and real-time dataflows or a mix of both, and (c) resilient to
failures. Another option is to instead use specific dataflow



systems such as Storm [8] to implement other applications.
However, these layers do too much: they make too many
assumptions and choices that limit the general applicability
of the framework across a broad range of applications. For
example, they prescribe a particular data format, querymodel,
specific resiliency strategy (such as none, checkpoint-replay,
or active-active), scale out scheme, data delivery semantics
(e.g., exactly once or at most once), data processing seman-
tics (e.g., offline or real-time queries), network topology, and
distribution. As a result, these solutions are not usable across
the broad range of applications identified above. For instance,
we would not consider running an offline job on Storm if
efficiency were a concern. Finally, these solutions are not
optimized for containerized environments that are becoming
ubiquitous today.
As a result, today, there is severe fragmentation in the

application ecosystem, where each system has created its
own abstractions and implementations of their own building
blocks to achieve their dataflow requirements at high perfor-
mance. Examples include Storm [8], Spark [7], and Flink [2],
which share no code commonalities today (apart from the
lowest layer of YARN or Kubernetes). This fragmentation
has resulted in repeated “re-invention of the wheel” with
redundant re-implementation of significant parts of the stack
that could have been shared. Further, this made it very hard
to run such diverse applications in a shared environment.

1.2 Our Solution: CRA
We propose a new runtime layer called Common Runtime
for Applications (CRA)1. CRA provides a generic distributed
dataflow abstraction and deployment functionality without
making choices that applications would like to control. At the
same time, CRA offers significant functionality that makes
it easier to build such applications. For example, CRA does
not interfere with the data plane of the distributed dataflow,
exposing raw network streams between (virtual) endpoints,
instead of a specific data format or protocol. This allows
applications to choose their own data format and applica-
tion protocol between dataflow vertices. CRA exposes the
capability of running multiple copies of a vertex and switch-
ing over between them on failure, allowing applications to
build dataflow graphs with active-active or active-standby
resiliency models (in addition to the usual checkpoint-replay
capability). CRA supports sharding primitives and rich com-
munication patterns that enable complex and potentially
long-running dataflows to be constructed, deployed, and
maintained. Figure 1 shows where CRA fits in the full appli-
cation stack.

1CRA is available as open source, and can be downloaded at
https://github.com/Microsoft/CRA.

CRA has two layers of abstraction. First, users define a
logical dataflow topology as a directed graph of named ver-
tices. Vertices are associates with endpoints that may be
connected via edges (or connections). Vertices may either be
single (one logical copy of the computation) or sharded (with
N copies of the computation). Applications create the logical
dataflow programmatically, and specify code for each vertex
and endpoint in the system. Endpoints communicate with
other endpoints via standard network stream connections
that are provided by the runtime, or using shared memory if
possible.

Second, users specify a physical deployment topology for
the dataflow. The physical topology consists of a set of CRA
workers, each with a unique name. A worker is an OS pro-
cess that can host one or more vertex instances. Multiple
different vertices may be instantiated on the same worker
instance, and vertices on the same worker may communicate
via shared memory for performance (e.g., when reading from
a vertex hosting cached input datasets). A sharded vertex
is mapped to a set of worker instances. Further, users may
map a vertex to more than one worker. In this case, only one
copy is designated as “active”, while the other instances are
used as active or passive standby copies.
Interestingly, CRA’s physical deployment is one step re-

moved from actual execution on a cluster as follows. CRA
workers are packaged into Docker containers, and we use a
container orchestration framework such as Kubernetes [14]
to deploy the worker instances. The orchestration frame-
work handles hard problems such as code deployment and
worker instantiation, liveness and heartbeats for resiliency,
and monitoring tools. CRA leverages these features of the or-
chestrator and provides the additional functionality to make
it possible to build resilient long-running dataflows with cus-
tomized resiliency strategies, data delivery semantics, data
processing and query semantics, and scale out schemes.

We have used CRA to implement several concrete dataflow
applications. Examples include (1) a data-intensive analyt-
ics application (Quill [25]) that enables offline and real-time
analytics over temporal data using Trill [26] (a real-time
streaming library); and (2) a resilient distributed actor [22]
framework based on reliable message delivery between ac-
tors.
This paper focuses on the design and features of CRA,

and describes how we built support for data-intensive ap-
plications in CRA. With CRA and its data layer, we were
able to re-build a previous system (Quill) for Kubernetes/-
Docker in less than 200 lines of code. We use CRA/Quill to
perform a detailed analysis of performance of data-intensive
applications in the Kuberbetes/Docker environment, in com-
parison to naive deployments of today’s big data analytics
solutions such as Spark. We believe the latter contribution
is interesting in its own right. It provides new insights into
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Figure 1: CRA Application Stack

how good a fit new infrastructures such as Kubernetes and
Docker are for data-intensive applications, and explores how
features in these infrastructures may be optimally leveraged
for performance.
The rest of the paper is organized as follows. We start

with background on containerization in Sec. 2. We provide
an overview of CRA and the interface it exposes to applica-
tion developers in Sec. 3. This is followed by a description
of CRA’s system architecture in Sec. 4. We describe our data
processing layer and how we used it to implement Quill in
Sec. 5. We provide an extensive evaluation of data-intensive
computation in containerized environments in Sec. 6. We
discuss the implication of these results as well as other ex-
tensions to CRA in Sec. 7. Finally, we discuss related work
and conclude the paper in Sec. 8 and 9, respectively.

2 CONTAINERIZATION BACKGROUND
There has been a growing industry trend to move away from
“monolithic” software architectures due to their rigid design,
towards a “microservices” architecture. In such an archi-
tecture, a service comprises many loosely coupled, smaller
applications – that talk to each other using well-defined,
light-weight APIs (e.g., REST). Further, this architecture al-
lows individual applications to be independently modified
and deployed, making the larger service more flexible and
agile.

Containerization technology, popularized by Docker [12]
and CoreOS [11], is the key enabler of microservices. A con-
tainer defines a standard packaging format, which when
combined with the accompanying tools make it much more
simpler to package, deploy, and run individual applications in
a microservices architecture, across different environments.
Containers are also key to deal with the matrix of hell [18],
which is a result of a more complex software stack, that needs
to run on a more complex and heterogeneous hardware stack.

Container technologies are sometimes referred to as “light-
weight virtualization”, in contrast to the heavy-weight hy-
pervisor based virtualization technologies [19, 21]. The hy-
pervisor (e.g., VMWare, or Xen) in a traditional virtualization
setting is replaced by a containerization engine (e.g., Docker
Engine). The virtual machine (VM) format is replaced by a
light-weight container format. The main difference is that
every VM carries a copy of a full operating system (OS)
image, and the binaries and libraries needed to run the appli-
cations hosted inside the VM. On the other hand, containers
share a single host OS image, and the needed binaries and
libraries, whenever possible. As a result, containers are faster
to deploy. However, we note that in a real cloud setting (e.g.,
Amazon AWS, Microsoft Azure), it is a common practice to
run containers on top of virtual machines.

2.1 Docker
Docker [12] is arguably the most popular container format,
and is supported by all the major cloud vendors including Mi-
crosoft Azure, Amazon AWS, Google Cloud, and IBM Cloud.
Below we present an overview of the Docker terminology
and the workflow. For more details we refer the reader to [29].
At the heart of the Docker ecosystem is Docker Engine,

which is analogous to the hypervisor in the traditional VM
settings. Given container specifications in a Dockerfile, a
Docker Engine allows to build Docker container images,
as well as to instantiate and run those images, as containers
on the target host(s). To enable sharing, the images built on
a local host can then be pushed to a central repository called
Docker Registry, where other developers can search and
download previously built Docker images. Finally, to deploy
an application on a target host, a container image for that
application is pulled from a Docker Registry and run on the
host by the Docker Engine.
One of challenges of dealing with containers at scale is

the need to efficiently manage their build, deployment, and
monitoring across large clusters. This is typically achieved
by container orchestrators such as Docker Swarm [13],
Mesosphere [16], and Kubernetes [14]. In this work, we use
containers orchestrated by Kubernetes, which we present
next.

2.2 Kubernetes
Kubernetes is arguably the most popular container orchestra-
tor, invented and deployed at scale, at Google [32] and later
open-sourced [14]. Kubernetes is commonly used to deploy
“elastic, distributedmicroservices”, and automates the deploy-
ment, maintenance, scheduling, and scaling of containers
across a cluster. Further, it provides mechanisms for resource
provisioning, scheduling, auto-restart, and auto-scaling.
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The main unit of deployment in a Kubernetes cluster is
a Pod, which is simply an abstract resource that bundles
one or more Docker containers together. An important point
to note is that all the containers hosted inside a single Pod,
share the resources such as IP address and port space, and
storage. Further, all the containers in a Pod are always co-
located on a single host, and are always co-scheduled. We
refer the readers to [27] for more details on Kubernetes.

2.3 Data-intensive Computing on
Containers

The open-source containerization community has mainly
focused on “stateless” services. Although, there have been
some recent advances in providing support for data-intensive
services, which are “stateful”, the industry is lacking a good
understanding of what it takes to run data-intensive ser-
vices in these new environments. One of the goals of our
work is to devise new architectures for container-friendly
data-intensive computing and to shine a bright light on the
strengths and weaknesses of running such services on con-
tainer platforms.

3 CRA OVERVIEW AND INTERFACE
3.1 Requirements
Our goal is to create abstractions that one can use to build
and deploy a distributed graph of objects that can send and re-
ceive data from one another. From an application developer’s
perspective, the key requirements for such abstractions are:
• Format Independence: Ability to send and receive data
in an application-specific format and protocol, without
interference from the runtime.

• Communication: Ability to communicate between com-
ponents via either message passing (TCP across nodes,
fast loopback TCP within nodes) or shared memory, de-
pending upon the application’s capability and physical
placement.

• Location Independence: Ability to write an application
with multiple distributed components without having to
specify the physical location of each component.

• Failure Independence: The application should notworry
about restarting components or establishing network
connections in case of failure.

• Sharding: The application must be able to shard its state
and computation transparently, and possibly vary the
number of shards dynamically during the deployment
lifetime.

From the deployer’s perspective, the key requirements are
the ability to programmatically control the physical place-
ment of components on machines, containers within ma-
chines, the ability to run multiple copies of computations in

order to implement failover, and the ability to pack multiple
components within the same OS process or container.
In CRA, we leverage (1) Kubernetes and Docker for re-

source orchestration; and (2) Resilient Cloud Tables and Stor-
age (e.g., Azure Tables and Blobs in Microsoft Azure) for
decentralized metadata and persistent state (e.g., binaries,
application state, logs) management. Kubernetes provides us
with a resource orchestrator that packs Docker containers
within a cluster of physical machines (or VMs). It also pro-
vides us with tools to monitor containers, check for failures
using heartbeats, and recover failed containers on another
machine.

3.2 Basic CRA Concepts and Design
At the simplest conceptual layer of CRA, we allow users to
express their computation as a logical graph of computation
units called vertices. Each vertex may be associated with
named input and output endpoints, which are used to connect
pairs of vertex instances. Vertices are themselves packed
into CRA worker instances, a shared-memory concept which
roughly corresponds to an operating system process. CRA
worker instances can be spawned off as processes from the
OS shell. Alternatively, in Kubernetes, we can host one or
more CRA workers in each Pod, and let Kubernetes deploy
these Pods on a set of physical (or virtual) machines.

We describe these concepts with a simple running example
where we have a pair of vertices connecting to and from each
other, sending and receiving a fixed sequence of integers.

3.2.1 Defining Vertices. The following code fragment shows
the definition of a simple CRA vertex that (a) writes a fixed
sequence of integers to an output endpoint; and (b) reads
a sequence of integers from an input endpoint and writes
them to the console.
class IntExchangeVertex : IVertex {

public IntExchangeVertex () { }

public void Initialize(object arg) {

int numInts = (int)arg;

AddEndpoint("in1", new IntReader(numInts));

AddEndpoint("out1", new IntWriter(numInts));

} }

As shown, vertices implement an Initialize function
which CRA uses to create a vertex instance with user-defined
parameters. The AddEndpoint function is used to define two
CRA endpoints (an input and an output), passing each of
them the number of integers to send/receive. We next define
the two endpoints to send/receive the sequence of integers:
class IntReader : IInputEndpoint {

int numInts;

public IntReader(int numInts) {

this.numInts = numInts;
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}

public void FromStream(Stream s) {

for (int i=0; i<numInts; i++)

Console.WriteLine(s.ReadInt ());

} }

class IntWriter : IOutputEndpoint {

int numInts;

public IntWriter(int numInts) {

this.numInts = numInts;

}

public void ToStream(Stream s) {

for (int i=0; i<numInts; i++)

s.WriteInt(i);

} }

Input and output endpoints have to implement FromStream
and ToStream respectively, in order to receive and send data.
Note that CRA provides a Stream abstraction to transfer
bytes from one vertex to another. This enables applications
to define their own data formats (e.g., columnar serialization)
and send them another vertex without incurring the cost of
extra memory copies.
Further, endpoints can optionally enable the ability to

communicate with other endpoints using shared memory,
by implementing FromOutput and ToInput functions. These
functions take objects as parameters, and allow a vertex to
access the memory of objects belonging to the other vertex
without incurring a copy. CRA is responsible for choosing
this mode of transfer if vertices support it and if the source
and destination vertex are located on the same CRA worker.

3.2.2 Logical Graph Creation andDeployment. Given a set
of vertex definitions as described above, one can program-
matically register these definitions with CRA, instantiate
vertices on a set of named CRA worker instances, and con-
nect the vertices using connections (or edges), to or from the
logical graph. The user programmatically interacts with the
CRA client library to perform these operations, as shown
next.

var cl = new ClientLibrary ();

cl.DefineVertex("IntExchangeVertex",

() => new IntExchangeVertex ());

cl.InstantiateVertex("inst01", "vert01",

"IntExchangeVertex", 5);

cl.InstantiateVertex("inst02", "vert02",

"IntExchangeVertex", 5);

cl.Connect("vert01", "in1", "vert02", "out1");

cl.Connect("vert02", "in1", "vert01", "out1");

Here, the DefineVertex function call associates the string
“IntExchangeVertex” with the creation of an instance of
type IntExchangeVertex. The second parameter to the func-
tion DefineVertex is a lambda expression, an anonymous
function that can be serialized and sent over the wire for
invocation at a remote location, either immediately or in the
future (e.g., when an instance is restored after failure).

The function InstantiateVertex takes an instance name,
a vertex name, a vertex definition, and an initialization pa-
rameter as arguments. It logically creates an instance of
the vertex with the given definition, on the named CRA
worker. The created vertex is associated with the given ver-
tex name. In our example, two vertices with the definition
of IntExchangeVertex, called vert01 and vert02, are in-
stantiated on CRA workers inst01 and inst02 respectively.
Finally, we create the connection between the endpoints of
the two vertices using the CRA Connect function, which
takes two {vertex name, endpoint name} pairs, one for the
source and another for the destination, to be connected.

3.2.3 Physical Deployment. Note that the instantiation
of the graph described above is logical. For example, we do
not require the CRA worker instances be deployed a priori,
before issuing these commands. The commands result in
metadata being created in CRA tables, that will allow the
two instances, when created (perhaps at a later point in time),
to host the corresponding vertices. CRA workers are pack-
aged into Docker containers and deployed using a resource
orchestrator such as Kubernetes. The orchestrator ensures
that CRAworker instances are started (and re-started) as nec-
essary on the cluster. These CRA workers use the metadata
and take responsibility for maintaining the physical instan-
tiation of the user-defined dataflow graphs in the presence
of ongoing machine and connection failures. For example,
when a machine fails, the vertices sending data to (or receiv-
ing data from) that node see an exception in their network
stream, which propagates to the CRA worker code, which is
responsible for re-establishing the connection and returning
control back to user code. We discuss CRA’s contract with
user code in more detail in Section 4.

3.3 Sharded Vertices & Endpoints
Building upon the concept of a graph of vertices, we pro-
vide a layer that exposes sharded equivalents of vertices and
endpoints to users.
A sharded vertex represents a certain number of copies

(called shards) of a vertex instantiated in the data center,
but referenced as a single entity. For clarity, we will refer to
the normal vertices from Section 3.2 as simple vertices. We
assume that the number of shards is fixed at deployment
time, and revisit this assumption in the context of dynamic
topologies in Section 7.3.
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Analogous to our endpoints from earlier (we will call them
simple endpoints), we define the notion of sharded endpoints,
identified by endpoint names as before. A sharded input
(or output) endpoint implements the sharded equivalent of
FromStream (or ToStream), that takes an array of Stream
objects as argument. Interestingly, sharded input and output
endpoints may exist in both simple and sharded vertices.
Sharded endpoints simply add the capability of receiving
from (or sending to) a sharded source (or destination) ver-
tex respectively. In this section, we assume that the total
number of shards N for a sharded vertex is fixed during its
deployment. The ability to assign zero or more shards to each
container allows us to re-balance load. For example, we can
have one container with N shards at one extreme, and up to
N containers with one shard each at the other extreme. In
order to scale beyond this limit, CRA also allows the number
of shards to vary over the lifetime of a vertex; we cover such
elastic sharded vertices in Sec. 4.
The existence of simple and sharded vertices gives a rise

to four types of connections in a CRA graph:
• Simple-to-simple: These are simply the point-to-point
connections introduced in Section 3.2; both connection
ends consist of simple vertices with simple endpoints.

• Simple-to-sharded: A simple vertex with a sharded out-
put endpoint can connect to a sharded vertex with a
simple input endpoint. This corresponds to a 1:many
connection from the simple vertex to the sharded vertex
members.

• Sharded-to-simple: A sharded vertex with a simple out-
put endpoint may connect to a simple vertex with a
sharded input endpoint. This corresponds to a many:1
connection from the sharded vertex members to the sim-
ple vertex.

• Sharded-to-sharded: Finally, a sharded vertex with a
sharded output endpoint may connect to a sharded vertex
with a sharded input endpoint. This corresponds to a
many:many (or mesh) connection from the members of
the sharded source vertex to the members of the sharded
destination vertex.

For example, a simple vertex that broadcasts an integer
sequence to each member of a sharded destination vertex
might be implemented as follows:
class IntBroadcastVertex : IVertex {

public IntBroadcastVertex () { }

public void Initialize(object arg) {

int numInts = (int)arg;

AddEndpoint("out1", new ShardedIntWriter(

numInts));

} }

class ShardedIntWriter : IShardedOutputEndpoint {

int numInts;

public ShardedIntWriter(int numInts) {

this.numInts = numInts;

}

public void ToStream(Stream [] s) {

for (int i=0; i<numInts; i++)

for (int j=0; j<s.Length; j++)

s[j]. WriteInt(i);

} }

Similarly, a sharded source vertex, where each source
shard broadcasts a non-overlapping range of integers to each
member of a sharded destination vertex, is shown next. Note
that the only difference between a simple and a sharded
vertex is the additional parameter (shard ID) in the call to
Initialize.

class ShardedIntBroadcastVertex : IShardedVertex {

public ShardedIntBroadcastVertex () { }

public void Initialize(int shardId , object arg)

{

int numInts = (int)arg;

AddEndpoint("out1", new ShardedIntWriter(

numInts , shardId));

} }

class ShardedIntWriter : IShardedOutputEndpoint {

int numInts , sourceShardId;

public ShardedIntWriter(int numInts , int

sourceShardId) {

this.numInts = numInts;

this.sourceShardId = sourceShardId;

}

public void ToStream(Stream [] s) {

for (int i=0; i<numInts; i++)

for (int j=0; j<s.Length; j++)

s[j]. WriteInt(s.Length*sourceShardId + i);

} }

The destination vertex and its sharded input endpoint are
defined symmetrically (not shown). The deployment API
for sharded vertices is very similar to that for the basic case:
DefineShardedVertex is used to create the definition, while
InstantiateShardedVertex, which now takes a set of in-
stances and the number of shards per instance as parameters,
is used to instantiate all the shards of the vertex (details
omitted for brevity).

Figure 2 shows two CRA worker instances. There are two
sharded vertices, each spanning both worker instances. Thus,
each vertex has two shards. There is a single sharded con-
nection between the two sharded vertices, which translates
to a 2x2 cross-bar connection between the two vertices, as
shown, with two physical output endpoints on each shard of

6
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Figure 2: CRA Vertices and Endpoints

the source vertex and two physical input endpoints on each
shard of the destination vertex.

4 SYSTEM ARCHITECTURE
4.1 Overview
CRA is designed as an embedded client library that is linked
to code for three distinct entities:
• Vertices and Endpoints: The user code for vertices and end-
points are given a reference to the client library, which
they can use to create or delete connections, instantiate
new vertices, etc.

• Deployers: Code that is used to create vertices and connec-
tions, and instantiate them on specific worker instances
(identified by names) may be written by deployment
code, that lives outside vertices and endpoints. For in-
stance, an SQL query compiler may be responsible for
translating the query into a graph that is deployed and
executed.

• Worker Bootstrap: The worker instances themselves are
written as a simple bootstrap program that uses the CRA
client library to create a worker instance and start it
in the current process. We offer the CRA worker as a
Docker container that can be deployed on a cluster using
resource orchestrators such as Kubernetes, that handle
(re-)deployment and failure detection.

We first describe how and what metadata is handled by
CRA. We then describe how workers operate, and interact
with vertex and endpoint code. We then describe the thread-
ing model and cover how system management is performed
using CRA. Figure 3 depicts the overall architecture of CRA.

4.2 Metadata Management
CRA stores metadata in a key-value store. This is a pluggable
module. Our implementation for Azure uses Azure Tables to
store such data. CRA stores a variety of metadata:
• List of logical vertex definitions, along with a pointer
to files on storage that contain the binary related to the
vertex.

…

…

…

…

Figure 3: CRA Overall Architecture

• List of worker instances that have been defined. For work-
ers that are active, additional information such as the IP
endpoint and port are stored as part of the metadata.

• List of vertex instances associated with specific workers.
A vertex may be instantiated on more than one worker
– in this case, at most one instance may be designated
as “active”. Each instance is also associated with instan-
tiation parameters that are associated with instantiating
that specific instance. For example, this may include the
query subplan that the vertex instance is supposed to
execute.

• The list of logical connections between vertex endpoints,
which represents the edges in the CRA dataflow graph.

• For sharded vertices, the sharded vertex names and list
of instances associated with the shard.

4.3 Worker Lifecycle
Recall that the user registers a set of CRA worker instances,
with a unique name for each worker. When a worker (with a
unique name) is started by the resource orchestrator on some
physical machine, it exposes a listening server on a registered
port (whose information is present in the metadata entry
for that worker instance). This allows remote workers and
clients to establish connections and issue various requests
such as connecting to an endpoint, notifying of a newly
added vertex to the worker, and vertex removal.
When a worker is created, it first queries the metadata

tables to identify what vertices need to be instantiated on
that worker instance. For each vertex instance, CRA down-
loads the application code from the appropriate location in
storage and dynamically instantiates the vertex object. It
then downloads the vertex parameter and calls a special
method Initialize on the vertex object, passing it the pa-
rameters registered during logical vertex instantiation and
stored as part of the instance metadata, as described in the
section on metadata management. Then, for each connec-
tion originating or ending at this vertex, CRA establishes the
TCP connection from this endpoint to its matching remote
endpoint. When a connection between two endpoints is es-
tablished, CRA calls the FromStream and ToStream calls on
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the corresponding endpoints in order to invoke user code
after a successful connection. This process is repeated for all
connections to or from the instance.

Note that even if the user defines a connection from A to
B, CRA may physically establish the connection from B to A.
This is important in cloud-edge scenarios, where the cloud
machine may not be able to access the edge device, whereas
the edge device can access the cloud machine. Similarly,
connections from a public machine to a machine inside an
organization’s private cloud is made possible in the same
way.

4.4 Handling Failures
CRA handles both connection and node failures for the ap-
plication. When a CRA worker fails, it depends on the re-
source orchestrator (such as Kubernetes) to detect this and
reinstate the container elsewhere on the cluster. On worker
re-creation, CRA goes through the process described above
to reinstate the vertices and connections on that worker.
Other workers may be hosting vertices that are reading

and writing to the failed vertex. When their network streams
break, the endpoint code receives an exception that it can
handle appropriately, and transfer up to CRA (which instan-
tiated the ToStream or FromStream) code that was inter-
acting with the network stream. The CRA worker then re-
establishes the connection and returns control back to user
code. It is possible that both sides of a connection try to estab-
lish the connection at the same point. CRA ensures that only
one connection succeeds using backoff and retry logic on
both sides, until its local in-memory table of connections con-
tains the connection. The protocol also supports the notion
of requesting a connection with a parameter killRemote.
When this is set to true, the CRA worker on the other side
uses a “task cancellation” token to force the endpoint to kill
its execution, and replaces the connection with the new in-
coming one. This feature is necessary because one side of
the connection may be unaware that the connection is in a
failed state, e.g., because the user logic on the other side is
not even trying to use the stream at that point in time (e.g.,
waiting on a different stream or file).

4.5 Handling Vertex Replicas
As mentioned earlier, CRA supports multiple replicas of the
same vertex running on different worker instances. Only one
vertex is designated as “active” at a given point. A vertex be-
comes active when it leaves the Initialize method. Thus,
replicas typically stay in Initialize until they are ready to
take over computation, at which point they exit Initialize
and take over control. When vertex becomes active, existing
connections that are broken (because the older active is no
longer available) look up the current active destination in

the metadata, find the newly activated replica, and establish
connection to it. In parallel, the newly activated replica also
proactively tries to create its outgoing and incoming connec-
tions, so that the distributed vertex graph is restored to the
logically correct global state.

4.6 Flexible Threading Model
The interfaces shown in the previous section are synchronous.
In this case, vertices can spawn a set of threads to manage
their own concurrency within the process. This is useful if
the vertex application is multi-threaded, such as Trill [26].
CRA also supports asynchronous versions of the interfaces,
so that a pool of threads can be shared by all the endpoints on
the worker process. The latter is a better fit for applications
such as microservices that share a pool of threads to perform
small units of activities.

5 DATA PROCESSING IN CRA
5.1 The Dataset Abstraction
To efficiently build dataflow applications, we provide aDataset
abstraction that allows users to create and process datasets
using CRA. By implementing such an abstraction, CRA knows
how to deploy datasets inside CRA vertices, and processes
them in an efficient manner. The proposed abstraction is
used to define keyed datasets (e.g., Dataset<TK, TP> where
TK and TP are the key and payload types of each tuple in the
dataset, respectively). The user is responsible for implement-
ing the following three types of functions:

Serialization/Deserialization. To support data move-
ment operations, CRA should understand how to send and
receive the dataset tuples between different vertices. To that
end, and similar to CRA endpoints, we provide ToStream and
FromStream functions that users should implement to serial-
ize and deserialize the dataset tuples to and from streams, re-
spectively. These functions will be invoked internally within
CRA endpoints. We also provide ToObject and FromObject
variations to utilize shared memory endpoints.

Rekeying. Since many applications (e.g., key-value stores
and map-reduce programs) and queries (e.g., group-by) re-
quire rekeying the data for efficient processing, we provide
a Rekey<TK2>(...) function that associates each tuple in a
dataset of type Dataset<TK1, TP>, with a new key type TK2.
Rekey function takes a lambda expression as input, which
selects the new key type TK2 from the payload, and returns a
new dataset of type Dataset<TK2, TP>. Rekeying is a trans-
formation operation which does not actually change the key
of each tuple in the dataset when it is called, however, it
only returns a new dataset instance with the appropriate
output type and waits for an action that triggers the actual
computation later (similar to Spark [7]).
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Actions. We provide a Subscribe(...) function that
triggers the immediate computation of all transformations
(e.g., rekeying) on the dataset till that point, and returns the
computation results. This function is particularly useful for
client applications to use as an entry point for execution.
For example, a user can implement a subscribe function that
accepts a lambda expression that will be invoked for every
tuple in the results and log it. For example, Subscribe(e =>
new LogToConsole(e)) logs every tuple to the console.

5.2 The Sharded Dataset Abstraction
We propose a Sharded Dataset abstraction that leverages
both the extensibility of sharding concepts in CRA and the
Dataset abstraction presented in this section. The sharded
dataset provides a small, yet, rich set of data transformation
and movement operations that enables building distributed
dataflow plans in an efficient and scalable manner. Below, we
highlight the main features of the sharded dataset abstrac-
tion:

5.2.1 Creation and Transformation. A sharded dataset is
conceptually a set of data shards, where each shard is imple-
mented with the Dataset abstraction. The CRA client library
supports creating a sharded dataset through the function
CreateShardedDataset(...) that takes a lambda expres-
sion defining a constructor for creating the dataset on each
shard. For example, we can create a sharded dataset named s
that consists of 2 shards of a dataset of type IntDS as follows:

var s = cl.CreateShardedDataset(n=>new IntDS(n),

2);

In this example, the lambda expression takes a shard id n
as argument and constructs an instance of IntDS (which im-
plements the Dataset abstraction) per shard. We assume each
instance creates a list of 100 keyed tuples, where each tuple
has an integer key K and two random integers R1 and R2 as
payload. During execution, CRA will create s on a sharded
vertex that has 2 shards. Note that dataset creation is a trans-
formation operation where it just associates the lambda ex-
pression to the sharded dataset instance upon its call. The
actual creation will be described later in Section 5.2.3.

Transformation.We support a general transformation
operation, namely Transform(...), that transforms a dataset
from one type T1 to another type T2. It takes a lambda ex-
pression that executes on every shard independently when
execution is triggered, and produces a new sharded dataset.
There is no data movement across shards in this operation.
In our running example, suppose we wish to create a new
dataset s1 that uses the same key in s, but, selects only the
first random integer R1 from the payload. This can be done
through transformation as follows:

var s1 = s.Transform(a => a.SelectR1 ());

We also support multi-input variation of the transforma-
tion operation, which operates on two sharded datasets at
the same time, and outputs a single sharded dataset. In ad-
dition to Transform(...), we provide a sharded variation
of the Rekey(...) operation. The sharded dataset forwards
the rekeying lambda expression to each data shard to run
independently, without any data movement. As an example
on sharded rekeying, assume we wish to rekey the tuples in
s1 to have a new dataset s2 with keys of values 0 and 1 only:

var s2 = s1.Rekey(a => a % 2);

5.2.2 Data Movement. We provide a generic Move(...)
operation to efficiently support moving data across dataset
shards. Basically, this operation accepts two lambda expres-
sions that capture the plan for sending and receiving data
between different shards. These expressions are as follows:
• Splitter expression which executes on each shard that
will send data. This expression defines how to produce a
set ofM datasets that will be sent toM shards.

• Merger expression which executes on each shard that
will receive data. This expression defines how to produce
a single dataset out of the L datasets that will be received
from L shards.

Using the splitter and merger expressions, users can im-
plement most, if not all, operations needed to organize or
duplicate the shard contents in specific ways. This includes
resharding for load-balancing, broadcasting for duplicating
every shard on every output shard, and multi-casting for
duplicating every shard on zero or more output shard. For
example, to implement a broadcast operation among the N
shards of a sharded dataset, the splitter should produce N
exact copies of the dataset on each sender shard, and the
merger should produce one dataset from N datasets received
on each receiver. In our running example, suppose we wish
to broadcast the data of sharded dataset s2 among its shards
and produce a new sharded dataset s3:

var s3 = s2.Move(n => new BroadcastSplitter(n),

n => new BroadcastMerger(n));

The lambda expressions take the shard id n as a parameter
to construct the proper splitter and merger for each shard.

5.2.3 Deployment and Execution. We provide a function
named Deploy() to deploy a dataflow plan defined on a
sharded dataset. Once the deployment operation is called,
the CRA client library extracts the operations topology ex-
pressed by the sharded dataset API, and transforms it into
a set of tasks that will be executed as CRA sharded vertices.
A task is a set of logical operations (e.g., create, transform,
rekey) that can be executed inside a sharded vertex. Trans-
formations are pipelined and packed into a single task. How-
ever, a data movement operation breaks the pipeline into
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Operation
Type

Quill API CRA Sharded Dataset
API

Query Transform
Rekey Rekey

TransformationReshard
Broadcast Move
Multicast
Redistribute
ToMemory

Actions ToStorage Subscribe
ToBinaryStream
Subscribe

Table 1: Quill Re-implementation Using CRA Sharded
Dataset.

two tasks; one that ends with a split operation, and another
that starts with a merge operation. In our running example,
we can trigger the deployment as follows:

var s4 = s3.Deploy ();

The deployed plan will consist of two tasks. The first task
executes the create, transform, rekey, and split operations,
while the second task executes the merge operation. Note
that deploying the plan never triggers the execution. To start
execution, we should call a subscribe call as follows:

s4.Subscribe (()=>new LogToConsole ());

This forwards the lambda expression to the subscribe oper-
ation of each dataset shard and waits till the whole execution
finishes and logs the results.

5.3 Case Study: Quill-on-CRA
We show a case study on the applicability of CRA in building
efficient dataflow applications.We used CRA to re-implement
Quill [25], a high-performance distributed platform for of-
fline and real-time analytics over temporal data. We refer to
our re-implementation of Quill as Quill-on-CRA.

Implementing StreamableDataset. Quill is based on a
sharded temporal dataset, named ShardedStreamable, which
is built on top of a real-time streaming library called Trill [26].
So, our first step in implementing Quill-on-CRA was pro-
viding a new dataset type, named StreamableDataset, that
basically implements the Dataset abstraction presented ear-
lier in this section, using the ShardedStreamable constructs.

Re-implementing Operations. By having the Stream-
ableDataset implementation, we gain access to the whole set
of operations that are provided by the CRA sharded dataset
abstraction on top of StreamableDataset. Thus, our second
step was re-implementing the original Quill API using these
sharded dataset operations. Table 1 shows which sharded
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Figure 4: Micro-benchmark Evaluation of CRA

dataset operation is used to implement each Quill function-
ality. Note that different data movement operations (e.g.,
Reshard and Broadcast) are implemented by providing differ-
ent split and merge expressions as described in Section 5.2.2.
Analogously, different action operations (e.g., ToMemory and
ToStorage) are implemented using different subscribe lambda
expressions. In total, the implementation of Quill-on-CRA
has less than 200 lines of code. This shows the practicality
of CRA in building powerful dataflow applications. We ex-
tensively evaluated Quill-on-CRA in Section 6.2 and showed
its efficiency and scalability.

6 EXPERIMENTAL EVALUATION
6.1 Micro-benchmarking Evaluation
Our goal in this section is to (1) measure the overhead of
containers in K8s vs. virtual machines, (2) explore different
packing strategies for deploying data intensive applicatins
on K8s, and (3) measure the impact of specific CRA’s opti-
mizations on performance and fault-tolerance.

Setup: For all the experiments in this section, we use a
sharded broadcast scenario as an example. For a given num-
ber of vertices, we construct a fully connected mesh, i.e.,
each vertex is connected to every other vertex. Each vertex
sends (receives) a fixed amount of data to (from) every other
vertex. We fix this parameter to 100 MB in our experiments.
We use sharded broadcast as an example of the basic “data
exchange” operator quite commonly used in many analyt-
ical queries. Hence, studying its performance is important.
For these experiments, our target metric is the measured
throughput in Gigabits per second (Gbps). Unless otherwise
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noted, for this section, we run all of experiments on two
Azure VMs. Similarly, for K8s, we use an Azure Kubernetes
Service (AKS) cluster with two agent nodes.

6.1.1 Overhead of Containerization. In the first experi-
ment, we measure the overhead of containerization vs. VMs.
We vary the number of CRA workers (or instances) in each
VM/Pod and measure the throughput. Figure 4(a) shows the
results of this experiment. Overall, throughput with VMs is
between 1.4x to 3.6x higher as compared to K8s. This experi-
ment shows that the networking subsystem in K8s imposes a
much higher overhead as compared to VMs. Our experience
(results not presented here) shows that this overhead can be
overcome by opening more parallel TCP connections when
running in K8s.

6.1.2 Packing CRA Workers on K8s Pods. As noted earlier,
CRA provides full flexibility over deployments – allowing
the developers to pack different number of CRA workers
inside a given container (VMs or Pods) to achieve the best
performance. In this experiment, we vary the number of
workers packed in a K8s Pod and measure the impact on
throughput. We show the results in Figure 4(b), where x-axis
is the number of CRA workers per Pod, while the different
colored bars represent the total number of CRA workers.
We can see that as we pack more CRA workers in a Pod,
we get higher throughput (moving from left to right in the
figure). This means that for network intensive applications, it
is desirable to more tightly pack CRA workers into Pods. As
we will show later, this not only results in higher throughput
at K8s level, but CRA can exploit specific optimizations to
get even better performance.

6.1.3 Effect of CRA’s Shared Memory Optimization. As
described earlier, CRA can detect if two workers are run-
ning on the same machine (sharing the same IP address),
in which case, we short circuit the communication path to
use shared memory instead of regular TCP sockets. Previous
experiment showed that more tightly packing CRA instances
into Pods improves throughput. In this next experiment, we
want to directly measure the impact of CRA’s shared memory
communication on throughput. We show the results in Fig-
ure 4(c). We explore two packing strategies (1) fully-packed:
pack all CRA workers into a single pod, labeled as “1 Pod”
(2) fully unpacked: one Pod per CRA worker, labeled as “N
Pods”. We run with 2, 4, and 8 CRA workers in total (rep-
resented as different bars). These results show that CRA’s
shared memory communication can improve throughput by
up to 5x as compared to regular TCP sockets, showing the
effectiveness of this optimization.

6.1.4 Effect of Failures on CRA. In this experiment, we
study the impact of failures, which are quite common in prac-
tice, on CRA’s performance. For this experiment, we fix the
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Figure 5: Big Berkeley Data Benchmark (Scan Query)

number of CRA workers to 8, running in two Pods (4 work-
ers per Pod). We then randomly fail some of CRA workers
during the experiment. We show the results in Figure 4(d),
with 0, 1, 2, 4, and 8 failed CRA workers. We see that CRA’s
performance gracefully degrades with the number of failures.
Note that, K8s automatically detects Pod failures and restarts
the Pods. This experiment shows that CRA effectively builds
on top of this automatic detect and restart capability of K8s
to provide fault tolerance for applications built on top of
CRA.

6.2 Berkeley Big Data Benchmark
Evaluation

Our goal in this section is to evaluate the performance of
Quill-on-CRA (Section 5.3), which is a case study on building
efficient dataflow applications using CRA, in comparison to
a state-of-the-art big data analytics platform. We use Spark-
SQL [20], with Spark v2.2, as our baseline.

Deployment.We are interested in the Kubernetes deploy-
ment. Similar to micro-benchmark evaluation, we use Azure
Kubernetes Service (AKS) to deploy both systems. As best
configuration, we assign two workers per pod for each of
CRA and Spark, where each AKS agent node has only one
pod.

Benchmark. We compare the performance of both sys-
tems, while running the big data benchmark [30] that was
used to evaluate both original Quill [25] and SparkSQL [20].
The benchmark contains three types of typical analytical
SQL queries; scan, aggregate and join, which run on two
types of datasets; rankings and uservisits (Schema is omitted
due to space constraints). As instructed in the benchmark,
we fix the size of each dataset per agent node to be 1GB (18M
tuples) and 25GB (152M tuples) for rankings and uservisits
datasets, respectively. However, to evaluate the scalability
of both systems, we vary the number of agent nodes from
10 to 30 in all experiments, and hence, in total, we have up
to 750GB data from the two datasets. Since we assign two
workers per node, this also means that we have from 20 to
60 running workers for each of CRA and Spark. Our target
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Figure 6: Big Berkeley Data Benchmark (Aggregate
Query)

metric is the measured throughput by each query in tuples
per second.

6.2.1 ScanQuery. Wefirst start with the scan querywhich
basically selects two columns, pageURL and pageRank from
rankings dataset where the pageRank is higher than a cer-
tain value X. Figures 5(a) and 5(b) show the throughput re-
sults for the two systems when using a scan selectivity of
6%(low value) and 67%(high value), respectively. Overall, the
throughput with Quill-on-CRA is between 2.2x to 5.4x higher
than Spark in both selectivity cases. The lower throughput
of Spark comes from the high overhead of scheduling the
operation during the execution time. In contrast, Quill-on-
CRA never incurs such overhead because of the lightweight
runtime management in CRA.

6.2.2 AggregateQuery. The next query in the benchmark
is an aggregate query over the uservisits dataset which com-
putes the total revenue originated per sourceIP. Figures 6(a)
and 6(b) report the throughput results for Quill-on-CRA and
Spark when the number of groups is 52M and 231M, respec-
tively. In general, Quill-on-CRA achieves higher throughput
than Spark for two main reasons. First, the execution time
of this query is bounded by the amount of data that will be
shuffled among workers, and since CRA utilizes the shared
memory communication between processes within the same
pod, its performance will be better than Spark which em-
ploys network communication between workers even within
the same pod. Second, the aggregate query plan that is gener-
ated by Quill is much more efficient than the one generated
by the Spark optimizer as shown in [25]. Note that the av-
erage improvement ratio in case of 231M groups (1.5x) is
higher than the average in case of 52M groups (1.2x). This
confirms the first reason mentioned earlier as the amount
of data shuffled in case of 231M groups is higher than 52M
groups, and hence the CRA shared memory communication
will be utilized much more.
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Figure 7: Big Berkeley Data Benchmark (Join Query)

6.2.3 Join Query. The last query is a join between rank-
ings and uservisits datasets to obtain the sourceIP and asso-
ciated pageRank that gave rise to the highest revenue for 20
years. Figures 7(a) and 7(b) show the results in case of having
65K and 231M groups according to sourceIP, respectively.
Similar to the aggregate query, this experiment confirms
our observation about increasing the average improvement
ratio when the number of groups increases (i.e., increasing
the amount of data shuffling). The average throughput of
Quill-on-CRA is 1.9x and 2.7x higher than Spark with 65K
and 231M groups, respectively.

7 DISCUSSION
7.1 Takeaways on Data Intensive Use of

Kubernetes/Docker
As noted earlier, Kubernetes and the accompanying ecosys-
tem has been solely focused on “stateless” (web) services.
Only recently the community has turned its attention to
supporting data intensive (stateful) applications as a first
class citizen (e.g., by proposing Stateful sets [15]). Although
CRA’s design is independent of a particular resource orches-
trator, CRA takes a very important step in demonstrating
how to build data intensive, stateful applications on top of
Kubernetes. We summarize our preliminary findings below:
• Networking Overhead: Containers impose additional
networking overhead. Our experiments and experience
show that, the per-connection throughput achieved from
within a container could be, in many cases, much lower
than the corresponding throughput with a VM. This is
related to how networking layers are designed and imple-
mented in Kubernetes, with more layers of abstraction,
and hence a higher overhead. Architects of data intensive
applications and platforms need to be aware of this limi-
tation and work around it, for example, by opening more
parallel connections when running inside containers.

• Flexible Deployment:When it comes to containeriza-
tion platforms, such as Kubernetes, there is a lot of flex-
ibility in choosing how to pack processes into Docker
containers and how to pack those containers inside Pods.
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CRA exploits this flexibility at its very core. Our experi-
ments show that packing multiple processes in Pods can
enable CRA to exploit shared memory communication,
which can be up to 5x more performant, as opposed to
communicating over TCP sockets. This is an important
design choice.

• ExploitingOrchestratorCapabilities:Kubernetes solves
many infrastructure level problems, including service dis-
covery, failure detection, auto-restart, and replication. In
general, it is important to follow a layering approach and
fully exploit these capabilities at the higher layers. In our
current design, CRA builds on top of the failure detec-
tion, and auto-restart capabilities of Kubernetes. Going
forward, there is a possibility to deeply integrate CRA’s
elastic sharding with StatefulSets [15] in Kubernetes.

7.2 Other Applications on CRA
Beyond SQL, spatial, and temporal analytics, CRA supports
the creation of vertices that can handle diverse applications
such as machine learning, real-time stream processing, it-
erative, graph computation, distributed microservices, and
key-value stores. For instance, machine learning and itera-
tive computations can create sharded topologies with self-
loops to implement the iteration. Real-time stream process-
ing using long-running vertices that are made durable with
checkpoint-replay, active-active, and active-standby forms
of resiliency. Distributed microservices and three-tier archi-
tectures (clients, Web servers, databases) can also be mapped
to a multi-level CRA topology across edge and cloud. A dis-
tributed key-value store uses the key-value requests as a
stream from clients to servers that host the state, with re-
sponses sent asynchronously along reverse connections.

7.3 Dynamic Topologies
Since CRA applications may be long-running, there is often
a need to change the topology, such as adding or removing
vertices in the topology or allowing the number of shards in
a sharded vertex to grow or shrink over time (e.g., to handle
workload variations). CRA can support dynamic topologies
by explosing the ability to add or remove vertices at any
point. Further, it exposes information related to sharded to
the CRA vertices and endpoints. Briefly, when a vertex is
instantiated, it is provided with sharding information that
identifies how many vertices are in the shard, and on which
set of worker instances the shards are instantiated. Similar
information is provided to vertices that connect to a sharded
input or output endpoint. By providing and updating the
information to all interested parties whenever the vertex
topology changes, an application can support a dynamic
topology according to its application-level semantics. While
dynamic topologies are supported in CRA, full support for

dynamic shards is currently being added to CRA; thus, the
details and evaluation of this capability are outside the scope
of this paper.

7.4 Detached Mode for CRA
By default, CRA vertices are written in the context of a base
class that registers the vertex with the system. However, in
some cases, we may want existing code to easily connect
to vertices in the CRA vertex graph, without actively par-
ticipating itself. For example, an edge device may wish to
connect to an ingress vertex in the cloud (e.g., when devices
are connecting to a sharded server exposing a REST API).
For such scenarios, CRA supports a detached vertex mode,
where it can programmatically connect to an existing vertex
and get back a network stream over which it can send and
receive data. This facility makes it easy to integrate external
data sources to the CRA ecosystem of vertices.

8 RELATEDWORK
Simiar to CRA, Hyracks [23], Dryad [28], and Nephele [33],
adopt the notion of representing data processing as vertices
and edges in a DAG. However, these systems provide a differ-
ent level of abstraction and have different goals. As opposed
to CRA, which provides a framework to build dataflow style
processing engines on top, these systems provide data pro-
cessing engines of their own, and hence the other aspects of
building and deploying applications (e.g., sharding, recover-
ability, elastic scaling) are built into the engine. This tight
coupling makes these systems less flexible.
Apache Tez [31] is probably the most closely related to

our work. Tez is an open-source framework which, at its
heart, provides a library for YARN that facilitates building
dataflow style processing engines. Similar to CRA, using the
Tez API, one can define an arbitrary DAG representing a cus-
tom dataflow. Tez promotes component re-use among differ-
ent verticals built on top of YARN [3]. For example, Hive [4],
and Spark [7] can be built using the Tez APIs, but applica-
tions still have to take ownership of resiliency strategies
and use other frameworks to target non-YARN deployments.
Apache REEF [6] and Apache Twill [10] facilitate building
applications on YARN but provide a lower level interface
than Tez, and hence are more general purpose. Apache REEF
provides a library for building applications which can be
ported to multiple resource orchestrators such as Apache
YARN and Apache Mesos. Apache Twill provides a Java-like
multi-threaded programming API for writing YARN appli-
cations. Twill’s main goal is to reduce the complexity of
developing YARN applications by offering a programming
framework and common functionalities needed by many
large scale distributed applications. To that end, all these
systems have similar goals as CRA. However, unlike CRA,
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Tez, REEF, and Twill are tied to the YARN ecosystem and
have been exclusively developed to avoid “re-inventing the
wheel” in the YARN community. CRA is much more general
purpose and can be widely used inside and outside of the
YARN ecosystem, as we show in this paper. Further, CRA
exposes raw network streams to applications and gives users
full control over the data plane. CRA also exposes a capa-
bility to run highly resilient long-running workflows with
support for different application-defined resiliency strate-
gies such as active-active and checkpoint-replay, as well as
first-class support for making it easy to write applications
with sharding and dynamic topologies.

Apache Spark [7] and Apache Flink [2] provide an API and
a general purpose data processing engine. Similar to CRA,
they also have a notion of a DAG used to represent data
processing. However, CRA provides a lower-level API which
gives much more flexibility to the application programmer to
build and deploy custom dataflow graphs on top. It is possible
to implement the Spark and Flink processing engines on top
of the common runtime provided by CRA. As an example, in
this paper, we showed how to build a general purpose data
processing layer, namely Quill [25], on top of CRA, with only
200 lines of code. We showed the generality of the CRA API,
the value of reusing existing components, and the significant
impact it has on improving developer productivity.

DBMSs expose SQL for computations, but extending them
with custom functionality, such as implementing new shuffle
or join strategies, is difficult. A majority of the new gen-
eration of big data processing systems, such as Drill [1],
Impala [5], Tajo [9], and Presto [17] also have similar limita-
tions. They are custom data processing engines, built from
scratch, and perform well for specific workloads. On the
other hand, in CRA, a developer does not need to start from
scratch, has full control over data processing, and is free to
define and execute arbitrary applications, as long as they
can be expressed as a distributed, possibly cyclic, sharded
dataflow graph.

9 CONCLUSIONS
In this paper, we started with the goal of significantly chang-
ing the way big data applications are designed and imple-
mented, with a particular focus on boosting developer pro-
ductivity. We presented the design and implementation of
Common Runtime for Applications (CRA), a cloud-native
runtime with a common interface to build a wide variety of
data center applications. We showed how system and appli-
cation designers can exploit next-generation virtualization
technologies such as containers, which have become the
de-facto building blocks for packaging and deploying cloud-
scale applications. The CRA architecture enables data-centric

applications to be first-class citizens on these emerging plat-
forms. Our experimental results on Quill-on-CRA showed
a significant performance advantage of CRA dataflows vs.
unoptimized data flows. Overall, we believe our research and
system present interesting insights into how data-intensive
applications can exploit containerization technologies. Fur-
ther, we believe these insights are quite valuable for the
larger community. Last, we welcome the community to build
on CRA, which is now available as open-source software.
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