Session: Machine Learning Il

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Astra: Exploiting Predictability to Optimize Deep
Learning

Muthian Sivathanu, Tapan Chugh, Sanjay S. Singapuram, Lidong Zhou

Microsoft Research

Abstract

We present Astra, a compilation and execution framework
that optimizes execution of a deep learning training job.
Instead of treating the computation as a generic data flow
graph, Astra exploits domain knowledge about deep learning
to adopt a custom approach to compiler optimization.

The key insight in Astra is to exploit the unique repeti-
tiveness and predictability of a deep learning job, to perform
online exploration of the optimization state space in a work-
conserving manner while making progress on the training
job. This dynamic state space exploration in Astra uses light-
weight profiling and indexing of profile data, coupled with
several techniques to prune the exploration state space. Effec-
tively, the execution layer custom-wires the infrastructure
end-to-end for each job and hardware, while keeping the
compiler simple and maintainable.

We have implemented Astra in two popular deep learning
frameworks, PyTorch and Tensorflow. On state-of-the-art
deep learning models, we show that Astra improves end-to-
end performance of deep learning training by up to 3x, while
approaching the performance of hand-optimized implemen-
tations such as cuDNN where available. Astra also signifi-
cantly outperforms static compilation frameworks such as
Tensorflow XLA both in performance and robustness.

CCS Concepts + Computer systems organization —
Other Architectures; - Software and its engineering —
Software Infrastructure; Software Notation and Tools.

Keywords domain-specific compiler, deep learning, adap-
tation

ACM Reference Format:

Muthian Sivathanu, Tapan Chugh, Sanjay S. Singapuram, Lidong
Zhou. 2019. Astra: Exploiting Predictability to Optimize Deep Learn-
ing. In ASPLOS ‘19: ACM Symposium on Architectural Support for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ‘19, April 13-17, 2019, Providence, RI, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6240-5/19/04...$15.00
https://doi.org/10.1145/3297858.3304072

909

Programming Languages and Operating Systems, April 13—17, 2019,
Providence, RI, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3297858.3304072

1 Introduction
Test a single grain of rice, to see if the whole pot is cooked.
-Ancient Proverb

Deep Neural Networks (DNNs) already power several widely-
used products today, ranging across domains such as speech
understanding, image recognition and language translation.
While the theory behind neural networks has been around
for decades [12, 28], the recent success of DNNs was cat-
alyzed in large part due to systems advances: first, the ability
to scale to large clusters [9], and then the compute power of
hardware accelerators such as GPUs.

Despite their popularity, there is a glaring lack of con-
ceptual understanding to reason about DNNs - e.g. which
model structure would be a good fit to a particular problem,
or what hyper-parameters to use for a given structure. As a
result, innovation in DNNs happens primarily through trial-
and-error; the common way to find out whether a particular
model would work is to run the model and see what accuracy
it converges to. For large models, running even one such
iteration can take several days.

As a result of the trial-and-error methodology of research
in DNNs, advancement in Al is gated on systems advances
to speed up DNN training. While hardware advances such as
more powerful GPUs [32], and even ASICs [14] help bridge
this gap, the software layers come in the way; for exam-
ple, even with current GPUs, several state-of-the-art models
such as text classification only utilize a small fraction of the
GPU when run with modern frameworks such as Tensorflow
and PyTorch. Software accelerators such as cuDNN speed
up specific types of DNN layers by hand-optimizing the spe-
cific computation [4]. However, given the engineering effort
required, such accelerators only cater to the most popular
primitives (e.g. standard convolution or LSTM layers).

Unfortunately, by definition, novel model architectures
that Al researchers invent are long tailed, i.e. they typically
do not fit into the "popular” primitives that are addressed
by hand-coded accelerators. For example, researchers have
recently suggested several variants of recurrent neural net-
work such as MI-LSTM [36], LSTM with Attention [35], SC-
RNN [22], RHN [39], etc., none of which are currently ac-
celerated by cuDNN. However, it is precisely these "new"
models that need to be fine-tuned by repeated trial and error.

https://doi.org/10.1145/3297858.3304072
https://doi.org/10.1145/3297858.3304072
https://doi.org/10.1145/3297858.3304072

Session: Machine Learning Il

Therefore, the efficiency of these long-tail models is crucial
to Al innovation.

In this paper, we present Astra, a system that automati-
cally optimizes such long-tail models to achieve performance
similar to hand-coded accelerators such as cuDNN, thus sig-
nificantly improving efficiency of DNN research. To achieve
this, Astra employs a novel approach to optimization exploit-
ing the unique characteristics of the DNN workload.

Our key observation driving the design of Astra is that
a DNN training job is a unique workload from a systems
perspective. Each job comprises of millions of mini-batches,
where each mini-batch looks at a small number of train-
ing inputs. Because each mini-batch typically goes through
exactly the same computation graph, mini-batches are iden-
tical to each other from a resource-usage and performance
viewpoint. As a result, perhaps for the first time in systems
research, we have a predictable, long-running workload that
declares its resource usage and behavior ahead of time.

Astra takes advantage of such remarkable predictability,
by adopting an aggressive form of multi-version compila-
tion [17, 33, 38]. In contrast to traditional compilers that
produce one version of the code using a cost model, multi-
version compilers produce different versions of code for “hot"
functions, with each version using a different choice of opti-
mizations; the runtime runs the different versions and picks
the version that runs fastest. Such division of functionality
has two vital benefits. First, the compiler can be aggressive
and go after long-tail optimizations (e.g. that only benefit
10% of the workloads) because it need not evaluate the opti-
mizations, whereas a traditional compiler would be resource-
limited to focus only on broadly useful optimizations. Sec-
ond, the compiler is much simpler as it does not need to
build (and keep up-to-date) complex performance models of
GPU/hardware performance, DNN operators, efc., a particu-
larly challenging task given the frenetic pace of change in
this space - both in hardware [14, 15, 21] and workload.

While multi-version compilation for generic programs has
significant practical challenges because of variability in com-
putation across input instances, often requiring statistical
techniques that run each version thousands of times [17], the
repeatability of the deep learning workload makes it an ideal
fit, because a particular choice of optimizations needs to be
measured only once. This empowers Astra to amplify the
impact of multi-versioning by significantly expanding the
scope of online adaptation. Instead of operating at the granu-
larity of individual “hot" functions like generic multi-version
compilers, Astra reasons about the entire data flow graph
and explores interactions between dependent optimization
choices at various parts of the graph, resulting in end-to-end
improvement in training time across a variety of models.

A key challenge in this approach of end-to-end online
adaptation is managing the size of the exploration state space;
at one extreme, if the compiler enumerated every possibil-
ity, the state space could get too large. We use three key

910

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

techniques to keep the state space under control. First, we
use simple coarse-grained static information at the compiler
to be intelligent in the enumeration phase, so that only po-
tentially interesting candidates are enumerated. Second, we
perform profiling at a fine-grained level to allow parallelism
in state-space exploration. In contrast to techniques such
as Halide OpenTuner [3] which only measure end-to-end
runtime and hence rely on random mutations one at a time,
Astra can simultaneously adapt several (hundreds of) inde-
pendent configuration parameters by exploiting fine-grained
measurements. This makes the size of the state space addi-
tive rather than multiplicative in the number of dimensions.
Third, we use the initial profile measurements during the on-
line exploration as signals to prune the dynamic state space
in an intelligent manner.

We have implemented Astra in two popular DL frame-
works - PyTorch [25] and Tensorflow [1], and have evaluated
the system on several state-of-the-art deep learning mod-
els. We demonstrate that Astra significantly speeds up ad
hoc models, up to 3x in cases where the model does not fit
an existing cuDNN implementation. We also show that in
cases where cuDNN does apply, Astra achieves performance
comparable to cuDNN for those models. We also show that
Astra manages its exploration state space quite effectively,
and that it outperforms static optimization approaches such
as XLA by up to 72% besides being significantly more robust.

The key contributions of the paper are as follows.

o We identify and leverage the unique characteristics of the
deep learning workload to do extreme tailoring or custom-
wiring of the infrastructure for a specific job, resulting in
significant efficiency gains;

e We propose and evaluate a new architectural framework
for optimization of such custom workloads, with aggres-
sive multi-version compilation at a whole-program level
that performs parallel exploration of independent choices
by using fine-grained profiling.

e We demonstrate with a detailed evaluation that the state
space of online exploration is manageable with our prun-
ing strategies, and that end-to-end models get significant
speedups over native PyTorch and Tensorflow, and even
over static optimizers such as XLA.

o We identify some simple functionality that new hardware
for deep learning needs to conform to in order to enable
our adaptation aproach.

The rest of the paper is structured as follows. In § 2, we
provide a background of deep learning workloads . In § 3,
we outline the various dimensions of the optimization state
space for DNNs. We present the design of Astra in § 4, de-
scribe the prototype implementation in § 5 and present a
detailed evaluation in § 6. In § 7, we outline the basic fea-
tures needed from new DNN hardware, to support Astra. We
discuss related work in § 8, and conclude in § 9.

Session: Machine Learning Il

2 Background

In this section, we provide a brief background on the core
primitives and operations of deep neural networks (DNNs),
and the current state of optimizing neural networks.

2.1 Deep Neural networks

DNNs comprise of several layers of computation. Each layer
comprises of several neurons; each neuron takes the outputs
of neurons in the layer above as their inputs, and produce an
output as a function of the inputs - e.g., a weighted sum of
the inputs followed by a non-linear function such as Sigmoid
or ReLU [37]. The weights to apply to each of the inputs is
one of the key parameters that the network learns during
training.

The computation flow during a DL training job consists of
a feed-forward pass and a backward propagation pass. During
the feed-forward pass, the network takes a batch of training
input (e.g., a set of images for an image classification task, or
a set of sentences for a language translation task), typically
referred to as a mini-batch, and runs those inputs through the
layers. The result produced by the last layer is the prediction
of the network; for an already trained model that is used
for prediction, this is the only computation it does. For a
model that is being trained, however, this prediction is then
compared to the actual ground truth that is provided as part
of the input batch. The difference between the ground truth
and the prediction is the error or loss of the network. The
error values are then propagated back through the network
until each neuron has an associated error value that reflects
its contribution to the original output, and then uses these
error values to calculate the gradient of the loss function.
This gradient is fed to an optimization method such as such
as stochastic gradient descent [27], which uses it to update
the weights, in an attempt to minimize the loss function.

Computationally, both the forward and backward passes
translate into a series of matrix or tensor operations, predom-
inantly matrix multiplication, and other operations such as
SoftMax, BatchNorm, L2Norm, etc. Because of the significant
data parallelism available in matrix operations, GPUs are
quite effective and hence have become a de facto standard
for running deep neural network training.

2.2 Execution model

The operations in the forward and backward pass of a DNN
training model naturally fit into a data flow graph (DFG)
representation [1], where the nodes are the operators (e.g.,
GPU kernels), and the edges are tensors/matrices. The set of
primitive operators (such as matrix multiplication) is quite
small, and several libraries such as cuBLAS [24] implement
GPU kernels for those common operators. Prior work by
several people has looked at the problem of how to automat-
ically generate optimized code for these low-level primitive
kernels [6, 26, 30], but that is not the focus of this paper.

911

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Frameworks such as Tensorflow [1] treat these operators
as building blocks and manage the end-to-end execution
flow. They parse a model written in a high-level language
such as Python, and construct a data flow graph from it,
where the computation nodes typically map to an existing
kernel implementation in say cuBLAS. They then dispatch
the operations in the DFG asynchronously to the GPU dri-
ver through a cuda_launch APIL Efficient execution depends
heavily on this end-to-end orchestration of the DFG, which
is the primary focus of the optimizations explored in this

paper.

2.3 GPU characteristics

This subsection describes some salient features of the GPU
architecture and execution model. GPUs have much higher
parallelism than CPUs; a P100 GPU for example has about
3500 cores, and has a compute throughput of about 9 ter-
aflops/sec [13]. Newer versions such as the Tesla V100 pro-
vide significantly higher compute of 120 teraops/sec for half-
precision (16-bit) operations [32]. GPUs adopt a SIMD exe-
cution model where a group of cores (called a warp) execute
lock-step on the same instruction stream but multiple paral-
lel data streams, say different tiles of a matrix multiplication.
In order to extract the full compute throughput of the GPU,
the workload needs to have a high degree of parallelism -
this can happen in two ways; either the matrices being oper-
ated are so large that the tiling of the matrices is enough to
keep the cores busy, or multiple operations must be simulta-
neously scheduled on the GPU. To enable the latter, GPUs
expose a stream abstraction to the higher level. A stream is
akin to a thread of execution; all operations scheduled in a
single stream are executed in FIFO order sequentially by the
GPU, but operations scheduled in different streams run in
parallel. When scheduling operations on multiple streams,
the application needs to enforce dependencies across opera-
tions by adding appropriate synchronization events. Because
of the complexity of doing this while keeping stream utiliza-
tion balanced, most frameworks such as Tensorflow today
use just a single stream.

GPUs have a memory hierarchy comprised of registers,
on-chip shared memory, and external HBM (high bandwidth
memory); GPU kernel libraries such as cuBLAS carefully
manage these shared resources for locality to maximize the
degree of parallelism realized on the GPU.

Another challenge to realizing the full throughput of a
GPU is the fixed cost of about 5-10 usec to launch a kernel on
the GPU; in order for this cost to be amortized, the granular-
ity of individual operations scheduled must be large enough
that the compute time for the kernel is higher than launch
overhead. One common optimization that is employed to-
wards this goal is to fuse multiple small operations so that it
can be launched as one kernel.

Session: Machine Learning Il

2.4 Software accelerators

Given the complexity of fully utilizing the parallelism of GPU
with just low-level kernels, popular layer structures in DNNs
have hand-optimized “compound kernels”, i.e., accelerator
implementations in software. cuDNN [7] is a popular exam-
ple, that supports standard convolution layers and recurrent
network layers such as long-short term memory (LSTM). In
recurrent layers where the granularity of individual opera-
tions is quite small, cuDNN provides significant speedup -
up to 6x - compared to default implementation in Tensorflow
or PyTorch.

There are two shortcomings with this approach of hand-
optimized accelerators. First, they can only cater to the most
popular structures, and hence do not help with deep learn-
ing experimentation where researchers come up with novel
structures; for example, they do not help with structures such
as MI-LSTM [36], LSTM with Attention [35], SC-RNN [22],
RHN [39], etc.. Second, these APIs work at the abstraction of
a single layer, and hence cannot go after full-graph optimiza-
tion opportunities. With Astra, we automate this process
of generating an accelerated implementation for a long-tail
model structure, and do so in a way that has visibility into the
full graph to balance conflicting alternatives, e.g., between
fusion in the forward pass vs. in the backward pass, which
may each require different allocation strategies for tensor
objects.

3 State space of optimizations

In this section, we describe the various dimensions of the
optimization state space for DNN training jobs, and illus-
trate the complexity of statically figuring out the best opti-
mizations. We hint at how a measurement-driven adaptive
approach during training can help with several of these di-
mensions.

3.1 Low-level Kernels

Kernels for basic operations such as GEMM (General ma-
trix multiplication) balance several parameters such as the
thread block size, the data tiling size, the amount of shared
memory to use per block, etc. The optimal choice of these
parameters depends on several factors such as the sizes of
the operands and the GPU architecture, especially consider-
ing the performance cliff behavior exhibited by GPUs along
some of these dimensions [31]. OpenAI GEMM libraries [11]
provide minimal parametrization of the kernel parameters
to allow for exploration at higher levels.

Several libraries exist for the low-level kernels such as
GEMMs, such as cuBLAS [24], OpenAl [11] and Neon [29].
Interestingly, the best performing library varies depending
on the input parameters and sometimes the GPU generation.
Table 1 shows the varied performance of cuBlas and OpenAl
for different sizes of GEMMs, and indicates that it is hard to
statically identify the best choice.

912

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Size | cuBlas | OAL | OAL
64x1024x4096 | 0.156 | 0.125 | 0.938
64x4096x1024 | 0.138 | 0.172 | 0.141

Table 1. This table shows time in ms for two GEMM opera-
tions during a run of a LSTM model on a P100 GPU. The first
row is from a forward pass fused GEMM, and the second
from a backward pass.

Figure 1. An example of conflicting choice in fusion of
GEMMs. This picture shows two sets of GEMM operations that
occur in the SC-RNN model [22] during its backward pass of
propagating gradients. As fusion requires contiguous memory
allocation for the tensors, one needs to select the most beneficial
fusion/allocation strategy.

3.2 Fusion of kernels

A technique commonly used by accelerators such as cuDNN
is to fuse multiple smaller operations into one large opera-
tion. This is particularly valuable in recurrent layers or LSTM
layers, where the individual operations are too small to keep
the GPU occupied. The most straightforward form of fusion
is GEMM fusion, where multiple independent GEMMs with
their own operand tensors are multiplied together as one
large GEMM; performing a single GEMM of two 512x512
tensors is faster than performing four sequential GEMMs of
128x512 tensors with a 512x512 tensor. Ideally, this requires
that operand tensors to be fused are allocated contiguously
in GPU memory to avoid the cost of copying them into con-
tiguous space. In a large data flow graph, picking the right al-
location strategy to maximize fusion is challenging, because
the choices of fusion groups sometimes require conflicting
allocations (see Figure 1).

Further, while larger fusion groups are usually better for
performance, they need not always be: for example, on a
P100 GPU and CUDA v9.2, performing two GEMMs of size
(256 x 1024) x (1024 x 1024) in parallel on two GPU streams
takes 172 us, while the fused version, i.e., a single (512 x 1024)
x (1024 x 1024) GEMM runs slower at 211 us. Hence statically

Session: Machine Learning Il

figuring out fusion groups is challenging, necessitating the
measurement-driven approach that Astra employs.

3.3 Using multiple streams

The GPU computation model provides an abstraction of
streams to allow parallel execution of independent kernels,
which is another way to exploint parallelism when fusion

doesn’t apply. While scheduling operations on multiple streams,

one needs to balance utilization of streams, while avoiding
dependent operations in the DFG from being scheduled on
different streams (to reduce synchronization cost). In gen-
eral, if operation B is dependent on operation A’s output,
scheduling B in a different stream and forcing it to wait for
A would prevent other possibly independent kernels that
could have run in parallel without waiting for A. Because
of the asynchronous execution model of GPUs where the
kernels are launched long before they actually execute on
the GPU, the fine-grained completion time of the kernels
cannot be estimated statically; further, the completion time
of a kernel can be affected by interference across streams.
Hence, balanced utilization of multiple streams is hard to
achieve while dispatching the operations asynchronously.
Not surprisingly, Tensorflow and pyTorch do not take ad-
vantage of streams, and use a single sequential stream. With
Astra, the dynamic adaptation allows picking the right sched-
ule on multiple streams without complex reasoning about
operation latencies.

3.4 Other optimizations

While software accelerators such as cuDNN operate at the
level of individual DNN layers, there are opportunities for
cross layer or whole-graph optimizations that use context
from the whole model to apply transformations. An example
is to dynamically trade off computation for memory; sav-
ing part of the memory used for forward-pass activations
by redoing the computation, thus accommodating a bigger
model [34]. This idea can be used for optimization as well,
if the cost of recomputation of some layers of the forward
pass is lower than the parallelism benefit from supporting
say a 2x larger mini-batch size, again a complex dynamic
that needs measurement.

Distributed or multi-GPU training is another important
dimension of the optimization state space. Depending on the
communication cost of the model and the physical character-
istics of the network, the choice of ideal degree of parallelism
from a cost-benefit perspective, could be taken in an auto-
mated manner with runtime measurement and adaptation.

In this paper, we only focus on the dimensions listed in
sub-sections 3.1, 3.2, and 3.3, but the approach is applicable
to other dimensions as well.

3.5 Limitations of static optimization

In each dimension of the choice space listed above, reason-
ing about which set of options would be most efficient by

913

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

statically modelling the interactions is too complex and ex-
pensive if not infeasible. Adding to the complexity is the
rapid pace at which the field of deep learning evolves, both
in terms of hardware (rapid new generations of GPUs, FP-
GAs, ASICs etc.), and the compute model and APIs (e.g., new
layer structures, novel operators etc.). Therefore, even if one
had a sophisticated static cost model that captured the vari-
ous aspects of the interaction, such a model would have to
keep up with the frenetic pace at which the field evolves,
making in an economically unviable approach. As an exam-
ple, XLA is a static optimization layer for Tensorflow that
benefits some models and hurts others [18]; because it is
hard to figure out a priori where it hurts, XLA is still an
experimental feature that is turned off by default; we present
a comparison of Astra and XLA in Section 6.

Astra provides a new alternative to navigate the state space
of optimizations, enabling aggressive, long-tail optimizations,
without complex cost models of the end-to-end stack.

4 Design of Astra

The key insight in the design of Astra is that the unique pre-
dictability of mini-batch-level computation in a deep learning
training job can be exploited to adopt a fundamentally dif-
ferent approach to optimizing DNNs, that gets around the
challenges of static optimization listed in Section 3.

4.1 Mini-batch predictability

A DNN training job runs millions of mini-batches, each oper-
ating on a different set of training inputs. The execution time
of a mini-batch can be anywhere from tens of milliseconds
to a few seconds depending on the model and hardware. Im-
portantly, independent of the actual inputs in the mini-batch,
the DNN performs exactly the same computation on every
mini-batch, ! as it goes through the same layers and executes
the same tensor operations; the cost of the operations (e.g.,
matrix multiplication) depends only on the shapes of the ten-
sors (which is constant across mini-batches), rather than the
actual values. Hence, if a mini-batch is profiled for a certain
choice of optimization and it speeds up the mini-batch by say
2x, it is guaranteed to also speed up every other mini-batch,
and hence the whole training job, by the same factor.

4.2 A New Compiler-Runtime Interface

At a high level, Astra is a compiler - it takes existing model
code and generates an optimized execution schedule. How-
ever, unlike a traditional compiler, Astra performs an ampli-
fied variant of multi-version compilation [17, 33, 38], chang-
ing the traditional division of functionality between the com-
piler and runtime.

A traditional compiler performs two tasks: (a) it enumer-
ates the state space of relevant optimizations, and (b) it ranks

10ne exception to this observation is dynamic graphs in frameworks such
as PyTorch; we handle them with bucketed profiling discussed in § 5.5

Session: Machine Learning Il

those optimizations using a performance model, and pro-
duces a single version of the code. The runtime simply exe-
cutes the code produced by the compiler.

In contrast, the optimizer in Astra is split between two
parts: an enumerator and a custom-wirer. The compiler per-
forms only one of the two tasks listed above: enumerating
the state space of possible optimizations, using static knowl-
edge to perform minimal pruning of the state space. The
output of the compiler is not one version of the code, but
conceptually N versions, each pertaining to one instance of
its enumeration. The runtime in Astra performs the task of
custom-wiring by ranking the optimizations to pick the best
set of optimizations, but it does not need a sophisticated cost
model. Instead, it simply runs each configuration and mea-
sures it; each mini-batch is run with a different option from
the state space enumerated by the compiler, and the mea-
surements are used to prune the state space. Unlike previous
work on multi-version compilers [17, 33, 38] that focus on
adapting individual functions that are “hot", the adaptation
in Astra works at the whole program level and can reason
about the interactions between operations across the whole
data flow graph, such as conflicting memory allocations for
different fusion choices (§ 3.2), assignment of kernels to mul-
tiple streams in a history-aware manner, (§ 3.3), and so on.
The custom-wirer performs this exploration in a work con-
serving manner: a small number (e.g., a few thousand out of
millions) of mini-batches is used for exploration while still
making useful training progress.

From a practical viewpoint, this new division of function-
ality has two key implications for the compiler:
Simplicity: The compiler does not need to implement a
detailed cost model of the DNN operators or the hardware
(e.g., multiple generations of GPUs). This is significant in
the DNN context where both evolve at a rapid pace. The
compiler codebase remains simple and maintainable.
Long-tail Coverage: In a traditional compiler, the engineer-
ing effort needed for an optimization is high because its end-
to-end impact and interactions need to be modelled. Hence
only widely applicable optimizations make the cut. In con-
trast, with the enumeration approach in Astra, the compiler
can be aggressive and go after even optimizations that only
benefit 5% of models, because it does not need to reason
about its performance. This is particularly useful in cases
where researchers try out esoteric model structures: these
are precisely the models that matter for Al innovation, yet a
traditional compiler cannot afford to optimize.

4.3 Fine-grained Profiling

The key mechanism that enables Astra to manage the large
state space during exploration, is fine-grained profiling. Au-
totuning systems such Halide OpenTuner [3] and Tensor
Comprehensions [30] view the whole code as a black box
and measure only end-to-end latency; they then use a ge-
netic algorithm to explore the state space; in such a model,

914

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

the state space exploration can only happen one mutation at
a time because multiple changes will confound the measure-
ment. In contrast, Astra performs hierarchical fine-grained
profiling in a lightweight manner; for example, the time for
each GEMM is measured, and simultaneously the time for
the overall group of GEMMs within a layer is also measured.
This allows Astra to change multiple exploration parameters
in the same iteration, significantly reducing the number of it-
erations for exploration. In general, the fine-grained profiling
is crucial to most forms of exploration described below.

The right profiling metric to use is another key aspect.
While elapsed time is the most natural metric that works
in simple explorations such as GEMM kernels and fusion, it
fails to capture the dynamics when multiple kernels run in
parallel on different streams. We therefore choose custom
metrics; for streams we use the time for completion of all
kernels scheduled across streams.

4.4 Enumerator

The enumerator generates templated schedules of execution,
using static knowledge and general graph optimizations.

4.4.1 Static Analysis

One key part of the enumeration is selection of GEMMs
for fusion. To select candidate nodes for fused GEMMs, the
enumerator uses simple graph pattern matching. GEMMs
which have a common argument, and no dependency rela-
tion among are chosen as candidates for fusion. Consider
the following example from the Pytorch graph trace (the %
nodes are the operand tensors, and mm is the operation for
matrix multiplication)
%10 = mm (%1, %5)
%11 = mm (%1, %6)
In this example, both the operations can be replaced with a
single operation provided there is no dependence between
%5 and %6. Multiple such fusion sets are also chosen for fu-
sion along the other dimension to generate 2-D fusion sets.
At a high level, this is a graph colouring problem. To reduce
the state space, we only consider nodes which have the same
provenance (wrt GEMM nodes only).

Fusion Ladders are another pattern that the static policy
exploits. A commonly observed pattern in the graph is a
GEMM-accumulator ladder. Consider the following:

%10 = mm (%1, %5)
%11 = mm (%2, %6)
%12 = add (%10, %11)

All these nodes can be replaced by a single node (if %10
and %11 are not used elsewhere). This is extended to longer
ladders and multiple such ladders are also chosen to be fused.
Note that while the enumerator identifies maximal fusion
groups, it is up to the custom-wirer to figure out the actual
granularity of fusion by chunking the fusion group.

Session: Machine Learning Il

4.4.2 Configuration generation

The information extracted during the static analysis is or-
ganised as a set of adaptive variables. An adaptive variable
is the basic unit of adaptation used by the custom-wirer, and
has the following interface:

e initialize: Reset to default choice
e iterate: Change local choice to next option.
e get_profile_value: Get the profile metric

These adaptive variables are organised into an update tree.
The update tree has different modes of exploration, which
are annotated by the enumerator:

Parallel: All child nodes can be explored and profiled inde-
pendently (e.g., used for adaptation of fusion groups)
Exhaustive: Exhaustive (brute-force) exploration of the sub-
tree; exponential in number of choices

Prefix-based: The search follows a specified update order.
The first child is iterated while the others are kept constant.
When the search for this child finishes, its best value is
recorded and the exploration for the next child begins.

The role of the enumerator is thus to build this update tree
of adaptive variables, with the appropriate mode annotations,
which is then used for exploration by the run-time. The full
list of exploration modes is described in the next subsection.

4.5 Pruning exploration state space

We now describe in detail the exploration modes stated above.
Figure 2 shows the exploration graph for part of a model.

4.5.1 Parallel exploration

With fine-grained profiling, the exploration of state space
becomes parallel across independent choices in the optimiza-
tion hierarchy. Let’s consider a a model that has 5 groups of
fusion choices (e.g., pertaining to 5 DNN layers), where each
fusion group has 12 GEMM kernels. Let’s assume the 12 ker-
nels within a fusion group have three choices for fusion; they
can be fused in chunks of size 1, 2 or 4 (i.e., either 12, 6 or 3
fused GEMM s respectively), and each GEMM operation has
2 choices of kernels (e.g., cublas, openAl) to try out. With a
random mutation based exploration, each iteration can only
vary one point in the state space, so we need (3 x 2)° = 7776
trials. However, with fine-grained profiling and parallel ex-
ploration, it needs a much smaller number of trials because
the exploration for each group can be performed in parallel;
we thus only need 3% 2 = 6 trials to complete this state space
because all the choice dimensions are independent.

4.5.2 Hierarchical exploration

Independent exploration is not always feasible. For exam-
ple, to be fusion-friendly, the tensors that participate in the
GEMM fusion must be allocated contiguously in GPU mem-
ory. A given memory allocation strategy may thus permit
only a subset of fusion choices; often, the forward pass and
backward pass give rise to different fusion choices, perhaps

915

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

requiring conflicting memory allocations. A large number
of conflicts can be resolved statically. For example, if the
conflict between two fusion groups is because of a single
tensor, we just remove the offending node from the fusion
groups; thus, both fusion groups can be simultaneously sup-
ported. However, some conflicts are non-trivial (e.g.Figure 1).
Simply selecting the larger fusion group is inefficient given
diminishing marginal returns from larger fusion groups.

Astrauses a measurement driven approach to select among
conflicing memory allocation strategies. We introduce a high
level fork in the exploration space pertaining to the alloca-
tion strategy. While exploring an allocation choice, we re-
strict the adaptation for fusion groups whose tensors are not
contiguously allocated. The profiling results also record the
allocation choice. After each allocation is explored, we build
the best configuration for each allocation and then compare
their end-to-end times.

4.5.3 Barrier exploration

When adapting the state space for stream scheduling, As-
tra needs to vary the assignment of individual kernels to
different streams, and also vary the dispatch order. Inter-
estingly, the mapping of different kernels to streams is no
longer independent, as it is history-sensitive; the previous
set of kernels scheduled on each of the streams affects the
choice of which stream is the best fit for the present kernel.
In the extreme case, this can remove the parallelism from the
entire exploration of the streaming state space as the history
builds up over the complete graph.

Astra addresses this by introducing the notion of barrier
exploration. The enumerator statically partitions the data
flow graph into super-epochs; a super-epoch is calibrated to
be roughly a few milliseconds worth of computation time
on the GPU (estimated based on the static flops calculation).
At super-epoch boundaries, we introduce a forced barrier
synchronization across all streams to reset their state. Thus,
at the start of every super-epoch, the history of the stream
is empty and hence exploration of multiple super-epochs
can proceed in parallel. The coarse granularity of the super-
epoch enables amortizing the cost of cross-stream barrier
synchronization. Within a super-epoch we still need to per-
form exhaustive exploration as it is history sensitive.

4.5.4 Prefix exploration

To further control the state space within a super-epoch, the
enumerator breaks up a super-epoch into multiple epochs,
based on the dependency relationships. Operations within
the epoch can be scheduled across multiple streams, with
dependencies enforced through GPU synchronization events.
In order to be history-aware of the effect of prior epochs
within the super-epoch, we use a prefix-building approach
for state-space exploration across epochs; the first epoch
does its exploration, decides on the ideal stream mapping
and then freezes the configuration chocies for the first epoch.

Session: Machine Learning Il

o | %0:Float(20, 10, 32)
~ 3 %1 : Float(10, 128)
2 g %2 : Float(10, 128)
2 s | %3:Float(128,32)
-8 %4 : Float(128)
%5 : Float(128, 32)
%6 : Float(128)
— -
é %22 : Float(321, 1281) = t(%3)
%34 : Float(321, 128!) = t(%5)
Fusion s %25 : Float(10, 128) = mm(%21, %22)
Group g %37 : Float(10, 128) = mm(%21, %34)
= %49 : Float(10, 128) = mm(%21, %46)
g | & %61 Float(10, 128) = mm(%21, %58)
o) :
g %44 : Float(10, 128) = add(%38, %43
j=9
= oy
1]
é %54 : Float(10, 128) = mm(%L, %51)
N’

Assignment #1

m

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

- Allocation Strategy

Mem Allocation 1

Mem Allocation 0

[

Super

Epoch 0

Super
Epoch 0

Super
Epoch 3

Super
Epoch 1

Super
Epoch 2

Super
Epoch 2

Super
Epoch 1

Super
Epoch 3

[ESEAEREI ED EN

GEMM
Fusion
Group

4-sized chunk

Hierarchical

Parallel

2-sized chunks

1-sized chunks

Stream
assignment
adaptation

Prefix-
based

- Assignment #N
Equivalence

Figure 2. Astra Exploration. This figure shows the different levels of exploration in Astra. At the left is a zoomed in version of
Super Epoch 1 from the figure on the right. Legend at the bottom right shows what the various shapes mean.

Next, the exploration for the second epoch happens, and
so on. Therefore, we make the exploration additive in the
number of epochs, thus significantly reducing the state space.

4.5.5 Equivalence exploration

While barriers and prefixes help cut down the state space sig-
nificantly, the exploration within an epoch is still exhaustive.
While most epochs are small (fewer than 5 kernels), there
are epochs that are larger. To handle this, we introduce the
notion of an equivalence class among kernels by making use
of static knowledge of the dependency relationships of the
operations, and the scope of the operations from the high
level code for the model. Intuitively, if a group of GEMMs are
of the same shape, and have similar inbound and outbound
dependencies in the DFG, they can be treated as equivalent.
Hence if there are 10 of those kernels in an epoch that need
to be scheduled across 2 streams, we only need to adapt the
number of operations to schedule in each stream (e.g., 3 in
first stream, 7 in second, etc. for a total of 5 choices) rather
than which exact operations to schedule in each stream. In
this example of 10 kernels, the equivalence exploration thus
cuts down the state space from 2!° to just 5 within that epoch.

4.6 Profile indexing

The mechanism that Astra uses to manage different forms of
exploration, is intelligent indexing of profile data, and man-
gling the key to this index helps dynamically control whether

916

to re-run an instance of the exploration or not. For example,
when performing parallel exploration, the key for the profil-
ing of a GEMM will only contain the identifier for the GEMM.
Hence if there are 3 choices for GEMM kernels, that GEMM
will only need 3 iterations to pick its best value. If there are
higher level dependencies such as the allocation strategy or
stream mapping based on which the measurement for the
GEMM has to be invalidated, those dependencies are added
as prefixes to the indexing key of the corresponding profile,
so that when the custom-wirer explores a different binding
of the higher-level policy, there is a miss in the profile index,
and it re-evaluates that instance.

4.7 Custom Wirer

The custom wirer takes the configurations generated by
the enumerator, and builds the symbol tables for all nodes
in the graph. The custom wirer then runs the forward and
backward passes and updates the profile index. To update the
profile index, the get_profile_value method is called on all
the AdaptiveVariables. Each variable looks at all the profiled
points and outputs one metric that the custom wirer tries
to minimize. For GEMM nodes, the metric is simply the
execution time. For fused GEMM ndes, it is the total time for
all GEMM nodes. For epochs during stream adaptation, the
metric is the time from the start of the super epoch to the end
of all kernels dispatched in all streams till the end of present
epoch. The stored configuration for a node includes the value

Session: Machine Learning Il

of that node, and of all its children. After updating the profile
index, the custom wirer invokes the iterate() interface on the
top-level adaptive variables to drive exploration according
to the exploration mode annotated in the adaptive variable.

Some nodes in the update tree are constrained by the val-
ues of other nodes. For example, fusion groups can only be
iterated through the fused tensors that are present in the
current allocation strategy. The keys of the configuration
which constrain a node forms the context of a node. While
updating the profile index, each adaptive variable maintains
a best configuration per context. Once the initial fine-grained
profiling is done, the custom wirer builds the best configura-
tion for each contexts and runs them; it selects the context
(e.g.. the allocation strategy) that is fastest.

4.8 Using static knowledge

In addition to the pruning techniques described above, we
also use coarse-grained static domain knowledge that does
not require a detailed cost model. For example, when identi-
fying candidates for fusion, static knowledge helps impose a
range for the size of the GEMM fusion groups, as a fusion
group of more than a certain size will give diminishing re-
turns. Similarly, static knowledge is used to constrain the
runtime exploration by giving it policies or objective func-
tions to optimize — e.g., in scheduling kernels across streams,
roughly balance the amount of work (flops) scheduled on
the different streams to ensure good utilization.

5 Implementation

We have implemented Astra in two popular deep learning
frameworks - PyTorch [25] and Tensorflow [1]. In this sec-
tion, we describe key aspects of the implementation.

5.1 Architecture

There are several high-level components in a DL framework
such as PyTorch or Tensorflow. The input to the toolkit is a
model file typically written in python. From the model, the
toolkit builds a data flow graph. While the graph building
happens by default in Tensorflow, PyTorch supports dynamic
execution where the python interpreter handles control flow.
We use an experimental feature called tracing in PyTorch
that generates an execution graph like Tensorflow.
Another important component in a DL toolkit is the auto-
matic differentiation module. To implement back-propagation
for gradient descent, these toolkits automatically generate
code for the differentiated versions of the forward pass com-
putation. The user model simply specifies the forward pass
computation, and the toolkit generates the backward pass
code. From a training time perspective, roughly two-thirds
of the computation happens during the backward pass.
Once the execution graph is generated, the toolkit invokes
the dispatcher which iterates through the graph in data flow
order, and uses the low-level libraries (for GEMM, etc) to

917

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Model.py
GraphBuilder
Convert py spec into DFG

AutoGrad Enumerator
Generate DFG for Graph optimizations to
backprop Enumerate schedules

Profile Index
Track fine-grained profiles
of each config

Runtime/Dispatcher
Launch operators/ kernels
on GPU

‘ Custom Wirer
Run/measure diff. options
| for each minibatch

Low Level Library
(e.g. memory mgmt.,
CUDA wrappers, cuDNN...)

Figure 3. Astra interposes at the dispatcher of existing DL
toolkits. Light-colored boxes are components that Astra adds.

asynchronously schedule the operations on the GPU. Once
the GPU is done with execution of the kernels, the dispatcher
is notified, and it proceeds to the next mini-batch.

Astra is built in such a way that most of the above func-
tionality provided by the DL toolkit is reused. It interposes
at the dispatcher layer of the toolkit as shown in Figure 3
and substitutes its own dispatch module. The modules im-
plemented by Astra are an enumeration module which is the
offline compilation/enumeration phase, and a custom wiring
module which picks different instances of the enumerated
space and executes that incarnation of the DFG by dispatch-
ing operations. Because Astra fully controls the dispatcher, it
is not limited by the inability of the framework to use multi-
ple streams; Astra performs its own stream management and
interacts with the GPU directly, by leveraging the low-level
libraries that the framework already has.

5.2 Profiling

Lightweight fine-grained profiling is a key requirement for
the online exploration to work efficiently. Traditional ap-
proaches such as CUDA callbacks that are enabled by the
Nvidia CUPTI layer, are too fine-grained because every ker-
nel run on the GPU generates a callback in the critical path,
whereas we need to control the granularity of profiling to
only include regions of interest in order to amortize the pro-
filing overhead. In Astra, we wrap the regions of interest
or kernels between a pair of cudaEvents. During the offline
stage, the profiler registers event pairs for such nodes and
adds them to the profile index with the appropriate key. In
the critical path, the runtime only needs to mark the events
for the node. Around a super-epoch boundary, these events
are global events, that synchroize across streams. For epochs
and fusion sets, these events are stream-local events.

Session: Machine Learning Il

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Mini-batch | PyT | Astrap | Astrapk | Astrapgs | Astrag Mini-batch | PyT | Astrap | Astrapk | Astrapgs | Astrag
8 1 1.65 1.65 2.13 2.27 8 1 2.25 2.15 2.43 2.43
16 1 1.65 1.69 2.11 2.22 16 1 1.93 1.93 2.15 2.13
32 1 1.49 1.48 1.72 1.81 32 1 1.65 1.68 1.85 1.85
64 1 1.20 1.23 1.42 1.49 64 1 1.29 1.31 1.46 1.46
128 1 1.03 1.05 1.19 1.2 128 1 1.13 1.15 1.23 1.23
256 1 0.98 1.01 1.1 1.12 256 1 1.2 1.21 1.28 1.28

Table 2. Performance of SCRNN Model Factor speedup
relative to native PyTorch for Astra

5.3 Element-wise Fusion

In addition to GEMM fusion, Astra also fuses element-wise
operations. In PyTorch, Astra picks the set of operations to
fuse based on data dependencies, and uses the experimental
JIT support to compile the fused operations. In Tensorflow,
the XLA framework is used for fusion and compilation.

5.4 Limitations of the Tensorflow prototype

Our Tensorflow prototype performs adaptation only for
GEMM fusion and GEMM kernel selection. Because the low-
level runtime of Tensorflow expects contiguous tensors (i.e.,
does not handle strided access of tensors), GEMM fusion
incurs additional tensor copies, which complicates stream
adaptation as it causes super-epoch and epoch definitions to
vary. Addressing this issue in tensorflow is ongoing work.

5.5 Handling dynamic graphs

PyTorch supports dynamic graphs: depending on the length
of input (e.g., the number of words in input sentences), it
generates a different graph that has the right shape to accom-
modate that mini-batch. With dynamic graphs, mini-batches
are no longer identical as the computation depends on the
size of the inputs within a mini-batch. Astra handles this by
bucketed profiling; it bucketizes the input sizes into a small
number of buckets (currently 5) and performs the state space
exploration independently within each bucket. The profile
index key is also prefixed by the bucket size, increasing the
state space by 5x. To avoid memory reallocation costs as
the exploration switches buckets, Astra allocates memory
corresponding to the largest bucket size and uses a cache in-
dexed by tensor shape to reuse slices of the respective tensor
buffers when running for lower-sized buckets.

6 Evaluation

We answer four key questions in the evaluation of Astra:

e How much does Astra speed up end-to-end models?

e How close does Astra get to hand-optimization (cuDNN)?
e What is the size of exploration state space in Astra?

e How does Astra compare to static optimization (XLA)?

918

Table 3. Performance of Hutter MI-LSTM Model Factor
speedup relative to native PyTorch for Astra

Mini-batch | PyT | Astrap | Astrapx | Astrapks | Astrag
8 1 2.33 2.37 2.79 3
16 1 2.18 2.19 2.65 2.75
32 1 2 1.98 2.3 2.4
64 1 1.64 1.71 1.85 1.95
128 1 1.34 1.35 1.51 1.54
256 1 1.18 1.17 1.29 1.29

Table 4. Performance of subLSTM Model Factor speedup
relative to native PyTorch for Astra

6.1 Experimental Setup

All experiments were run on a single Tesla P100 GPU with a
peak compute bandwidth of 9 teraflops/sec. The five mod-
els we evaluate in this section are (a) MI-LSTM [36] on the
Hutter Challenge dataset, (b) SC-RNN [22] on the Penn Tree
Bank dataset, subLSTM [8] on the Penn Tree Bank dataset,
(d)Stacked LSTM for language modelling on the Penn Tree
Bank dataset, () Google Neural Machine Translator [35].
Unless otherwise specified, the numbers pertain to our Py-
Torch implementation of Astra. We evaluate these models
under various mini-batch sizes, although mini-batch sizes
above 32 are rarely used in experimental long-tail models
that Astra targets, as they typically affect accuracy [19, 20].
To break-up the benefits of the various parts of Astra, we
report four numbers for Astra: Astrar has only GEMM fusion
adaptation, Astrapx has GEMM fusion and kernel adapta-
tion enabled, Astrapks also has streams enabled, and finally
Astragy; shows the performance with adaptation of mem-
ory allocation as well. All our baseline numbers are with
standard and efficient libraries for tensor operations (such
as cuBlas). PyTorch 0.4 (with CUDA v8.0/cuDNN v6.0) and
Tensorflow version 1.8 (with CUDA v9.2/cuDNN v7.0) were
used for the baseline measurements.

6.2 Speedup in end-to-end models

For each model, we compare (a) native implementation in
pyTorch (b) Pytorch+cuDNN where applicable (c) Astra.
Table 2 shows the speedups for Astra under various batch
sizes on the SC-RNN model [22] normalized to the perfor-
mance of the native PyTorch. As can be seen, Astra provides

Session: Machine Learning Il

Mini-batch | PyT | cuDNN | Astrap | Astrapg | Astrag
8 0.43 1 0.87 0.89 1.09
16 0.59 1 1.1 1.11 1.32
32 0.86 1 1.43 1.46 1.64
64 0.69 1 0.94 0.95 1.05
128 0.76 1 0.92 0.93 1
256 0.79 1 0.94 0.94 1.02

Table 5. Performance of PTB Stacked LSTM Model Per-
formance relative to cuDNN for Astra

Mini-batch | PyT | cuDNN | Astrap | Astrapg | Astrag;
8 0.19 1 0.58 0.55 0.65
16 0.23 1 0.66 0.59 0.75
32 0.3 1 1.54 1.37 1.71
64 0.23 1 0.95 1.01 1.17
128 0.26 1 0.9 0.94 1
256 0.31 1 0.87 0.91 1.02

Table 6. Performance of GNMT model Performance rel-
ative to cuDNN for Astra

a speedup of up to 1.86x. Also, while for smaller batch sizes
the kernel library selection doesn’t yield a benefit, it gives a
significant benefit at batch-size 64. Finally, stream adaptation
provides 15-23% improvement on top of GEMM fusion and
kernel selection. Table 3 and 4 shows the performance on
the MI-LSTM model on Hutter [36] and sub-LSTM [8], with
speedups up to 3x.

6.3 Comparison with cuDNN

Table 5 shows the performance of Astra on the PTB Stacked
LSTM model under the “large” configuration (input size of
1500). This model is fully covered by cuDNN accelerator, so
it gives a sense of how close to the hand-optimized version
Astra performs. Interestingly, Astra is able to outperform
cuDNN with the streaming configuration enabled, while
native PyTorch is worse. Table 6 shows the Google Neural
Machine Translator [35], which is mostly covered by cuDNN
except the Attention module. Astra performs close to cuDNN
performance, outperforming it in some configurations.

6.4 Size of exploration state space

Table 7 lists the number of configurations explored in the
various models. As can be seen, the state space is a few thou-
sand. Interestingly, as a result of techniques such as barrier
exploration (detailed in Section 4.5), the state space for the
GNMT model is similar to the other models, despite GNMT
having about 8x more layers, pointing to the scalability of
the exploration approach. A related metric is the overhead
of profiling, as the profiling in Astra runs as part of regular

919

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Model No. of configs
Astrapgs | Astraag;
PTB SCRNN 303 1672
PTB Stacked LSTM 1219 1219
MI-LSTM 1191 1191
PTB SubLSTM 3207 5439
GNMT 2280 9303

Table 7. Size of exploration state space post-pruning.
Each configuration is explored in one mini-batch of training

Model Dynamic Graph | Astra + bucketing
SCRNN-16 1 1.61
SCRNN-32 1 1.43

subLSTM-16 1 2.47
subLSTM-32 1 2.13
StackedLSTM-16 1 2.44
StackedLSTM-32 1 2.22

Table 8. Speedup from Astra bucketed adaptation com-
pared to dynamic graphs in Native PyTorch.

training. The overhead of our profiling is < 0.5% for all the
models evaluated. Hence it can be always on.

6.5 Dynamic graphs

As discussed in § 5.5, variable shapes of the input tensor
violate the predictability assumption of Astra. Astra handles
such models by bucketing the input shapes into a fixed num-
ber of buckets, and then performing adaptation separately
for each bucket configuration. Table 8 compares the perfor-
mance of Astra with bucketing, with a purely dynamic graph
implementation in native PyTorch. We used 5 buckets in this
experiment, calibrated on the distribution of input sentence
lengths in the PTB dataset, which resulted in buckets of input
lengths 13,18, 24, 30, and 83. As can be seen, Astra benefits
even such input-variable models by a significant margin,
despite performing a small amount of extra computation as
a result of mapping to the nearest larger bucket.

6.6 Comparison with XLA

In this sub-section, we evaluate the tensorflow implementa-
tion of Astra. As described in § 5.4, the TF implementation
does not support stream adaptation, so we only compare
Astrapg. For each model, we compare with both native Ten-
sorflow v1.8 performance and XLA-optimized performance.
Surprisingly, we noticed that the XLA implementation was
worse than native tensorflow for many of the models (e.g., 3x
worse for SCRNN, 1.5x worse for subLSTM), which turned
out to be because XLA handles embeddings poorly, resulting
in multiple transitions between CPU and GPU for lookups;

Session: Machine Learning Il

Model TF | TF + XLA | Astrarg cuDNN
SCRNN (16) 1 128 | 1.58 (1.23) -
SCRNN (32) 1 111 | 1.66 (1.49) -

MI-LSTM (16) | 1 098 | 1.69 (1.72) -
MI-LSTM (32) | 1 131 | 1.51(1.15) -
SubLSTM (16) | 1 142 | 1.92 (1.35) -
SubLSTM (32) | 1 139 | 1.71(1.22) -
Stack. LSTM (16) | 1 1.45 1.45(1.0) | 138
Stack. LSTM (32) | 1 1.41 1.32 (0.95) 0.88
GNMT (16) 1 1.19 2.0 (1.68) | 235
GNMT (32) 1 117 | 1.49(1.27) | 2.23

Table 9. Comparison of Astra in Tensorflow with XLA. Fac-
tor speedups relative to native TF. Relative improvement
from XLA shown in parantheses

many of our models use embeddings. This suggests a fun-
damental robustness concern with static approaches such
as XLA in handling long-tail scenarios, which is perhaps
why XLA is still experimental even after 2 years of launch.
Astra’s measurement-based dynamic adaptation approach
enables turning off any optimization such as fusion at a fine-
grained level (e.g., within a super-epoch). Nonetheless, for a
more insightful comparison with XLA, we evaluate a slight
variant of the models with the embedding operation alone
removed. On native TF, the per-minibatch times with and
without embedding were within 10% of each other for many
of the above models, so these numbers are meaningful from
a performance viewpoint.

Table 9 shows the results. For space reasons, we only
report numbers with two mini-batch sizes:16 & 32. As can
be seen, Astrapk achieves a speedup of up to 70% on top of
XLA and an average speedup of about 25-30%, despite not
supporting multi-stream adaptation.

6.7 Discussion

We have not reported accuracy numbers in our evaluation, as
all optimizations explored in this paper are value-preserving
optimizations and thus do not affect accuracy.

Our evaluation has focused on recurrent neural networks
that are widely used in speech recognition and language
understanding tasks, and according to Google, account for
a much larger fraction of production workload than CNN
models [14]. These are also the models that have the biggest
gap in performance as the individual operations are small.
However, with faster hardware, (e.g., the Volta GPUs run at
120 teraflops of 16-bit precision ops [32]), even operations
such as convolution become “cheap” and hence would ben-
efit from techniques such as cross-layer fusion and using
multiple streams. This points to a general strength of the
exploration approach that Astra takes. As model structures
and GPU architectures evolve, all one needs to do is add

920

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

to the library of exploration, and models get automatic ro-
bust speedup without any need for hand-optimization or
parameter tuning.

The limited number of exploration dimensions in the Astra
prototype is only illustrative; several other dimensions listed
in Section 3.4 naturally fit into the Astra approach. For ex-
ample, although the present adaptation dimensions in Astra
deal with only a single GPU, they will also benefit multi-
GPU jobs by running each instance faster. The deterministic
adaptation aspect of Astra can be extended to explore di-
mensions such as specifics of model-partitioning and data
partitioning in multi-GPU jobs, but a detailed discussion of
those techniques is beyond the scope of this paper.

Our key contribution is the generic approach to navigate
a large state space online. ,This approach is complemen-
tary to the performance benefits from kernel synthesis ap-
proaches [6, 30].

7 Implications for hardware design

While the present prototype of Astra works on GPU, the
key benefit of the Astra approach is that it can be easily
made to run on top of new hardware [14, 15, 21] without
building intricate cost models for it. However, there are a few
basic properties (that GPUs already support) needed from
the hardware in order to enable Astra; we list these below:
Predictable execution: Fine-grained profiling is the key
mechanism that Astra uses to perform parallel exploration
which is crucial to pruning the exploration state space (§ 4.5).
For this to be feasible, the measurements of individual opera-
tions and kernels need to be repeatable at a fine-grained level.
Given the simple in-order cores of GPUs, such repeatability
existed even at the granularity of a single GEMM operation.
Autoboost of clock speed in GPU violates this assumption
and causes variance, so we set the frequency to the base clock
value in our experiments, via nvidia-smi. Autoboost did
not provide a measurable benefit to our workloads anyway
compared to the static clock setting, but the static clock was
key to enabling the wins from Astra. Supporting predictable
execution is thus a key reqiurement from the hardware.
Lightweight profiling events: Fine-grained profiling needs
to be done with low overhead so that it can be always on
during job execution. GPUs have a simple and lightweight ab-
straction of cuda events and a simple API to get elapsed time
between two events. A similar fine-grained profiling primi-
tive that is low overhead, is another capability that hardware
for DNNs need to support in order to enable Astra.

8 Related Work

Runtime adaptation across multiple choices produced by
the compiler, has been explored for generic programs, with
limited success. The body of work on multi-version com-
pilers [17, 33, 38] explores the idea of generating multiple
versions of “hot" functions, from which the runtime picks

Session: Machine Learning Il

the best-performing version. With generic programs, the
main challenge of this approach that has limited its adop-
tion/practicality, is the dependence of execution on the actual
input; for instance, a function to sort may have widely dif-
ferent runtimes depending on the size of the input list. To
counter this, such systems need to take multiple (often thou-
sands of) measurements for each optimization choice [17],
and hence can afford this approach only for the most criti-
cal functions. Adaptation of query execution has also been
explored [2, 5]. Again, the variance due to data distribu-
tion skews, selectivity variance, etc., means that they can
only perform coarse-grained adaptation in a very small state
space. Astra, on the other hand, can afford to be a lot more
aggressive with whole program-level adaptation and rea-
soning about interacting optimizations across the data-flow
graph, because of the unique mini-batch-level predictability
of DNN jobs. We believe that the ability to exploit such pre-
dictability for this particular domain, significantly amplifies
the benefit from the multi-version approach, besides making
it pragmatic.

There is a large body of work on domain-specific compil-
ers similar to how Astra targets code generation for deep
learning. One of the early influential works in this space
is FFTW [10], where the authors build a framework for
generating highly optimized kernels for computing fast-
fourier-transform, a popular operation in signal processing,.
Halide [26] is another compiler built for generating opti-
mized implementations of image processing kernels. More
recently, Tensor comprehensions [30] built on the Halide
framework and combined it with Polyhedral compilation [16]
to achieve optimized kernel generation for deep learning
kernels. XLA [18] from Tensorflow is another example of a
domain-specific compiler that auto-optimizes code for deep
learning with a static approach. Astra differs from this body
of work in two dimensions: (a) it achieves optimization as
a co-operative task between the compiler and the runtime,
instead of the traditional model of the compiler generating
one optimized code; (b) Astra takes an end-to-end view of the
whole (large) program as opposed to specific small kernels,
and hence needs a more scalable approach to space explo-
ration and reasoning about conflicting optimization choices
at the whole graph granularity.

The approach of adaptation to drive optimization has been
tried in the form of autotuning algorithms in the area of
scientific computation. The Halide OpenTuner [3] uses a
genetic algorithm to perform mutations on the generated
code and uses measurement to decide the best variant of the
code. Unlike OpenTuner which deals with a small kernel and
hence can hope to converge to the optimal code with such a
randomized approach, Astra deals with a much larger state
space. The key novelty in the adaptation approach of Astrais
using fine-grained profiling and systems reasoning coupled
with static knowledge, to achieve aggressive pruning, and

921

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

consequently a more systematic and comprehensive explo-
ration of the state space. This in turns allows Astra to scale
to much larger code such as a complex full training job.

TVM [6] is a recent system that targets optimizing DNNs
using a combination of kernel synthesis and a machine-
learning approach to autotuning. While TVM is focused
on autotuning kernels, the adaptation in Astra is end-to-end
(e.g., dealing with model-wide memory allocation strategies,
stream assignment etc.). Further, TVM is targeted at inference
and doesn’t handle training of DNNs, which Astra targets.
Another system that uses machine-learning to adapt config-
urations is Google’s data placement model [23]; we believe
the systems-approach of Astra to manage the state space
is simpler to reason about. Astra can transparently speed
up execution of any unmodified training job that runs on
Tensorflow and PyTorch.

9 Conclusion

Astra addresses a pressing need in machine learning exper-
imentation to iterate fast on new model architectures in
order to make advances. While accelerators such as cuDNN
significantly speed up training of deep learning jobs, they
are hand-optimized and hence only cater to popular models.
Astra bridges this gap by bringing the power of optimiza-
tion to long tail models, by adopting a novel division of
functionality between the compiler and runtime, where the
runtime adaptively explores the state space of optimizations
by leveraging the unique repetitiveness and predictability
of a deep learning training job. With fine-grained profiling
and several techniques to perform the exploration in parallel,
Astra effectively prunes the state space, unlike probabilis-
tic or learning-based approaches to adaptation. The Astra
approach is particularly attractive given the frantic pace of
new custom hardware being built for DNNs, which make
static optimization expensive. We believe Astra is an exam-
ple of how tight integration of the systems layer such as
compiler to a specific large workload can drive fundamental
efficiencies with unconventional yet effective architectures.

Acknowledgements

We thank the anonymous reviewers for their valuable com-
ments and suggestions. We thank Ramachandran Ramjee
and Nipun Kwatra for their feedback on earlier drafts of this
paper. We also thank Chandu Thekkath, Subir Sidhu, and
Daniel Li from the Microsoft Al Platform team for their valu-
able feedback and inputs on the project, besides providing
access to the GPU clusters and Azure GPU VMs.

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In OSDI, volume 16, pages 265-283, 2016.

Session: Machine Learning Il

(2]

(3]

(9]

(10]
(11]

[12

—

(14

[l

(15]

Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. Adaptive
online scheduling in storm. In Proceedings of the 7th ACM international
conference on Distributed event-based systems, pages 207-218. ACM,
2013.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
Opentuner: An extensible framework for program autotuning. In
Parallel Architecture and Compilation Techniques (PACT), 2014 23rd
International Conference on, pages 303-315. IEEE, 2014.

Jeremy Appleyard, Tomas Kocisky, and Phil Blunsom. Optimizing
performance of recurrent neural networks on gpus. arXiv Preprint,
abs/1604.01946, 2016.

Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa,
and Jennifer Widom. Adaptive ordering of pipelined stream filters.
In Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, pages 407-418. ACM, 2004.

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. {TVM}: An automated end-to-end optimizing compiler
for deep learning. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18), pages 578-594, 2018.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.
Rui Costa, Ioannis Alexandros Assael, Brendan Shillingford, Nando
de Freitas, and TIm Vogels. Cortical microcircuits as gated-recurrent
neural networks. In Advances in Neural Information Processing Systems,
pages 272-283, 2017.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In Advances in neural informa-
tion processing systems, pages 1223-1231, 2012.

Matteo Frigo. A fast fourier transform compiler. In Acm sigplan notices,
volume 34, pages 169-180. ACM, 1999.

Scott Gray. Open single and half precision gemm implementations,
2017.

Geoffrey E Hinton. Learning distributed representations of concepts.
In Proceedings of the eighth annual conference of the cognitive science
society, volume 1, page 12. Amherst, MA, 1986.

Nvidia Inc. Nvidia tesla p100 gpu accelerator, 2016.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snel-
ham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter
performance analysis of a tensor processing unit. In Proceedings of the
44th Annual International Symposium on Computer Architecture, ISCA
’17, pages 1-12, New York, NY, USA, 2017. ACM.

Simon Knowles. Graphcore: Scaling
put processors for machine intelligence.
https://www.matroid.com/scaledml/2018/simon.pdf.

through-
URL

922

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noél
Pouchet, and Ponnuswamy Sadayappan. When polyhedral transforma-
tions meet simd code generation. In ACM Sigplan Notices, volume 48,
pages 127-138. ACM, 2013.

Jeremy Lau, Matthew Arnold, Michael Hind, and Brad Calder. Online
performance auditing: using hot optimizations without getting burned.
In ACM SIGPLAN Notices, volume 41, pages 239-251. ACM, 2006.
Chris Leary and Todd Wang. Xla: Tensorflow, compiled. TensorFlow
Dev Summit, 2017.
Yann Lecunn. Training with large minibatches is bad for
your health. more importantly, it’s bad for your test error.
friends dont let friends use minibatches larger than 32. URL
https://twitter.com/ylecun/status/989610208497360896 ?lang=en, 2018.
Dominic Masters and Carlo Luschi. Revisiting small batch training for
deep neural networks. CoRR, abs/1804.07612, 2018.

Microsoft. Real-time ai: Microsoft announces preview of project brain-
wave. URL https://blogs.microsoft.com/ai/build-2018-project-brainwave/.
Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, and
Marc’Aurelio Ranzato. Learning longer memory in recurrent neural
networks. arXiv preprint arXiv:1412.7753, 2014.

Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus
Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Ben-
gio, and Jeff Dean. Device placement optimization with reinforcement
learning. CoRR, abs/1706.04972, 2017.

CUDA Nvidia. Cublas library. NVIDIA Corporation, Santa Clara,
California, 15(27):31, 2008.

Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan.
Pytorch: Tensors and dynamic neural networks in python with strong
gpu acceleration, 2017.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. ACM SIGPLAN Notices, 48(6):519-530,
2013.

Herbert Robbins and S Monro. *a stochastic approximation method, °
annals math. Statistics, 22:400-407, 1951.

David E Rumelhart, Geoffrey E Hinton, and Ronald] Williams. Learn-
ing representations by back-propagating errors. nature, 323(6088):533,
1986.

Anil Thomas Scott Leishmann, Alex Park. Intel nervana reference deep
learning framework committed to best performance on all hardware,
2017.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. Tensor comprehensions: Framework-
agnostic high-performance machine learning abstractions. arXiv
preprint arXiv:1802.04730, 2018.

N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha,
S. Ghose, A. Jog, P. B. Gibbons, and O. Mutlu. Zorua: A holistic
approach to resource virtualization in gpus. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1-14, Oct 2016.

Inside Volta. The worldiAZs most advanced data center gpu. URL
https://devblogs. nvidia. com/parallelforall/inside-volta.

Michael] Voss and Rudolf Eigemann. High-level adaptive program
optimization with adapt. In ACM SIGPLAN Notices, volume 36, pages
93-102. ACM, 2001.

Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. Superneurons: Dynamic
gpu memory management for training deep neural networks. arXiv
preprint arXiv:1801.04380, 2018.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. Google’s neural machine translation system:

Session: Machine Learning Il

(36]

(37]

Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan R
Salakhutdinov. On multiplicative integration with recurrent neural
networks. In Advances in Neural Information Processing Systems, pages
2856-2864, 2016.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evalua-
tion of rectified activations in convolutional network. arXiv preprint

923

[38]

[39]

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

arXiv:1505.00853, 2015.

Mingzhou Zhou, Xipeng Shen, Yaoqing Gao, and Graham Yiu. Space-
efficient multi-versioning for input-adaptive feedback-driven program
optimizations. In ACM SIGPLAN Notices, volume 49, pages 763-776.
ACM, 2014.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnik, and Jr-
gen Schmidhuber. Recurrent highway networks. arXiv preprint
arXiv:1607.03474, 2016.

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural networks
	2.2 Execution model
	2.3 GPU characteristics
	2.4 Software accelerators

	3 State space of optimizations
	3.1 Low-level Kernels
	3.2 Fusion of kernels
	3.3 Using multiple streams
	3.4 Other optimizations
	3.5 Limitations of static optimization

	4 Design of Astra
	4.1 Mini-batch predictability
	4.2 A New Compiler-Runtime Interface
	4.3 Fine-grained Profiling
	4.4 Enumerator
	4.5 Pruning exploration state space
	4.6 Profile indexing
	4.7 Custom Wirer
	4.8 Using static knowledge

	5 Implementation
	5.1 Architecture
	5.2 Profiling
	5.3 Element-wise Fusion
	5.4 Limitations of the Tensorflow prototype
	5.5 Handling dynamic graphs

	6 Evaluation
	6.1 Experimental Setup
	6.2 Speedup in end-to-end models
	6.3 Comparison with cuDNN
	6.4 Size of exploration state space
	6.5 Dynamic graphs
	6.6 Comparison with XLA
	6.7 Discussion

	7 Implications for hardware design
	8 Related Work
	9 Conclusion
	References

