
Overcoming Blind Spots in the Real World:
Leveraging Complementary Abilities for Joint Execution

Ramya Ramakrishnan1, Ece Kamar2, Besmira Nushi2,
Debadeepta Dey2, Julie Shah1, Eric Horvitz2

1 Massachusetts Institute of Technology
2 Microsoft Research

Abstract

Simulators are being increasingly used to train agents before
deploying them in real-world environments. While training
in simulation provides a cost-effective way to learn, poorly
modeled aspects of the simulator can lead to costly mistakes,
or blind spots. While humans can help guide an agent towards
identifying these error regions, humans themselves have blind
spots and noise in execution. We study how learning about
blind spots of both can be used to manage hand-off deci-
sions when humans and agents jointly act in the real-world
in which neither of them are trained or evaluated fully. The
formulation assumes that agent blind spots result from rep-
resentational limitations in the simulation world, which leads
the agent to ignore important features that are relevant for
acting in the open world. Our approach for blind spot discov-
ery combines experiences collected in simulation with limited
human demonstrations. The first step applies imitation learn-
ing to demonstration data to identify important features that
the human is using but that the agent is missing. The second
step uses noisy labels extracted from action mismatches be-
tween the agent and the human across simulation and demon-
stration data to train blind spot models. We show through ex-
periments on two domains that our approach is able to learn
a succinct representation that accurately captures blind spot
regions and avoids dangerous errors in the real world through
transfer of control between the agent and the human.

Introduction
For handling complex, real-world tasks, many agents are
first trained in simulation environments (Tobin et al. 2017;
Mahler et al. 2017; OpenAI et al. 2018). While simulators
are providing increasingly realistic training environments
(Shah et al. 2018; Dosovitskiy et al. 2017; Chang et al. 2017)
that can help accelerate initial learning, there is almost al-
ways a gap between simulation and reality (Ramakrishnan et
al. 2018). Directly transferring learned policies to the open
world in these cases can cause costly systematic errors, or
blind spots, that occur due to differences between the two
environments. Identifying blind spots before deployment in
the real world is crucial for safe execution, yet it is challeng-
ing since the simulator lacks signals of such failures.

We focus on blind spots that occur due to missing obser-
vational features when going from a simulator to the real

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The agent is trained in a simulator world, which
sees a subset Sa of the true state space S. Human demon-
strations operate in subset Sh, and joint execution happens
in the real world space S.

world. We assume that agents can perceive numerous fea-
tures but learn to ignore many of them due to the incom-
pleteness of the simulator to reflect the complexity of the
real world. Consider an automated driving car that has been
trained in a simulation environment. The simulator models
general driving conditions, with different vehicles, such as
cars and trucks, and the agent learns to drive well in this
setting. To learn, the agent focuses on the most important
features for decision making, such as distance to nearby ve-
hicles and which lane it is in. Because the agent trains ex-
tensively in this simulator and has some sensor capabilities
that are more accurate than human perception, it acts op-
timally in this world, much better than a human can act.
However, the agent never encounters some aspects of the
real-world (e.g., emergency vehicles) so the agent learns to
ignore these aspects that did not matter in simulation. For
example, the agent knows how to avoid cars and be cautious
around trucks, but does not recognize ambulances as spe-
cial types of vehicles that require different behavior. Because
correct behavior around emergency vehicles is different than
behavior around other vehicles, executing the learned policy
in the real-world may cause costly mistakes – blind spots.

Directly executing the agent policy in the real world poses
safety concerns, so we propose complementing the agent
with a black-box helper agent. In contrast to prior work (Ra-
makrishnan et al. 2018), we do not assume that the helper
agent is perfect in the real world. In fact, we assume that the

helper agent has its own blind spots and noise in execution.
While this secondary agent could be any autonomous agent,
our assumptions about the helper agent being a black-box
agent with suboptimal, yet complementary knowledge, are
inspired by having a human in this role. Therefore, through-
out this paper, we will refer to the helper agent as the human.

The only input we assume from the human is limited
demonstration data collected from “demo world”, a con-
strained version of the real world in which the human is
comfortable acting. We assume that the human behaves in
settings in which she is trained well in, which is comple-
mentary to the areas where the agent acts well. In the driving
example, the agent is trained in an environment with many
types of vehicles but no ambulances. A human would rec-
ognize ambulances as important for generating safe plans,
but may not be comfortable driving on a highway with large
trucks and vans so the human drives mainly on roads with
no large vehicles. The demonstration data can thus be used
to learn agent blind spots, while comparison of data from
the simulator and demonstrations can provide signals of hu-
man blind spots. The real world can contain both of these
scenarios. Figure 1 depicts the setup of the different worlds.

We formulate the problem of addressing agent and human
blind spots as a two-step problem. First, the agent learns im-
portant features missed during training in simulation by us-
ing human demonstrations. Second, it learns separate predic-
tors for agent and human blind spots to allow for safe joint
execution by handing off control to the most capable agent.
The first step requires learning a minimal feature represen-
tation that captures the important aspects from the simulator
as well as from the real world. This representation learning
is crucial because failing to learn important features in the
real world can result in the agent being unable to identify
important blind spot regions, leading to costly errors.

Once the agent has a minimal and accurate feature rep-
resentation, the agent then learns supervised blind-spot pre-
dictor models for itself and the human based on simulator
and demonstration data respectively. We assess the utility
and success of our learned blind spot models by analyz-
ing the effectiveness of a safety-oriented hand-off policy,
which leverages the models to decide who should act in the
real world, preventing therefore dangerous errors. Our meta-
learning approach for modeling blind spots is motivated by
the fact that neither the agent nor human has an understand-
ing of each other’s blind spots. Thus, the human may fail to
recognize the incompleteness of the simulator. We address
this gap in human and agent reasoning using a meta-model
that can jointly learn about blind spots of both.

In our experiments, we evaluate the end-to-end approach
over two different domains with distinct agent and human
blind spots. We show that our framework learns important
features and blind spot regions that help avoid costly mis-
takes in the real world by appropriately transferring control
to the safest agent.

Problem Statement
We first discuss the overall formulation of our problem and
then outline two subproblems that we aim to solve.

Overall Formulation
We define a real-world environment Mreal = {S,A, T,R}
as an MDP with state space S, action space A, transition
function T , and reward function R. Each state s ∈ S
can be mapped to a set of features Φ : S → F , where
F = {f1, f2, ..., fn} is a set of random feature variables.
The function Φ maps a state to a set of feature values and
is defined according to the domain. The agent is trained in
a simulation environment Msim = {Sa,A, T,R}, which is
an imperfect model of the real world in that the state space
is a subset of the true state space Sa ⊂ S. Because of this
limited world, the agent only focuses on a subset of the full
feature set Fa ⊂ F , where Fa = Φ(Sa). For example, the
color of trees or buildings may not have mattered for acting
in the simulation world, so the agent ignores these distract-
ing features. Most importantly, because the simulation did
not model some parts of the world, the agent ignores other
important features that are needed for safe acting in the real
world, such as uncommon traffic lights or ambulances.

The agent trains in the simulation environment using Q-
learning and learns a policy πa : Φ(S) → A, which maps
state features to actions. In this training process, the agent
collects data from all of the state-action pairs it visited in
simulation Dsim = {(si, ai)|i = 1, .., n} ∼ Msim. We
assume that πa is optimal with respect to the states seen in
simulation sa ∈ Sa and that agent errors in the real world
are solely due to features missing from Fa.

We define blind spots as regions in S for which the agent
or the human make systematic errors in the real world that
cause high negative reward. The agent blind spot region
BSa ⊂ S is a subset of the real-world state space where
there are clusters of errors caused by missing features from
imperfect simulator modeling. For each state in the agent
blind spot region s ∈ BSa, the following equation holds:

Qπ
∗
(s, π∗(φ(s)))−Qπ

∗
(s, πa(φ(s))) > ε (1)

where Qπ
∗

is the optimal Q-value function in the real-world
and π∗ is the optimal policy obtained from this value func-
tion. We do not know either of these, which makes estimat-
ing blind spots in the real world challenging.

We assume access to human demonstrations in the form
of state-action pairs Ddemo = {(si, ai)|i = 1, .., n}.
These demonstrations are collected from a demo environ-
ment Ddemo ∼ Mdemo, where Mdemo = {Sh,A, T,R} is
an MDP with a state space that is a subset of the real world
Sh ⊂ S. The human may make errors and act suboptimally
when acting in this world. We do not know what features the
human is using to act, but the agent observes the demonstra-
tions through its feature set F . We assume that the human
actions can be approximately explained by a subset of the
agent feature set Fh ⊆ F , where Fh = Φ(Sh). The agent’s
estimate of the human representation is F̂h.

Similar to agent blind spot regions, we define a region in
the real-world state space BSh ⊂ S that denotes human
blind spots. For each state in this region s ∈ BSh, the fol-
lowing equation is satisfied.

Qπ
∗
(s, π∗(φ(s)))−Qπ

∗
(s, πh(φ(s))) > ε (2)

Since the human is a black-box helper agent, we do not have
access to πh, so we cannot estimate the true set of human
blind spots.

In terms of features, the set learned from simulation Fa
is limited due to a limited Sa. The human feature set Fh
is also limited because of a limited state space Sh in the
demonstration world. The true feature space that includes
all important features needed to take safe actions in the real
world is defined as F ∗ ⊂ F , where F ∗ ⊂ (Fa ∪ Fh). We
do not have access to the true optimal feature space so we
estimate it in our approach F̂ ∗ ⊂ (Fa ∪ F̂h). We assume
F will include some features that correlate with blind-spot
regions. The feature set does not need to be complete with
respect to the “true” representation of the real world, but the
stronger the correlations of features in F are to agent and
human blind spots, the better the blind spot models will be.

Breakdown into Subproblems
Because agent errors occur due to ignored features in sim-
ulation, we first need to identify important features needed
for safe execution in the world. These features can then in-
form our predictions of where blind spots are likely to occur.
Thus, we separate the problem of learning blind spots into
two subproblems:

1. Learn an estimate F̂ ∗ of the true feature representation
that captures important features from both Fa and F̂h
needed for taking safe actions in Mreal.

2. Learn estimated blind spot models Θa : F̂ ∗ → pa and
Θh : F̂ ∗ → ph, where pa, ph ∈ [0, 1], to predict agent
and human blind spots, respectively, for safe transfer of
control in the real world.

The reason we do not use the full set of features F is because
there are many distracting features that differ between the
simulation and real-world environments that are not infor-
mative for acting in the real-world (e.g., the color of trees).
Including such features into blind-spot modeling would lead
to incorrectly labeling regions as blind spots.

As shown in Figure 2, the inputs to our problem are: the
simulator policy πa, the feature set F , data from simulation
training Dsim, and human demonstration data Ddemo. We
treat the agent policy πa as a black box to minimize as-
sumptions about how the agent is trained. The first output
is an estimate of the important set of features needed to act
safely in the world F̂ ∗ = Fa ∪ (F̂m ⊆ F̂h), which includes
features from the simulator world Fa as well as a subset F̂m
of features the agent is missing as estimated through human
feature representation F̂h. Learning these missing features
is crucial as they indicate blind spots of the agent. The sec-
ond output is an estimated blind spot model for the agent
Θa : F̂ ∗ → pa and one for the human Θh : F̂ ∗ → ph under
the compressed feature representation F̂ ∗.

In summary, these are the following characteristics of our
problem that inform our approach for learning blind spots:

• Agent blind spots are due to representational incomplete-
ness. In a real-world state in which the agent has a com-
plete representation, the agent would act optimally.

• The human is a black box. Insights about the human
model can be extracted from demonstration data collected
from the demo world. Humans have complementary abil-
ities to agents but can make errors and act suboptimally.

• Agent blind spots can be learned by observing data from
demonstrations. Identifying features that the human is us-
ing for decision making in the demo world tells us about
features the agent is missing. The missing features along
with action mismatches signal agent blind spots.

• Human blind spots can be learned from simulation data.
Since the agent has extensive experience in this world, it
can compute differences in utility values of the agent’s
optimal action in simulation and the human’s predicted
action in that world as indicators of human errors.

Approach
We now present a two-step approach for discovering agent
and human blind spots as shown in Figure 2. The first step
uses behavior cloning and feature selection techniques to
identify the set of features that the agent learned to ignore
in simulation. The second step involves learning blind-spot
models for the agent and human to safely transfer control. To
do this, we extract noisy labels from simulator and demon-
stration data in the form of action mismatches and then train
supervised learning models to predict blind spots.

Step 1: Identifying Missing Features
The goal of this step is to learn an augmented representation
F̂ ∗ = Fa ∪ (F̂m ⊆ F̂h), which includes important features
that the agent learned to ignore in the simulation environ-
ment but are important for safe acting in the real world.

We have multiple challenges to this end:

• Insufficient features: The agent’s learned feature represen-
tation from the simulator Fa is not sufficient to represent
the true world, so we need to identify missing features that
are important to act in Mdemo using demonstration data.

• Distractor features: Some features in the demo world are
different from those in the simulation world, but they do
not always indicate blind spots. Some of them might dis-
tract the agent because they indicate that these regions
are different from the training environment while not af-
fecting the policy. Thus, outlier detection techniques that
identify which states differ from simulation would have
low precision to identify blind spots.

• Redundant features: Features included into F̂m are used
as signals for identifying agent blind spots. Since F may
include multiple features that are highly correlated, a fea-
ture should be included into F̂m only if it is adding infor-
mation for predicting human behavior in addition to the
features in F̂a. Therefore, the construction of F̂m should
be conditional on F̂a.

To learn F̂ ∗, we first use behavior cloning (BC) (Sam-
mut et al. 1992; Urbancic and Bratko 1994) to learn an esti-
mate of the human’s representation and policy. This involves
learning a state-action mapping from the demonstration data
Ddemo. We used a logistic regression model and selected

Figure 2: Pipeline of approach. The first step involves learning missing features that the agent learned to ignore in simulation.
The second step is learning agent and human blind spot models in the real world, which involves extracting labeled data,
learning priors of blind spots, and finally training the supervised learning models.

features with non-zero weights to obtain an estimate of the
features the human is using F̂h. This step provides us two
outputs: an estimate of the human policy π̂h and an estimate
of the human’s representation F̂h. Both are noisy estimates
because demonstration data is limited.

BC addresses two challenges: First, it learns features that
are informative for the human policy, F̂h, by identifying
which features correlate with actions that the human takes.
Second, it eliminates distractor features that differ between
simulation and real-world but are not important for acting by
only selecting features that contribute to human decisions.

Since BC estimates F̂h independently of Fa, F̂h may in-
clude parallel redundant features. We only want to add miss-
ing features that are not already explained by features in Sa
because we will then use these features to provide blind spot
labels. For example, imagine that the agent already has fea-
tures for detecting the distance of a car in front of it using
a proximity sensor. We estimate that the human is using the
feature of a car detector from camera data to obtain simi-
lar information. The agent ignored the camera data as it was
less informative. These are two different features but cor-
related so the agent should not add this extra feature and
consequently should not associate this part of the state space
with agent blind spots.

We eliminate redundant features through a greedy feature
elimination step. We start from the set of all possible rele-
vant features {Fa ∪ F̂h} and iteratively eliminate features
that do not decrease the accuracy of predicting the human
demonstration data. The process is as follows: we first com-
pute the initial accuracy of predicting the human actions in
Ddemo using {Fa ∪ F̂h}. We then remove features one-at-
a-time from {F̂h \ Fa} and retrain the model to predict the
demonstration data. If the best accuracy is not worse than
the initial accuracy with all joint features, we remove the
feature from the representation as it is not contributing to
positive performance of the model. If many features, when
removed, result in identical scores, we randomly choose one
to remove. We continue with another iteration through all
features and remove features individually, unless all features
in the remaining set result in an accuracy drop. This gives us

a final set of missing features F̂m ⊆ F̂h that are not ex-
pressed in Fa. The final output is a succinct representation
F̂ ∗ = Fa ∪ (F̂m ⊆ F̂h), which only includes features that
add information over Fa for predicting Ddemo.

The greedy feature selection process is one way to remove
correlated features. While there can be interactions among
features that could cause greedy elimination to incorrectly
remove individual features when groups of features mat-
ter, we observed through experiments that our approach was
able to keep enough features to obtain high performance.

Step 2: Modeling Agent and Human Blind Spots
Our setup does not allow for computing ground-truth labels
for blind spots since reward signals or Q-values are unacces-
sible for demonstrations and the real-world environment. We
instead use action mismatches between predicted human be-
havior and agent policy as noisy labels of blind spots. These
extracted labels are noisy because mismatches are not true
indicators of where blind spots may exist. Our agent and
human blind spot models learn to identify potential error re-
gions using this information by identifying patterns (state
subspaces) that correlate with action mismatches.

Extracting Human Blind Spot Labels from Simulation
The main insight for label extraction from simulations is
that the agent policy is optimal for any state in simula-
tion and any significant divergence of human behavior on
these states indicates a human blind spot. For the human
blind spot model, the labels are estimated as follows: For
each s ∈ Dsim, we estimate the action the human will take
âh = π̂h(φ(s)) based on the estimated human policy learned
from the first step.

To estimate how well âh would perform in this state, the
agent can use its learned Q-value function from the simula-
tor. If the value of the human’s action is much worse than
the agent’s action, as defined by some threshold, this state
is assigned a blind spot label for the human. Otherwise, the
human gets a safe label for this state. The top right quad-
rant in Figure 3 illustrates the human blind spot estimation
in simulation states.

∆Q(s) = Qπa(s, πa(φ(s)))−Qπa(s, π̂h(φ(s))) (3)

Figure 3: Data labeling to learn agent and human blind
spots. Labels are extracted from simulation and demonstra-
tion data.

B̂Sh = {s ∈ Dsim|∆Q(s) > ε} (4)

Each s ∈ Dsim is assigned a safe label for the agent.

Extracting Agent Blind Spot Labels from Demonstra-
tions Extracting labels for demonstration data is more
challenging. The agent is no longer assumed to be perfect
since the agent can have blind spots outside of the simula-
tion environment. Further, humans can be suboptimal and
make errors in demonstration data as well. Thus, deviations
in human and agent behavior do not necessarily indicate that
the agent has a blind spot. When actions match, both agents
have similar behavior and either one can act. When actions
mismatch, this is a noisy indicator of where one agent may
be better suited to act than the other.

To estimate agent blind spots for states with action mis-
matches, we leverage the learned missing features F̂m from
our first step. We say that a feature fi ∈ F̂m is “activated” in
a given state s, if fi = 1 in s. Only a subset of features will
be activated at any given state. If agent and human actions
deviate and there is an activated feature from F̂m, this is an
indication that the human is using a feature that the agent
ignored, which is important for acting in the world. In this
case, we assign a blind spot label to the agent. If actions do
not match but the state does not have an activated feature
from F̂m, there is no reason to think that the agent is acting
suboptimally. Thus, this is an indication that the mismatch
may be due to human random errors. In this case, we assign
a safe label to the agent.

We define a function M (Equation 5) that indicates
whether agent and human actions mismatch given a state.
We then estimate agent blind spots using the mismatches
and missing features F̂m learned from step 1 (Equation 6).

M(s) =

{
True if πa(φ(s)) 6= π̂h(φ(s))

False otherwise
(5)

B̂Sa = {s ∈ Ddemo|M(s) and φ(s) ∩ F̂m 6= ∅} (6)

Extracting Human Blind Spot Labels from Demonstra-
tions We assume that humans can make errors and act
suboptimally in demonstration data. Disagreements with the
optimal agent could indicate either human blind spots (sys-
tematic mistakes) or random errors. Assigning a disagree-
ment label informs our models in two ways: If models can
associate such disagreements with available features, the
model identifies a blind spot. If not, disagreements inform
the model about random human errors and guide blind spot
models to prefer agent acting over human acting when no
blind spot is detected for either. When blind spot models
are oblivious to human suboptimality, hand-off decisions
may be misguided. Imagine that the human is 20% subop-
timal (randomly deviates from the optimal policy in 20%
of demonstrations) in regions without blind spots, while the
agent is optimal in this region. Blind spot models that do
not know about these human errors would give equal chance
of control to the human and the agent, leading to degraded
performance. Thus, if agent and human actions deviate at a
state, and the state does not have an activated feature from
F̂m, we consider this mismatch as a random human error
and assign a human blind spot label for this state.

Prior Estimation We have two data sources from which
we are extracting blind spot labels. Demonstration data is
limited in size, while simulation data is easily available in
large amounts. These data sets differ in their representation
of agent and human blind spot labels. However, these data
proportions do not necessarily reflect the real-world propor-
tions of blind spots. Simply training a supervised learner
with both datasets will result in an imbalance in blind spot
predictions (i.e., significantly more human blind spots as
there is more simulation data available). Getting informative
blind spot predictions from these models depends on esti-
mating informative priors, guiding models about the likeli-
hood of agent and human blind spots.

In our problem, the simulation world is more likely to
contain human blind spots, and the demo world is more
likely to contain agent blind spots. We assume that the rela-
tive proportions of human and agent blind spots respectively
in Dsim and Ddemo are representative of the proportions of
these blind spots in the real world. This means that although
there might be imbalance betweenDsim andDdemo, the fre-
quency of blind spot regions vs. safe regions within each en-
vironment is realistic in isolation. We use this insight to esti-
mate the prior of agent blind spotsαa, human blind spotsαh,
and no blind spots (i.e., both agent and human can act) αn
in the real world by solving the following equations, which
provides a unique solution. The term αn represents the un-
known proportion of the real world in which both the agent
and human can act. Estimating priors allows us to prioritize
demonstration data appropriately to better learn blind spots.

Equation 7 computes the proportion of blind spots in sim-
ulation and demonstration data respectively based on the ex-
tracted data labels. Equation 8 relies on the insight that the
simulation world contains mainly safe regions (both can act)
and human blind spots, and similarly, the demo world con-
tains safe regions and agent blind spots. Equation 9 states
that the full real-world state space consists of regions with

(a) Catcher: Average reward (b) Catcher: Percent agent acting (c) Driving: Average reward (d) Driving: Percent agent acting

Figure 4: Performance of approach with varying agent blind spots in both domains.

no blind spots, agent blind spots, and human blind spots. We
do not handle the case where there are joint blind spots. Val-
ues αsimh and αdemoa are directly computed from data as in
Equation 7, while the actual priors αh and αa are recovered
based on Equations 8 and 9.

αsimh =
|B̂Sh|
|s ∈ Dsim|

, αdemoa =
|B̂Sa|

|s ∈ Ddemo|
(7)

αsimh =
αh

αh + αn
, αdemoa =

αa
αa + αn

(8)

αa + αh + αn = 1 (9)

Training Blind Spot Models Given the labels extracted
from simulation and demonstration data as well as the
learned priors, we train supervised learning models to pre-
dict agent and human blind spots in the real world. We over-
sample the extracted labeled data in a way that the sampled
data matches the learned priors. We then train two random
forest classifiers, one for predicting agent blind spots and
one for predicting human blind spots. We perform cross-
validation over various hyperparameters and choose the one
with the best average F1-score. We train the final model on
the entire training data and output a blind spot model for the
agent Θa : F̂ ∗ → pa and one for the human Θh : F̂ ∗ → ph,
where pa, ph ∈ [0, 1] are probabilities of a state being a blind
spot. While we learn with batch simulator and demonstra-
tion data, similar concepts can be applied to already estab-
lished systems that can improve with real-world data. This
allows for iterative and incremental deployments. Here, we
focus on developing a framework for safe execution in the
real world before acting in the true environment.

Transfer of Control in the Real World through Blind
Spot Models We use the learned agent and human blind
spot models to do safe transfer of control in the real-world
environment Mreal. At each state s ∈ S, we query our
learned agent blind spot model pa = Θa(φ(s)) and human
blind spot model ph = Θh(φ(s)). If pa ≤ ph, the agent
acts. Otherwise, the human acts. Note that there are many
ways to do transfer of control given these models (e.g., give
preference to the agent if it can act, minimize the number
of hand-offs). We use a simple hand-off scheme to evaluate
how well our models capture failure regions and can avoid
them through joint execution.

Experiments
Catcher The first domain is a variation of the game Catcher,
in which the agent needs to catch falling fruits (Ramakrish-
nan et al. 2018). There are two features that describe the
fruits: size and color. The feature space has 19 features for
each value of the attributes, corresponding to the location
of the agent with respect to the fruit (-9 to +9). The encod-
ing is one-hot for each attribute-value (e.g., if there is a red
fruit 4 units away, the red-color-+4 feature would be turned
on while red-color-i ∀i ∈ [−9,+9]\(+4) = 0). There are
20 additional distractor texture features that differ between
simulation and real world but do not affect the policy. The
actions the agent can take are moving left, moving right, or
staying. The agent sees red and blue fruits with the same size
in simulation that causes it to ignore size. The human only
sees blue fruits that are either large or small. The agent needs
to learn the missing and important size features while disre-
garding unnecessary texture features. In the true real-world
representation, human blind spots are red, small fruits, and
agent blind spots are blue, large fruits. The agent and human
policies are obtained using linear Q-learning on the simula-
tion and demo worlds, respectively.
Driving The second domain is based on simulated high-
way driving (Abbeel and Ng 2004; Syed, Bowling, and
Schapire 2008; Levine, Popovic, and Koltun 2010). The
agent must navigate a three-lane highway while avoiding
cars and trucks. The simulator, however, does not model am-
bulances, which exist in the real world. The feature space
includes the following one-hot encoded features: 5 features
for which lane the agent is in, 27 features for the closest car
in each lane (i.e., 9 features for the closest car in the agent’s
lane, 9 for the closest car to the left, and 9 for the closest car
to the right), a similar set of 27 features for the closest ambu-
lance in each lane, and another 27 features for closest trucks.
Additionally, there are 20 distractor tree features. The action
space includes moving left, moving right, and staying in the
same lane. Human blind spots are states with trucks nearby,
and agent blind spots are states with ambulances nearby.

Performance
We first show that there is benefit from learning agent and
human blind spot models to do safe transfer of control in the
real world. The baselines are: An agent that executes in the
real world by simply using πa learned from training and a
human that acts in the world using the true human policy πh.

(a) Catcher: Average reward (b) Driving: Average reward

Figure 5: Effect of distractor features on predicting blind
spots in the real world.

We compare these baselines to our approach which uses the
learned blind spot models to appropriately hand over con-
trol. We also compare against an “optimal hand-off” base-
line, which we obtain by training a meta Q-learner agent
in the real-world Mreal that has two action choices at each
state s: πa(φ(s)) or πh(φ(s)). This meta-agent learns a Q-
function specifying the value of taking each action at each
state. The plotted reward is the average reward received in
Mreal when the appropriate hand-off policy is run.

In Figure 4a, we increase the percentage of agent blind
spots in the real world in the Catcher domain, while keep-
ing the total percentage of human and agent blind spots
the same. The blindspot handoff condition, which uses our
learned blind spot models to act in the world, is able to do
almost as well as the optimal handoff policy. Executing the
agent policy πa or the human policy πh in the real world re-
ceives much less reward due to their inability to operate in
their respective blind-spot regions. Figure 4b shows the per-
centage of times the agent acted using each hand-off policy.
Our model gives more control to the agent while still obtain-
ing high reward. The preference to the agent acting is due
to our approach reasoning about features and transferring
control to the human only when the state contains important
real-world features the agent ignored in simulation. Further,
our prior estimation step helps to better estimate the propor-
tion of times the agent and human should act in the world,
according to how likely their blind spots will occur. Giving
greater control to the agent in areas where it can act well
allows us to be more robust to human noise (see Figure 6).

Figures 4c and 4d show similar results on the Driving do-
main: The agent and human policies perform worse as the
percentage of blind spots is varied, while our model is able to
achieve similar performance to the optimal handoff. In this
domain, performance is reduced as the percentage of agent
blind spots increases because the scenarios become harder,
and the best reward that can be achieved decreases. In other
words, although the blind spot models may accurately pre-
dict a blind spot, the human or agent policies might not have
a safe action available to take due to the high difficulty of the
state (e.g., too many ambulances in the surrounding region).

Effect of Distractor Features
We next analyze the ability of our approach to prune away
distractor features, which are features that differ between
simulation and the real world but do not affect policy be-

(a) Driving: Average reward (b) Driving: Percent agent acting

Figure 6: Effect of human suboptimal behavior on our
model’s performance in the Driving domain.

havior. As we increase the amount of human demonstration
data, performance in the world improves. Specifically, Fig-
ures 5a and 5b show that our approach blindspot handoff
is able to reach the performance of optimal handoff with
enough budget in both domains. Again, both agent or hu-
man acting obtain much less reward.

To highlight the benefit of our feature selection algorithm
(Step 1 of our pipeline), we create a baseline that skips
the feature selection step and instead uses all features in F
(named blindspot handoff F). For example, in Driving, the
experimental setup is that there are green trees in simulation
and red trees in the demo/real worlds. Because the features
are not pruned out, this hand-off policy focuses on red trees
as an important difference between sim and demo/real. Thus,
the hand-off policy always gives the human full control be-
cause red trees exists in all states, which is mistakenly asso-
ciated with agent blind spots. Figures 5a and 5b show that
in both domains, blindspot handoff F only does as well as
πh because it always gives control to the human. Our model
learns to ignore distracting texture features in Catcher and
tree features in Driving to learn an effective hand-off policy.

Effect of Human Suboptimality
In the results presented so far, the human had blind spots,
but there were no random errors in the human policy, or ex-
istence of suboptimal actions in non-blind-spot states. Next,
we analyze how robust our hand-off approach is to human
suboptimality. As shown in Figure 6a, we see a degradation
in the real-world performance as we increase human sub-
optimal behavior. However, our model is more robust than
the baselines because it learns to prioritize the agent in cases
where both can act, while still transferring control to the hu-
man when there is a high chance of an agent blind spot. Fig-
ure 6b shows that our model gives more control to the agent
than the baselines. Blindspot handoff does better than op-
timal handoff because the optimal policy transfers control
based on a human that does not make random errors. Even
though our model has no prior knowledge on human subop-
timality, we can still be robust and handoff control to avoid
blind spot regions and regions with random human errors.

Related Work
Imitation Learning Inverse reinforcement learning meth-
ods (Zhifei and Meng Joo 2012; Arora and Doshi 2018;

Ng, Russell, and others 2000; Abbeel and Ng 2004; Ziebart
et al. 2008) can be used to estimate a policy of an agent
given demonstrations, under the assumption that the agent is
optimizing a reward function of an unknown MDP. This as-
sumption does not apply to our helper agent as it is modeled
by characteristics of humans. Thus, we instead use behav-
ior cloning methods for estimating the policy of the helper
agent. The IRL approach proposed by (Levine, Popovic, and
Koltun 2010) is relevant to our work in that it jointly learns a
feature representation and a reward function. The approach
learns the best features to explain the data, by constructing
new features that are logical conjunctions of basic features
and by pruning out irrelevant features. This work is comple-
mentary to ours, as it can be used to augment our feature set
with high-level features constructed from the available set.
Novelty/Outlier Detection Methods for outlier and novelty
detection (Chandola, Banerjee, and Kumar 2007; Pimentel
et al. 2014) identify datapoints that differ significantly to
most examples in a dataset. Since these methods focus on
identifying rare instances, the discovery is solely guided by
the estimated distance of a given instance to the training dis-
tribution. Such distance metrics become uninformative when
agents have access to many features that include distrac-
tor and redundant features. Instead, we focus on identifying
blind spot regions that can be characterized by discoverable
missing feature patterns and agent-human mismatches.
Ad-Hoc Teamwork Research on ad-hoc teamwork investi-
gates approaches for agents to coordinate with many team-
mates of known or unknown types to achieve a shared goal
(Stone et al. 2010). The problems in this space include learn-
ing how to model teammates, learning how to communi-
cate with them, and achieving robustness and adaptation
to diverse partners (Barrett et al. 2014; 2012; 2016). Our
problem shares similarities with this literature in that the
agent is tasked with collaborating with another agent of un-
known characteristics, and they cooperate towards a com-
mon goal. Our work is complementary, as it leverages joint
execution to address the blind spots of cooperating agents.
Safety and Transfer Safe reinforcement learning is an ac-
tive research area. Many techniques focus on cautious ex-
ploration but do not address the scenario where the agent
representation is flawed that prevents calibrated uncertainty
estimates (Sui et al. 2015; Garcıa and Fernández 2015; Kahn
et al. 2017). Wray et.al., proposed an approach for manag-
ing hand-off decisions between an agent and a human when
models of both are perfectly known (Wray, Pineda, and Zil-
berstein 2016). Transfer learning (Taylor and Stone 2009;
Barrett, Taylor, and Stone 2010; Christiano et al. 2016) is
a more general technique that applies knowledge learned in
one domain to a new one, which can be simulation to real-
world or across different domains. While representations
may differ between domains, and agents may need to learn a
mapping, it is assumed that knowledge of the agent general-
izes to the new domain. We study adapting two agents with
blind spots to a new domain through joint execution.

Discussion
Our meta-learning approach for learning agent and human
blind spots is an important step towards more active consid-

eration of safety when transferring from simulation to the
real-world. In our work, we assume access to additional fea-
tures that the agent can leverage to learn blind spots. The
performance of our model will vary based on how correlated
the available features are to error regions. For example, if
the agent has a noisy feature that can predict 30% of ambu-
lances, our model can learn to transfer control to the human
for those states. If a perfect ambulance detector is added,
accuracy would improve on predicting these blind spots.

Given some correlated features, our approach aims to
learn blind spots before acting in the real world. In our set-
ting, both the agent and the human can make errors, and we
do not have access to a reward signal. Thus, we use action
mismatches as noisy indicators of where blind spots may ex-
ist. We expect disagreements to be good indicators because
(1) mismatches can indicate suboptimal behavior and (2)
unsafe regions are generally subsets of suboptimal regions.
Therefore, if the agent can predict action mismatches well, it
is likely to over-approximate blind spots, resulting in a con-
servative hand-off policy that avoids suboptimal, and thus,
unsafe states. It may be interesting in future work to combine
these ideas with scenarios in which we have sparse reward
signals to make more informed blind spot predictions.

We chose to learn a hand-off policy rather than update
the agent’s policy because estimating the true policy can re-
quire much more data than just learning blind spot regions.
Further, the agent may not be capable of representing the
correct policy. For example, if the agent does not have the
full feature set, it may be able to identify a blind spot region
but not able to update its policy for those different situations.
Blind spot detection and safe transfer of control allows for
better awareness of where the policy needs to be improved.

Finally, our approach assumes access to a set of features
to learn limitations of the simulator. In future work, it would
be interesting to apply these ideas to deep RL approaches,
which are often featureless. One idea is to form a feature li-
brary that includes high-level features extracted from deep
learning models (Ribeiro, Singh, and Guestrin 2016) (e.g.,
superpixels or detector for car), which can then be used by
our approach. Such a library can be used across applications
to identify important high-level features missed in simula-
tion that are important for the real world.

Conclusion
We have formalized the problem of agent and human blind
spot detection in reinforcement learning to do safe trans-
fer of control in the real world. In the proposed approach,
the agent first learns important features from human demon-
strations, which were ignored in its simulation environment.
The agent then estimates its own blind spots as well as the
human’s to allow for safe execution in the world. Results
show that using our blind spot models, the agent can learn
to transfer control to the human intelligently to avoid blind
spots in the real world. In future work, the representation and
blind spot models can be updated in an online fashion with
real-world feedback. The agent can also use active learning
approaches to guide the collection of demonstration data for
learning better blind spot models.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
1. ACM.
Arora, S., and Doshi, P. 2018. A survey of inverse reinforce-
ment learning: Challenges, methods and progress. arXiv
preprint arXiv:1806.06877.
Barrett, S.; Stone, P.; Kraus, S.; and Rosenfeld, A. 2012.
Learning teammate models for ad hoc teamwork. In AAMAS
Adaptive Learning Agents (ALA) Workshop, 57–63.
Barrett, S.; Agmon, N.; Hazon, N.; Kraus, S.; and Stone,
P. 2014. Communicating with unknown teammates. In
Proceedings of the 2014 international conference on Au-
tonomous agents and multi-agent systems, 1433–1434. In-
ternational Foundation for Autonomous Agents and Multia-
gent Systems.
Barrett, S.; Rosenfeld, A.; Kraus, S.; and Stone, P. 2016.
Making friends on the fly: Cooperating with new teammates.
Artificial Intelligence.
Barrett, S.; Taylor, M. E.; and Stone, P. 2010. Trans-
fer learning for reinforcement learning on a physical robot.
In Ninth International Conference on Autonomous Agents
and Multiagent Systems-Adaptive Learning Agents Work-
shop (AAMAS-ALA).
Chandola, V.; Banerjee, A.; and Kumar, V. 2007. Outlier
detection: A survey. ACM Computing Surveys.
Chang, A.; Dai, A.; Funkhouser, T.; Halber, M.; Nießner,
M.; Savva, M.; Song, S.; Zeng, A.; and Zhang, Y. 2017.
Matterport3d: Learning from rgb-d data in indoor environ-
ments. arXiv preprint arXiv:1709.06158.
Christiano, P.; Shah, Z.; Mordatch, I.; Schneider, J.; Black-
well, T.; Tobin, J.; Abbeel, P.; and Zaremba, W. 2016. Trans-
fer from simulation to real world through learning deep in-
verse dynamics model. arXiv preprint arXiv:1610.03518.
Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; and
Koltun, V. 2017. Carla: An open urban driving simulator.
arXiv preprint arXiv:1711.03938.
Garcıa, J., and Fernández, F. 2015. A comprehensive survey
on safe reinforcement learning. Journal of Machine Learn-
ing Research 16(1):1437–1480.
Kahn, G.; Villaflor, A.; Pong, V.; Abbeel, P.; and Levine, S.
2017. Uncertainty-aware reinforcement learning for colli-
sion avoidance. arXiv preprint arXiv:1702.01182.
Levine, S.; Popovic, Z.; and Koltun, V. 2010. Feature con-
struction for inverse reinforcement learning. In Advances in
Neural Information Processing Systems, 1342–1350.
Mahler, J.; Liang, J.; Niyaz, S.; Laskey, M.; Doan, R.;
Liu, X.; Ojea, J. A.; and Goldberg, K. 2017. Dex-net
2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics. arXiv preprint
arXiv:1703.09312.
Ng, A. Y.; Russell, S. J.; et al. 2000. Algorithms for inverse
reinforcement learning. In Icml, 663–670.

OpenAI; :; Andrychowicz, M.; Baker, B.; Chociej, M.; Joze-
fowicz, R.; McGrew, B.; Pachocki, J.; Petron, A.; Plappert,
M.; Powell, G.; Ray, A.; Schneider, J.; Sidor, S.; Tobin, J.;
Welinder, P.; Weng, L.; and Zaremba, W. 2018. Learning
Dexterous In-Hand Manipulation. ArXiv e-prints.
Pimentel, M. A.; Clifton, D. A.; Clifton, L.; and Tarassenko,
L. 2014. A review of novelty detection. Signal Processing
99:215–249.
Ramakrishnan, R.; Kamar, E.; Dey, D.; Shah, J.; and
Horvitz, E. 2018. Discovering blind spots in reinforcement
learning. Proceedings of the 17th international joint confer-
ence on Autonomous agents and multiagent systems.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. Why
should i trust you?: Explaining the predictions of any classi-
fier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 1135–
1144. ACM.
Sammut, C.; Hurst, S.; Kedzier, D.; and Michie, D. 1992.
Learning to fly. In Machine Learning Proceedings 1992.
Elsevier. 385–393.
Shah, S.; Dey, D.; Lovett, C.; and Kapoor, A. 2018. Airsim:
High-fidelity visual and physical simulation for autonomous
vehicles. In Field and service robotics, 621–635. Springer.
Stone, P.; Kaminka, G. A.; Kraus, S.; Rosenschein, J. S.;
et al. 2010. Ad hoc autonomous agent teams: Collaboration
without pre-coordination. In AAAI.
Sui, Y.; Gotovos, A.; Burdick, J.; and Krause, A. 2015. Safe
exploration for optimization with gaussian processes. In In-
ternational Conference on Machine Learning, 997–1005.
Syed, U.; Bowling, M.; and Schapire, R. E. 2008. Appren-
ticeship learning using linear programming. In Proceedings
of the 25th international conference on Machine learning,
1032–1039. ACM.
Taylor, M. E., and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research 10(Jul):1633–1685.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.;
and Abbeel, P. 2017. Domain randomization for transfer-
ring deep neural networks from simulation to the real world.
arXiv preprint arXiv:1703.06907.
Urbancic, T., and Bratko, I. 1994. Reconstructing human
skill with machine learning. In Proceedings of the 11th eu-
ropean conference on artificial intelligence, 498–502. John
Wiley & Sons, Inc.
Wray, K. H.; Pineda, L.; and Zilberstein, S. 2016. Hierar-
chical approach to transfer of control in semi-autonomous
systems. In Proceedings of the 2016 International Confer-
ence on Autonomous Agents & Multiagent Systems, 1285–
1286. International Foundation for Autonomous Agents and
Multiagent Systems.
Zhifei, S., and Meng Joo, E. 2012. A survey of inverse
reinforcement learning techniques. International Journal of
Intelligent Computing and Cybernetics 5(3):293–311.
Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum entropy inverse reinforcement learning. In
AAAI, volume 8, 1433–1438. Chicago, IL, USA.

