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Goal:

Design Algorithms that have
Generalization & Sample Efficiency
In learning to make decisions
INn complex environments




My Research

All Sequential
Decision Making
Problems

1. Expert Demonstration

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML]
[Sun, Gordon, Boots, Bagnell, 18, NeurlPS]
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My Research

1. Expert Demonstration All Sequential
Decision Making
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2. Exploiting Structures

[Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18]




Supervised Learning VS
Sequential Decision Making

Given i.i.d examples at training:

2 (R $-)
L) :




Supervised Learning VS
Sequential Decision Making
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Reinforcement Learning

Markov Decision Process

Environment

m(x) = a
ks Policy: determine action based on state
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Reinforcement Learning

Markov Decision Process

Environment

T(x) = a
bwmsn  Policy: determine action based on state
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r(xz,a), = ~ P(:|z,a)




Reinforcement Learning

Markov Decision Process

Environment

Agent
| T(x) = a
jpr - Policy: determine action based on state
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Send reward and next state from a
Markovian transition dynamics

r(z,a), = ~ P(:|z,a)




Reinforcement Learning

Markov Decision Process

Environment

m(x) = a
L.  Policy: determine action based on state
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Send reward and next state from a
Markovian transition dynamics

r(z,a), = ~ P(:|z,a)

Maximize expected total reward:

](71‘) - E[’f’l + 1o+ -+ 1H |7T]
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Progress of RL in Practice

:
[l 2
§ CA| AL sYérEMS GO

TD GAMMON [Tesauro 95] [AlphaZero, Silver et.al, 17] [OpenAl Five, 18]




Progress of RL in Practice

OpenAl Five plays 180 years
worth of games against itself
every day....running on 256
GPUs and 128,000 CPU

cores
— Open Al Five Blog

[OpenAl Five]
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Inefficient Exploration

Random Trial and error via

massive simulation
(.e., 128,000 CPUs)




Inefficient Exploration

EO

Random Trial and error via

massive simulation
(i.e., 128,000 CPUs)




Inefficient Exploration

-

Random Trial and error via

massive simulation
(i.e., 128,000 CPUs)

Sample Efficiency




Progress of RL in Theory

Sample Efficiency
in Small Discrete MDPs
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Progress of RL in Theory

Sample Efficiency
in Small Discrete MDPs

Sample Complexity:

To achieve € near-optimal policy,
need at most

poly(# of states, # of actions, Horizon, 1/¢)

many interactions
[e.qg., Kearns & Singh 02, Dann & Brunskill, 15, Azar et.al, 17]
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Progress of RL in Theory

Large-Scale Decision Making Problems

Sample Efficiency
in Small Discrete MDPs

Sample Complexity:

To achieve € near-optimal policy,
need at most

4 of actions, Horizon, 1/¢)

many interactions
[e.qg., Kearns & Singh 02, Dann & Brunskill, 15, Azar et.al, 17]
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What We Understand:
Supervised Learning
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What We Understand:
Supervised Learning
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What We Want:
Generalization in Large-Scale MDPs

Sample Efficiency

Sample Complexity: 5

To achieve € near-optimal policy,
we need at most

poly(# of states, # of actions, Horizon, 1/¢)

many interactions

[e.g., Kearns & Singh 02, Dann & Brunskill, 15 ,Azar et.al, 17]
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What We Want:
Generalization in Large-Scale MDPs

Sample Efficiency

Sample Complexity:
To achieve € near-optimal policy,
we need at most

many interactions

[e.g., Kearns & Singh 02, Dann & Brunskill, 15 ,Azar et.al, 17]

12



BUT...

Discrete MDPs

H: horizon, S: # of states, A: # of actions

Reward only at one leaf
[e.g., Krishnamurthy et.al 16, Jiang et.al 17]

Needle in a haystack
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BUT...

Discrete MDPs

H: horizon, S: # of states, A: # of actions

# of Interactions S Q (S)

with environment

Reward only at one leaf

[e.g., Krishnamurthy et.al 16, Jiang et.al 17] le.g.,Dann & Brunskill, 15]

Needle in a haystack
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Generalization & Sample Efficiency via...

1. Expert Demonstration All RL Problems

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML]

[Sun,, Gordon, Boots, Bagnell, 18, NeurlPS]
Factored
MDP

2. Exploiting Structures

[Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18]
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Generalization & Sample Efficiency via...

1. Expert Demonstration All RL Problems

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML]
[Sun,, Gordon, Boots, Bagnell, 18, NeurlPS]

* Why IL (i.e., IL VS RL)
* How to reduce RL to Supervised Learning

* Generalize from Local Experts

14



Imitation Learning

Machine
Learning

Policy 7T

Maps states

« SVM to actions
 (Gaussian Process
* Deep Networks

Apprenticeship Learning [Abbeel & Ng 05, Syed & Schapire 08]
Inverse Optimal Control [Ziebart & Bagnell, 10]

Interactive Imitation Learning [Ross& Bangell, 11; Chang et.al., 15]
Generative Adversarial Imitation Learning [Ho & Ermon 18]




Interactive Imitation Learning w/ Reward

A global expert is available during training
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Interactive Imitation Learning w/ Reward

A global expert is available during training

Execute Learned Policy — N

Ask a globally optimal Expert
to Take Over
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Interactive Imitation Learning w/ Reward

A global expert is available during training

Execute Learned Policy /_ _-\
=
/
\
e e ——— ’
\.'."~-._____-

Ask a globally optimal Expert
to Take Over

Record: Expert trajectory’s total cost

How easy to recover from the learner’s mistake
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Examples of Interactive Experts
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Examples of Interactive Experts

1. Planner/Control (e.g., Robotics)

o -
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Examples of Interactive Experts

1. Planner/Control (e.g., Robotics)

hp S

. : o y
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1:. r e x

ensors

:'-:'\',,'. ! ‘o \ .
odol o 58— Controls signals
i

Control w/
Expensive Sensors
(e.g., IMU & GPS)

A global expert that
exists only at training

[Pan et.al, 17, RSS]
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Examples of Interactive Experts

1. Planner/Control (e.g., Robotics)

o 7 o N7
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Cheap sensors T

Control w/

Expensive Sensors
(e.g., IMU & GPS)

[Pan et.al, 17, RSS]

A global expert that
exists only at training

2. Search Algorithms (e.g., NLP)

%/‘\/‘\

Root  Flying planes can be dangerous

/A (Ground truth label) B N
Root  Flying plancs can be  dangerous > Root Flying planes can be dangerous
where | am... Search to minimize Utility (e.g., F1)  [Goldberg & Nivre 12

[Chang et.al., 15, ICML]

17



i b ]




Why IL: Formalizing Advantages

1. Global Optimality
Global Optimal Expert: T

AggreVaTe (Aggregate with Values) [rossasagnelii4]
J(7) =~ J(r*)
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Why IL: Formalizing Advantages

1. Global Optimality
Global Optimal Expert: ™

AggreVaTe (Aggregate with Values) [rossasagneli14]
J(%) = J (™)

2. Sample Efficiency (i.e., Learns faster)

There exist MDPs, s.t. with global optimal expert, to learn near-optimal solution,

IL (e.g., AggreVale) ANY RL
d., Ag9 VS

O(log(5)) Q(S)

Deeply AggreVaTeD: Differential Imitation Learning for Sequential Prediction
Sun, Venkatraman, Gordon, Boots, Bagnell, ICML, 17
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Why IL: Formalizing Advantages

1. Global Optimality
Global Optimal Expert: T

AggreVaTe (Aggregate with Values) [rossaBagneli14]
J(T) 23 J(n™)

2. Sample Efficiency (i.e., Learns faster)

There exist MDPs, s.t. with global optimal expert, to learn near-optimal solution,

IL (e.g., AggreVaTe) g ANY RL

O(log(S)) Q(S)

Deeply AggreVaTeD: Differential Imitation Learning for Sequential Prediction
Sun, Venkatraman, Gordon, Boots, Bagnell, ICML, 17
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Deterministic MDP

Global Optimal Expert: An Optimal Planner
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Deterministic MDP

Global Optimal Expert: An Optimal Planner

Go-Left a; Go-Right ar

Needle

20




Reduction to Supervised Learning
Easy Credit Assignment

Global Optimal Expert: An Optimal Planner

rs > T4 > rs > 16

Halving: Eliminate half of the nodes each round

21 [Sun,et.al., 17, ICML]
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Reduction to Supervised Learning
Easy Credit Assignment

Global Optimal Expert: An Optimal Planner

Go left could lead to T'3

Go left could lead to T3

Halving: Eliminate half of the nodes each round

IL: log(S) vs RL: 2(5)

21

[Sun,et.al., 17, ICML]



EX: AggrevaTe [Ross & Bagnell, 14]
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Ex: AggrevaTe [Ross & Bagnell, 14]

Rollin: Execute Learned Policy,
Stop at a randomly picked time - - -GD T~

step \ Lo
> — ™~

e
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EX: AggrevaTe [Ross & Bagnell, 14]

Rollin: Execute Learned Policy,
Stop at a randomly picked time /:—_ -0 T~
step N L -

> ™~

Rollout: Execute Expert’s ' To—
Policy Q" (z,ay) = 100
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EX: AggrevaTe [Ross & Bagnell, 14]

Rollin: Execute Learned Policy,
Stop at a randomly picked time . _- TN

step \ ,*°
e =

I

1‘ \

*

e ah \\ '
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Rollout: Execute Expert’s \

¥

Policy Q" (;1:.'. ay) = 100

22




Ex: AggrevaTe [Ross & Bagnell, 14]

Rollin: Execute Learned Policy,
Stop at a randomly picked time . _- TN

step \ ,*
P e ™~
' 4
q
H ( /
’ a3
) | 5 .\
\~ “ ~ X - - .\ e
/ \~."~ .‘Q*(CE a3)25
e Q*(z,a3) =0
Rollout: Execute Expert’s : e—

Policy Q*(r,ay) = 100
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EX: AggrevaTe [Ross & Bagnell, 14]

Rollin: Execute Learned Policy,
Stop at a randomly picked time - - -8B N

step \ ,*
e ~
' 4
4
: ( /
’ a3
) | S .\
\~ “ ~ i e -~ ~\
/ \..‘. ~=Q7 (7, a3)
e - .Q (3). (19
Rollout: Execute Expert’s ' Te—

41

Policy Oz ay) = 1()()x
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Ex: AggrevaTe [Ross & Bagnell, 14]

Rollin: Execute Learned Policy,
Stop at a randomly picked time . _- TN

step \ ,*
l' — ™~
¥ 4
s
H ( /
; as
) | 5 .\
‘s “ & X “ ™ - ~ .\ 7
/ \~.~.. ~ =) (ZIT,CLJ,):S
E Q" (z,a2) =0
Rollout: Execute Expert’s : — )
Policy Q*(z,a1) = 100

)
{x, Q*(x’a?g }N

Cost-Sensitive Classification Dataset
22 (A Supervised Learning Dataset)




Differentiable AggreVale (sunetal. 17.1cm]
(AggreVaTeD)

7T9n (e.g., neural net) —Q*(x, a;)

" ”.};f - | {IB, Q*(CE,CLQ) }
o»c»-% o> O, ) | ¥

Deeply AggreVaTeD: Differential Imitation Learning for Sequential Prediction
[Sun, Venketraman, Gordon, Boots, Bagnell, ICML, 17]
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Differentiable AggreVaTe (sunetal. 17.1cm
(AggreVaTeD)

7T9n (e.g., neural net) 'Q*@,, a,)

] Y e =) %, | QF(xs us)
‘_,._._.éj\ :> { _Q*(.’E,ag)_ }N
\

On <): LLW(LMZ T“ )

Cost Sensitive loss

Vol,(6)

Deeply AggreVaTeD: Differential Imitation Learning for Sequential Prediction
[Sun, Venketraman, Gordon, Boots, Bagnell, ICML, 17]
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Differentiable AggreVaTe (suneta. 17.1cm
(AggreVaTeD)

e, (eg neural net) Q*(z,a1)

. %, | &%z, a5
= % :{>{ _Q*E$7a3§_ }N

T‘-Qn—l—l v

Vol,(0 ¢ 2 2 mlalri; )" (T a)
e.g., Gradient or
natural gradient Cost Sensitive loss

descent

Deeply AggreVaTeD: Differential Imitation Learning for Sequential Prediction
[Sun, Venketraman, Gordon, Boots, Bagnell, ICML, 17]
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Differentiable AggreVaTe (suneta. 17 oM
(AggreValeD)

779n (e.g., neural net) —Q*(x7 a)

. ”-QW/* \\:I,> {xv Q*(CB,CLQ) }N
I — _Q*(Lv,ag)_

A 6,41 \/

Voln(0)l, <,E n(0) = 2: x m(alr;; 0)Q™ (x4, a)
e.g., Gradient or T a
natural gradient Cost-Sensitive loss

descent
Use rich function

approximators for complex
features

Deeply AggreVaTeD: Differential Imitation Learning for Sequential Prediction
[Sun, Venketraman, Gordon, Boots, Bagnell, ICML, 17]
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Dependency Parsing

Handwritten Algebra Equations & Solutions
[Duyck & Gordon 15]

Input:

24



Dependency Parsing as
Sequential Decision Making

[e.g., Chang, Krishnamurthy, Agarwal, Daume’ lll, Langford, 15, ICML]




Dependency Parsing as
Sequential Decision Making

[e.g., Chang, Krishnamurthy, Agarwal, Daume’ Ill, Langford, 15, ICML]

Encoder (LSTM)
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Dependency Parsing as
Sequential Decision Making

[e.g., Chang, Krishnamurthy, Agarwal, Daume’ Ill, Langford, 15, ICML]

Encoder (LSTM)
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Performance of AggreVaTeD, RL, and DAgger
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Interactive
+ Reward

AggreVaTeD

82.6 83.2

Reward Interactive

RL-Natural Policy Gradient DAgger
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RL: Natural Policy Gradient [Kakade 02, NIPS, Bagnell, 04, |IJCAI]
DAgger results from Duyck & Gordon, 15




What if we do not have a Globally Optimal
Expert?

...we can learn from Local Experts!

27



Example: AlphaGo-Zero

[Silver, et.al, 17, Nature]

Known & Deterministic Transition Dynamics

Fast
Reactive
Policy 7T

28



AlphaZero leverages transition dynamics to build local experts

What if we do not have any prior
knowledge of transition dynamics?

29



Dual Policy Iteration (sunetal, 18 NeurlPs]
Imitating a Locally Optimal Control

- Current Policy

New Transitions
State Action Next State

> X~ X

30
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Dual Policy Iteration (sunetal, 18 NeurlPs]
Imitating a Locally Optimal Control

- Current Policy

New Transitions
State Action Next State

P

30
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Supervised Learning
Dynamics




Dual Policy Iteration (sunetal, 18 NeurlPs]
Imitating a Locally Optimal Control

State Action Next State

> X~ X
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X 11X
N
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i e
™ s e
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S
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(X XX
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Local
Control

Supervised Learning
Dynamics
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Dual Policy Iteration (sunetal, 18 NeurlPs]
Imitating a Locally Optimal Control

- Current Policy

Imitation
e.g., AggreVaTe

e e

Adapt towards. /

Local
Control

New Transitions
State Action Next State

SN =X

+ = &

30

Supervised Learning
Dynamics




Dual P()Iicy Iteration [Sun et.al., 18, Neurl|PS]
Imitating a Locally Optimal Control

(&3 ‘ :" o :' VR “ags
e cioisie s Current Policy New Transitions
o oot Fo e

State Action Next State

“eaee-””  Policy
Improvement

Convergence

Imitation Local

e.g., AggreVaTe Control

\\ Adapt towards. Supervised Learning
Dynamics
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[Sun et.al., 18, NeurlPS]

Helicopter Funnel

Instantiation 1:
Linear Regressors + ILQR + AggreVaTeD w/ Natural Gradient

31 iILQR: [Li & Todorov, 05] AggreVaTeD: [Sun, 17, ICML]




[Sun et.al., 18, NeurlPS]

Helicopter Funnel

Learned Policy from DPI
(Simulator from Abbeel et.al, 06)

Instantiation 1:
Linear Regressors + iLQR + AggreVaTeD w/ Natural Gradient

31 iILQR: [Li & Todorov, 05] AggreVaTeD: [Sun, 17, ICML]




Sun et.al., 18, NeurlPS]

Synthetic Discrete MDPs

Conservative Policy lteration
[Kakade & Langford, 02]

Randomly Generated % .

Discrete MDPs 8 = 70 e sSEtE MDE 1000

(@)
: O

[Archibald et.al., 95] ~ 565
o B
- _5.60/ v
O 3 SN
e 5 5.55| g
©
= 5.50
g : AggreVaTeD_VI
) 5.45 &
S | , :

2 - 0 10 40 g
A of Iterations
/
/
Instantiation 2:
m Likelihood Estimation + Value lteration + AggreValeD

AggreVaTeD: [Sun, 17, ICML]




Generalization & Sample Efficiency via...

1. Expert Demonstration
peo e lad All RL Problems

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML]
[Sun, Gordon, Boots, Bagnell, 18, NeurlPS]
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Generalization & Sample Efficiency via...

All RL Problems
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Generalization & Sample Efficiency via...

All RL Problems

+ Why Model-Based RL? [ . - QAT
N %) Eallel  (Lipschitz

« A Unified Measure Nzl Story MDPs)
V- Ze X

Tabular i:'*«“ N—

Factored LQR

2. Exploiting Structures

[Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18]

33



Modeling Dynamics

Known

[Sun et.al, ISRR 13]

Control
e.g., iterative LQR

[Li & Todorov 03]
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Modeling Dynamics

Known Learned

[Sun et.al, ISRR 13] [Williams et.al, 17, ICRA]

Control
e.g., iterative LQR

[Li & Todorov 03]
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Modeling Dynamics

Known Learned

—-

[Sun et.al, ISRR 13] [Williams et.al, 17, ICRA]

Control Model-Based RL
e.g., iterative LQR f)( z,a) =~ P*(-|z,a)

[Li & Todorov 03] ‘ .
Approximator Real Transition
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Modeling Dynamics

Known Learned

[Sun et.al, ISRR 13]

Control Model-Based RL D';:Czy I'e:_j‘m p;lll_cy
' ' > odeil-rree
e.g., iterative LQR P(-‘.’B, a) ~ P*('|.7;, a) .
[Li & Todorov 03] e.g., Q-Learning

Approximator Real Transition (Watkins & Dayan, 92]
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Modeling Dynamics

Known Learned Ignored

»
-

[Sun et.al, ISRR 13] [Williams et.al, 17, ICRA]

Control Model-Based RL | P'rectly Ilel?m polll-cy
e.g., iterative LQR p(ll a) ~ P*(~|.’L' a) Model- reg R
(Li & Todorov 03] ’ ’ e.g., Q-Learning
Approximator Real Transition (Watkins & Dayan, 92]
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Setup of Model-Based RL

z' ~ P*(:|z,a)

Real Transition Dynamics

35



Setup of Model-Based RL

Function Approximators

T AN
‘ ‘{\:\.:f ‘1‘. v p \x }
. ch 4.'%'; ‘ ;y i%} L \.—b
LT XX X X -‘v--;- .
(‘E7 a') : “:_1*’* xrg r’K’ L9 P( ‘.CC (l)
@ ¥ jf.%.'-,é\ »,/> \,:“/ 30 ‘_.
NAEN, '?_;/

y a0t
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Real Transition Dynamics @N -
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Function Approximators
Optimal Planner (OP)

OP(P,T) = TP




Setup of Model-Based RL

Function Approximators
Optimal Planner (OP)

OP(P,T) = TTp

Realizability: P* € P

1| —
. [Zucker et.al, IJRR 13] (Sun et.al, ISRR 13]

/ * P
€T v P (ll,a,) /f // |
/ e e.g., ILQR (i & Todorov 03]
Real Transition Dynamics #‘\“ . CHOMP (ratiif et.al, 09]
@ : SE-LQR (sun etal, 16, TASE]
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Why Model-Based RL?
Debate: Model-Based or Model-Free

Iterative Learning Control
(e.g., An & Atkeson & Hollerbach 88, Abbeel 06)

Nonparametric Model-based RL
(e.g., Atkeson 98, Deisenroth et.al., 11)

Guided Policy Search
(e.g.,Levine & Abbeel 16)

Dual Policy Iteration
[Sun et.al, 18]
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Why Model-Based RL?
Debate: Model-Based or Model-Free

Model-Based is often more sample efficient
than Model-Free In practice...

lterative Learning Control
(e.g., An & Atkeson & Hollerbach 88, Abbeel 06)

Nonparametric Model-based RL
(e.g., Atkeson 98, Deisenroth et.al., 11)

Guided Policy Search
(e.g.,Levine & Abbeel 16)

Dual Policy lteration
[Sun et.al, 18]
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In Theory?

There exists MDPs (e.g., Factored MDPs), s.t., to learn near optimal policy,

Model-Based RL: Any Model-Free RL:

Polynomial Sample

VS
Complexity Q(GXP(H))

Model-based Reinforcement Learning in Contextual Decision Processes
Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18.
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We have been exploiting the structures of
models, BUT...

Lipschitz Continuous MDPs

[Kearn, Langford, Kakade, 03]

Small Tabular MDP

[Kearn & Singh, 02]

Factored MDPs

[Guestrin et.al, 03; Osband & Van Roy,13 |

Linear Quadratic Regulator (LQR)

[Dean et.al, 18]
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We have been exploiting the structures of
models, BUT...

Lipschitz Continuous MDPs

[Kearn, Langford, Kakade, 03]

A Unified
Algorithm?

Small Tabular MDP

[Kearn & Singh, 02]

Factored MDPs

[Guestrin et.al, 03; Osband & Van Roy,13 |

Linear Quadratic Regulator (LQR)

[Dean et.al, 18]
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Distinguish Two Distributions:
Integral Probability Metric (IPM) Muler etal, 97

Distinguish two distributions ]:)7 Q
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Distinguish Two Distributions:
Integral Probability Metric (IPM) Muler etal, 97)

Distinguish two distributions P Q
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Distinguish Two Distributions:
Integral Probability Metric (IPM) Muler et.al, 97)

Distinguish two distributions [, Q
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Distinguish Two Distributions:
Integral Probability Metric (IPM) Muler etal, 97

Distinguish two distributions P, Q
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Real bedroom images Imaginary samples from

[LSUN dataset] a generative model
[e.g., Wasserstein GAN,17]

max|E,~pf(x) — Ez~no f(x)]

Discriminators f€F
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Distinguish a Candidate from the Real

Candiate: P(-\:z:,a) 2 Real: P*(~|5L‘,CL)
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Candiate: P(-‘CE, a) 2 Real: P*(°|l‘, CL)
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Distinguish a Candidate from the Real

Candiate: P(-\x, a) 2 Real: P*(°‘£l,‘, CL)

Qa ~ [J

oot Real-world Transition
@ . @ - o
p T~ P*(:|z,a)
Imaginary Transition

' ~ P(-|z,a)
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Distinguish a Candidate from the Real

Candiate: P(-‘J}, a) 2 Real: P*('|ZZI, CL)

R
® .0
‘»‘
*‘ Qa ~ U
y ‘ A‘ Real-world Transition
P i z" ~ P*(:|z,0)
‘ Imaginary Transition
z' ~ P(-|z,a)
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Distinguish a Candidate from the Real

max v

TEJ

Candiate: P(-‘J?, a) 2 Real: P*(~|5L‘, CL)
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Real-world Transition
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Model Rank

Misfit Matrix:

c RIPIXIPI
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Model Rank

Misfit Matrix:

M/(Pra b f) c R|77|><|’P|
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Misfit Matrix:

Provides
Conditional
State-action

Distribution

Model Rank

WiE B F) c RIPIXIP]

P, Candidate

] [ L/~ P, f(.’II, a. .’IJ/) = ]E;B/NP* f(T, a, :I;/)]

Imaginary Real-world

41




Model Rank

Misfit Matrix:
Provides ‘
Conditional .
State-action W(Pr’ Fe; ]:) - R|P| X |P|
Distribution
P,. Candidate
W (P, Pe; F) = o Esnnp ant [Estnp, f(2,a,2) — Epaps f(2,0,2")]

Imaginary Real-world

Model Rank is defined as the rank of this misfit matrix
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Model Rank

Misfit Matrix: |A

Provides P, _- ‘
Conditional  |: W(P. P.:
State-action : ( =26 ]:) = R|77| X|P|
Distribution .

“Similar” «<— Low Rank

v

P,. Candidate

W (B P F)= I}leclj%i Bawne. anis | Batup, LT a,z') — Epps f(x,a,2")]

Imaginary Real-world

Model Rank is defined as the rank of this misfit matrix
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A Unified Framework

rEl--<¢
/ ;
L - LD(z,z")
( "

Lipschitz Continuous MDPs

Rank <= Covering number

of state space
[KLK, 03]
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Lipschitz Continuous MDPs

Rank <= Covering number

of state space
[KLK, 03]
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A Unified Framework
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Lipschitz Continuous MDPs : '
Rank <= Covering number -

of state space Factored MDPs

[KLK, 03] 3
Rank <= exp(in-degree)
[GKPV, 03; OV, 13, NIPS ]
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Rank <= # of hidden states
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A Unified Framework

o S
: .
L - LD(xz,z")

(1 S

Lipschitz Continuous MDPs

Rank <= Covering number
of state space

[KLK, 03]
—® —»036}
POMDP
Rank <= # of hidden states
[KAL, 16 NIPS]

42
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Factored MDPs
Rank <= exp(in-degree)

[GKPV, 03; OV, 13, NIPS ]

Linear Quadratic Regulator
Rank = O(d*2)




A Unified Framework

y
rEl--< - '
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& - ED(z;5") 1 '

Lipschitz Continuous MDPs . '

Rank <= Covering number -
of state space actored MDPs

e A Unified = exp(in-degree)

Algorithm! WA,

%o o

POMPP Linear Quadratic Regulator
Rank <= # of hidden states Rank = O(d”2)

[KAL, 16 NIPS] 49
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Sample Complexity

o(* s (55)

Model-based Reinforcement Learning in Contextual Decision Processes
43 [Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18]
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Model Rank

i)

Complexity of Discriminators & Models

Poly Depende on # of States

Model-based Reinforcement Learning in Contextual Decision Processes
43 [Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18]
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Model Rank

i)

Complexity of Discriminators & Models

Poly Depende on # of States

Model-based Reinforcement Learning in Contextual Decision Processes
43 [Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18]




Generalization & Sample Efficiency via...

1. Expert Demonstration All RL Problems

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML]
[Sun, Gordon, Boots, Bagnell, 18, NeurlPS]
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Sample Complexity

Model Rank
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Complexity of Discriminators & Models

Poly Depende on # of States

Model-based Reinforcement Learning in Contextual Decision Processes
43 [Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18]




Generalization & Sample Efficiency via...

1. Expert Demonstration All RL Problems

o b,_“',f o9l A Unified ( o
¢\ | S
A ».L;‘#q. Ze A Story

", ».,"\"' E @ "
- A

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML]

S
[Sun, Gordon, Boots, Bagnell, 18, NeurlPS] 1

- o
Tabular iA'

' LQR
Factored

MDP

2. Exploiting Structures

[Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18]
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Future Work

< M

Medical Treatment Education

Waseda University's Manga club

Autonomous Driving Assistance in Disaster Recovery
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1. Leverage Expert Demonstrations
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1. Leverage Expert Demonstrations

Interactive Imitation Learning
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1. Leverage Expert Demonstrations

No Interaction
No Expert Action
No Reward

Imitation Learning from Observations

46



Forward Adversarial Imitation Learning (FAIL):

[Sun et.al, In Submission, 19]

Learn policies using Integral Probability Metric

"o e

47

Expert’s
Trajectories
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Forward Adversarial Imitation Learning (FAIL):

[Sun et.al, In Submission, 19]

Learn policies using Integral Probability Metric

Expert’s
Trajectories
7To = arg min IPI\#’I( @ , Q )

o

Learner’s
Trajectories
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Forward Adversarial Imitation Learning (FAIL):

[Sun et.al, In Submission, 19]

Learn policies using Integral Probability Metric

Expert’s
Trajectories :
7T = arg min IPI\""’I( Q , Q )

o

Learner’s
Trajectories
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[Sun et.al, In Submission, 19]

Learn policies using Integral Probability Metric
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Promising Simulation Results...

[Fetch Robot Simulator from OpenAl Gym)]
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Promising Simulation Results...

Image from https://www.asme.org/engineering-topics/articles/
robotics/robots-kitchen-at-the-table

[Fetch Robot Simulator from OpenAl Gym)]
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Promising Simulation Results...

Image from https://www.asme.org/engineering-topics/articles/
robotics/robots-kitchen-at-the-table

Lots of Challenges:

—Learn from videos

—Interaction with experts

[Fetch Robot Simulator from OpenAl Gym)|
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2. Generalization from Prior Experiences

Waseda University's Manga club

Medical Treatment Assnstance in Dlsaster Recovery
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2. Generalization from Prior Experiences

RL
Problems Search
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2. Generalization from Prior Experiences

Right Leg Jump Demo

51 Videos from Ben Recht’s Blog (http://www.argmin.net/2018/03/20/mujocoloco/)
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2. Generalization from Prior Experiences

Right Leg Jump Demo Backward Demo Forward Demo

51 Videos from Ben Recht’s Blog (http://www.argmin.net/2018/03/20/mujocoloco/)



2. Generalization from Prior Experiences

o}
O
3
o

Right Leg Jump Demo Backward Demo Forward De

New task:
Stand up with little to no training?

51 Videos from Ben Recht’s Blog (http://www.argmin.net/2018/03/20/mujocoloco/)



2. Generalization from Prior Experiences

Right Leg Jump Demo Backward Demo

New task:
Stand up with little to no training?

Offline Learning
From Prior Relevant
Experiences

Videos from Ben Recht’s Blog (http://www.argmin.net/2018/03/20/mujocoloco/)



Imitation

-

RL
Problems

[Sun et.al., 18, arXiv]




Online Policy Evaluation

Reduction from Policy Evaluation to No-Regret Online Learning
[Sun, Bagnell, UAI 15, Best Student Paper]

Imitation :

RL
Problems

[Sun et.al., 18, arXiv]
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Reduction from Policy Evaluation to No-Regret Online Learning

Velocites (rad/s)

IMU Angular

Online Policy Evaluation

[Sun, Bagnell, UAI 15, Best Student Paper]

RL
Problems

[Sun et.al., 18, arXiv]

System ID

Predictive State Inference Machines
[Sun et.al., ICML 16; Venkatraman & Sun et.al., IJCAI 16, Sun et.al.,
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Online Policy Evaluation

Reduction from Policy Evaluation to No-Regret Online Learning
[Sun, Bagnell, UAI 15, Best Student Paper]

Imitation
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RL
Problems

System ID

Predictive State Inference Machines
[Sun et.al., ICML 16; Venkatraman & Sun et.al., IJCAI 16, Sun et.al., ICRA 14]
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Online Policy Evaluation

Reduction from Policy Evaluation to No-Regret Online Learning
[Sun, Bagnell, UAI 15, Best Student Paper]

Imitation

s

RL
Problems

System ID

Predictive State Inference Machines
[Sun et.al., ICML 16; Venkatraman & Sun et.al., IJCAI 16, Sun et.al., ICRA 14]
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