Towards Generalization and Efficiency in Reinforcement Learning

Wen Sun

Carnegie Mellon University

Joint work with Drew Bagnell, Geoff Gordon, Byron Boots, John Langford, Stephane Ross, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, Arun Venkatraman

Goal:

Design Algorithms that have

Generalization & Sample Efficiency
in learning to make decisions
in complex environments

My Research

1. Expert Demonstration

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML] [Sun, Gordon, Boots, Bagnell, 18, NeurlPS]

All Sequential

Decision Making

Problems

My Research

1. Expert Demonstration

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML] [Sun, Gordon, Boots, Bagnell, 18, NeurlPS]

My Research

1. Expert Demonstration

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML] [Sun, Gordon, Boots, Bagnell, 18, NeurlPS]

2. Exploiting Structures

[Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18]

Supervised Learning VS Sequential Decision Making

Given i.i.d examples at training:

Supervised Learning VS Sequential Decision Making

Given i.i.d examples at training:

Markov Decision Process

Markov Decision Process

$$\pi(x) \to a$$

Policy: determine action based on state

Send **reward** and **next state** from a Markovian transition dynamics

$$r(x, a), \quad x' \sim P(\cdot | x, a)$$

Markov Decision Process

$$\pi(x) \to a$$

Policy: determine action based on state

Send **reward** and **next state** from a Markovian transition dynamics

$$r(x, a), \quad x' \sim P(\cdot | x, a)$$

Markov Decision Process

 $\pi(x) \to a$

Policy: determine action based on state

Send **reward** and **next state** from a Markovian transition dynamics

$$r(x, a), \quad x' \sim P(\cdot | x, a)$$

Environment

Markov Decision Process

$$\pi(x) \to a$$

Policy: determine action based on state

Send **reward** and **next state** from a Markovian transition dynamics

$$r(x, a), \quad x' \sim P(\cdot | x, a)$$

Markov Decision Process

$$\pi(x) \to a$$

Policy: determine action based on state

Send **reward** and **next state** from a Markovian transition dynamics

$$r(x, a), \quad x' \sim P(\cdot | x, a)$$

Maximize expected total reward:

$$J(\pi) = \mathbb{E}[r_1 + r_2 + \dots + r_H | \pi]$$

Progress of RL in Practice

[AlphaZero, Silver et.al, 17]

[OpenAl Five, 18]

Progress of RL in Practice

OpenAl Five plays 180 years worth of games against itself every day....running on 256 GPUs and 128,000 CPU cores

— Open AI Five Blog

[OpenAl Five]

Progress of RL in Practice

[OpenAl Five]

Inefficient Exploration

Random Trial and error via massive simulation (i.e., **128,000** CPUs)

Inefficient Exploration

Random Trial and error via massive simulation (i.e., **128,000** CPUs)

Inefficient Exploration

Random Trial and error via massive simulation (i.e., 128,000 CPUs)

Sample Efficiency

Sample Efficiency in Small Discrete MDPs

Sample Efficiency in Small Discrete MDPs

Sample Complexity:

To achieve ϵ near-optimal policy, need at most

poly(# of states, # of actions, Horizon, $1/\epsilon$)

many interactions

Sample Efficiency in Small Discrete MDPs

Sample Complexity:

To achieve ϵ near-optimal policy, need at most

poly(# of states, # of actions, Horizon, $1/\epsilon$)

many interactions

Large-Scale Decision Making Problems

Sample Efficiency in Small Discrete MDPs

Sample Complexity:

To achieve € near-optimal policy, need at most

poly(# of states, # of actions, Horizon, $1/\epsilon$)

many interactions

What We Understand:

Supervised Learning

What We Understand:

Supervised Learning

Generalization via Function Approximation

What We Want: Generalization in Large-Scale MDPs

Sample Efficiency

Sample Complexity:

To achieve ϵ near-optimal policy, we need at most

poly(# of states, # of actions, Horizon, $1/\epsilon$)

many interactions

What We Want: Generalization in Large-Scale MDPs

Sample Efficiency $f \in \mathcal{F}$ Bridge Sample Complexity: To achieve ϵ near-optimal policy, we need at most

[e.g., Kearns & Singh 02, Dann & Brunskill, 15, Azar et.al, 17]

poly(# of states, # of actions, Horizon, $1/\epsilon$)

many interactions

BUT...

Reward only at one leaf

[e.g., Krishnamurthy et.al 16, Jiang et.al 17]

Needle in a haystack

Discrete MDPs

H: horizon, S: # of states, A: # of actions

BUT...

Reward only at one leaf
[e.g., Krishnamurthy et.al 16, Jiang et.al 17]

Needle in a haystack

Discrete MDPs

H: horizon, S: # of states, A: # of actions

of Interactions with environment

$$\sim \Omega(S)$$

[e.g.,Dann & Brunskill, 15]

Generalization & Sample Efficiency via...

2. Exploiting Structures

[Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18]

Generalization & Sample Efficiency via...

1. Expert Demonstration

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML]
[Sun,, Gordon, Boots, Bagnell, 18, NeurlPS]

- Why IL (i.e., IL VS RL)
- How to reduce RL to Supervised Learning
- Generalize from Local Experts

All RL Problems

Imitation Learning

Global π^{\star} Expert

Machine Learning

Policy π

SVM

- Gaussian Process
- Deep Networks

Maps states to actions

Apprenticeship Learning [Abbeel & Ng 05, Syed & Schapire 08]
Inverse Optimal Control [Ziebart & Bagnell, 10]
Interactive Imitation Learning [Ross& Bangell, 11; Chang et.al., 15]
Generative Adversarial Imitation Learning [Ho & Ermon 16]

Interactive Imitation Learning w/ Reward

A global expert is available during training

Interactive Imitation Learning w/ Reward

A global expert is available during training

Interactive Imitation Learning w/ Reward

A global expert is available during training

Interactive Imitation Learning w/ Reward

A global expert is available during training

Ask a globally optimal Expert to Take Over

Interactive Imitation Learning w/ Reward

A global expert is available during training

Ask a globally optimal Expert to Take Over

Record: Expert trajectory's total cost

How easy to recover from the learner's mistake

1. Planner/Control (e.g., Robotics)

1. Planner/Control (e.g., Robotics)

1. Planner/Control (e.g., Robotics)

2. Search Algorithms (e.g., NLP)

Why IL: Formalizing Advantages

1. Global Optimality

Global Optimal Expert: π^{\star}

AggreVaTe (Aggregate with Values) [Ross&Bagnell14]

$$J(\hat{\pi}) \approx J(\pi^*)$$

Why IL: Formalizing Advantages

1. Global Optimality

Global Optimal Expert: π^{\star}

AggreVaTe (Aggregate with Values) [Ross&Bagnell14]

$$J(\hat{\pi}) \approx J(\pi^*)$$

2. Sample Efficiency (i.e., Learns faster)

There exist MDPs, s.t. with global optimal expert, to learn near-optimal solution,

$$O(\log(S))$$
 vs $O(S)$

Deeply AggreVaTeD: Differential Imitation Learning for Sequential Prediction Sun, Venkatraman, Gordon, Boots, Bagnell, ICML, 17

Why IL: Formalizing Advantages

Global Optimality

Global Optimal Expert: π^{\star}

AggreVaTe (Aggregate with Values) [Ross&Bagnell14]

$$J(\hat{\pi}) \approx J(\pi^*)$$

2. Sample Efficiency (i.e., Learns faster)

There exist MDPs, s.t. with global optimal expert, to learn near-optimal solution,

IL (e.g., AggreVaTe)

$$O(\log(S))$$

VS

ANY RL

$$\Omega(S)$$

Deeply AggreVaTeD: Differential Imitation Learning for Sequential Prediction Sun, Venkatraman, Gordon, Boots, Bagnell, ICML, 17

Deterministic MDP

Global Optimal Expert: An Optimal Planner

Deterministic MDP

Global Optimal Expert: An Optimal Planner

Easy Credit Assignment

Global Optimal Expert: An Optimal Planner

Easy Credit Assignment

Global Optimal Expert: An Optimal Planner

Easy Credit Assignment

Global Optimal Expert: An Optimal Planner

Easy Credit Assignment

Global Optimal Expert: An Optimal Planner

Easy Credit Assignment

Global Optimal Expert: An Optimal Planner

Easy Credit Assignment

Global Optimal Expert: An Optimal Planner

Easy Credit Assignment

Global Optimal Expert: An Optimal Planner

Easy Credit Assignment

Global Optimal Expert: An Optimal Planner

IL:
$$\log(S)$$
 vs RL: $\Omega(S)$

Ex: AggreVaTe [Ross & Bagnell, 14]

[Ross & Bagnell, 14]

Cost-Sensitive Classification Dataset (A Supervised Learning Dataset)

Differentiable AggreVaTe

[Sun,et.al., 17, ICML] (AggreVaTeD)

Differentiable AggreVaTe (AggreVaTeD)

[Sun,et.al., 17, ICML]

Differentiable AggreVaTe (AggreVaTeD)

[Sun,et.al., 17, ICML]

Differentiable AggreVaTe (AggreVaTeD)

[Sun,et.al., 17, ICML]

Use rich function approximators for complex features

Dependency Parsing

Handwritten Algebra Equations & Solutions

[Duyck & Gordon 15]

$$-5(x-1) = -20$$

$$x-1 = 4$$

$$x = 5$$

Performance of AggreVaTeD, RL, and DAgger

RL: Natural Policy Gradient [Kakade 02, NIPS, Bagnell, 04, IJCAI] DAgger results from Duyck & Gordon, 15

What if we do not have a Globally Optimal Expert?

...we can learn from Local Experts!

Example: AlphaGo-Zero

[Silver, et.al, 17, Nature]

Known & Deterministic Transition Dynamics

Fast Reactive Policy π

Slow Policy η (MCTS)

AlphaZero leverages transition dynamics to build local experts

What if we do not have any prior knowledge of transition dynamics?

Imitating a Locally Optimal Control

New Transitions

State Action Next State

Imitating a Locally Optimal Control

New Transitions

State Action Next State

Supervised Learning Dynamics

Imitating a Locally Optimal Control

Imitating a Locally Optimal Control

Dual Policy Iteration

[Sun et.al., 18, NeurIPS]

Imitating a Locally Optimal Control

Helicopter Funnel

[Sun et.al., 18, NeurIPS]

Instantiation 1:

Linear Regressors + iLQR + AggreVaTeD w/ Natural Gradient

Helicopter Funnel

Learned Policy from DPI (Simulator from Abbeel et.al, 06)

Instantiation 1:
Linear Regressors + iLQR + AggreVaTeD w/ Natural Gradient

Synthetic Discrete MDPs

Instantiation 2:

Maximum Likelihood Estimation + Value Iteration + AggreVaTeD

Generalization & Sample Efficiency via...

1. Expert Demonstration

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML]

[Sun, Gordon, Boots, Bagnell, 18, NeurlPS]

Generalization & Sample Efficiency via...

Generalization & Sample Efficiency via...

- Why Model-Based RL?
- A Unified Measure

2. Exploiting Structures

[Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18]

Known

[Sun et.al, ISRR 13]

Control

e.g., iterative LQR

[Li & Todorov 03]

Known

[Sun et.al, ISRR 13]

Control

e.g., iterative LQR

[Li & Todorov 03]

Learned

[Williams et.al, 17, ICRA]

Known

[Sun et.al, ISRR 13]

Control e.g., iterative LQR

[Li & Todorov 03]

Learned

[Williams et.al, 17, ICRA]

Model-Based RL

$$\hat{P}(\cdot|x,a) \approx P^{\star}(\cdot|x,a)$$

Approximator Real Transition

Known

[Sun et.al, ISRR 13]

Control
e.g., iterative LQR
[Li & Todorov 03]

Learned

[Williams et.al, 17, ICRA]

Model-Based RL

$$\hat{P}(\cdot|x,a) \approx P^{\star}(\cdot|x,a)$$

Approximator Real Transition

Ignored

Directly learn policy Model-Free RL

e.g., Q-Learning

[Watkins & Dayan, 92]

Known

[Sun et.al, ISRR 13]

Control
e.g., iterative LQR
[Li & Todorov 03]

Learned

[Williams et.al, 17, ICRA]

Model-Based RL

$$\hat{P}(\cdot|x,a) \approx P^{\star}(\cdot|x,a)$$

Approximator Real Transition

Ignored

Directly learn policy Model-Free RL

e.g., Q-Learning

[Watkins & Dayan, 92]

Function Approximators

$$\mathcal{P} = \{P : \mathcal{X} \times \mathcal{A} \to \Delta(\mathcal{X})\}\$$

Function Approximators

$$\mathcal{P} = \{P : \mathcal{X} \times \mathcal{A} \to \Delta(\mathcal{X})\}\$$

Realizability: $P^{\star} \in \mathcal{P}$

$$x' \sim P^{\star}(\cdot|x,a)$$

Real Transition Dynamics

Function Approximators

$$\mathcal{P} = \{P : \mathcal{X} \times \mathcal{A} \to \Delta(\mathcal{X})\}\$$

Realizability: $P^{\star} \in \mathcal{P}$

$$x' \sim P^{\star}(\cdot|x,a)$$

Real Transition Dynamics

Optimal Planner (OP)

$$OP(P,r) \Rightarrow \pi_P$$

Function Approximators

$$\mathcal{P} = \{P : \mathcal{X} \times \mathcal{A} \to \Delta(\mathcal{X})\}\$$

Realizability: $P^{\star} \in \mathcal{P}$

$$x' \sim P^{\star}(\cdot|x,a)$$

Real Transition Dynamics

Optimal Planner (OP)

$$OP(P,r) \Rightarrow \pi_P$$

[Sun et.al, ISRR 13]

e.g., iLQR [Li & Todorov 03]
CHOMP [Ratliff et.al, 09]
SE-LQR [Sun et.al, 16, TASE]

Why Model-Based RL?

Debate: Model-Based or Model-Free

Iterative Learning Control (e.g., An & Atkeson & Hollerbach 88, Abbeel 06)

Nonparametric Model-based RL (e.g., Atkeson 98, Deisenroth et.al., 11)

Guided Policy Search (e.g.,Levine & Abbeel 16)

Dual Policy Iteration

[Sun et.al, 18]

...

Why Model-Based RL?

Debate: Model-Based or Model-Free

Model-Based is often more sample efficient than Model-Free in practice...

Iterative Learning Control (e.g., An & Atkeson & Hollerbach 88, Abbeel 06)

Nonparametric Model-based RL (e.g., Atkeson 98, Deisenroth et.al., 11)

Guided Policy Search (e.g.,Levine & Abbeel 16)

Dual Policy Iteration

[Sun et.al, 18]

...

In Theory?

There exists MDPs (e.g., Factored MDPs), s.t., to learn near optimal policy,

Model-Based RL:

VS

Polynomial Sample Complexity Any Model-Free RL:

$$\Omega(\exp(H))$$

Model-based Reinforcement Learning in Contextual Decision Processes Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18.

We have been exploiting the structures of models, BUT...

Lipschitz Continuous MDPs

[Kearn, Langford, Kakade, 03]

Small Tabular MDP

[Kearn & Singh, 02]

Factored MDPs

[Guestrin et.al, 03; Osband & Van Roy,13]

Linear Quadratic Regulator (LQR)

[Dean et.al, 18]

We have been exploiting the structures of models, BUT...

Lipschitz Continuous MDPs

[Kearn, Langford, Kakade, 03]

[Guestrin et.al, 03; Osband & Van Roy,13]

Small Tabular MDP

[Kearn & Singh, 02]

Linear Quadratic Regulator (LQR)
[Dean et.al, 18]

Integral Probability Metric (IPM) [Muller et.al, 97]

Distinguish two distributions $\,P,Q\,$

Integral Probability Metric (IPM) [Muller et.al, 97]

Real bedroom images
[LSUN dataset]

Imaginary samples from a generative model

[e.g., Wasserstein GAN,17]

Integral Probability Metric (IPM) [Muller et.al, 97]

Real bedroom images
[LSUN dataset]

Imaginary samples from a generative model

[e.g., Wasserstein GAN,17]

$$\max_{f \in \mathcal{F}} [\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x)]$$
 Discriminators

Integral Probability Metric (IPM) [Muller et.al, 97]

Real bedroom images
[LSUN dataset]

Imaginary samples from a generative model

[e.g., Wasserstein GAN,17]

$$\max_{f \in \mathcal{F}} [\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x)]$$
 Discriminators

$$\mathcal{F} \triangleq \{f: \|f\|_{\infty} \leq 1\} \Rightarrow \|P-Q\|_1$$
 Total Variation

$$\mathcal{F} \triangleq \{f: \|f\|_L \leq 1\} \Rightarrow \text{ Wasserstein Distance }$$

Distinguish a Candidate from the Real

Candiate:
$$P(\cdot|x,a)$$
 Real: $P^{\star}(\cdot|x,a)$

Distinguish a Candidate from the Real

Distinguish a Candidate from the Real

Distinguish a Candidate from the Real

Distinguish a Candidate from the Real

Misfit Matrix:			
			$\in \mathbb{R}^{ \mathcal{P} \times \mathcal{P} }$

Model Rank is defined as the rank of this misfit matrix

Model Rank is defined as the rank of this misfit matrix

Lipschitz Continuous MDPs

Rank <= Covering number of state space

[KLK, 03]

Factored MDPs

Rank <= exp(in-degree)

[GKPV, 03; OV, 13, NIPS]

Lipschitz Continuous MDPs

Rank <= Covering number of state space

[KLK, 03]

POMDP
Rank <= # of hidden states

[KAL, 16 NIPS]

Factored MDPs

Rank <= exp(in-degree)

[GKPV, 03; OV, 13, NIPS]

Lipschitz Continuous MDPs

Rank <= Covering number of state space

[KLK, 03]

POMDP
Rank <= # of hidden states

[KAL, 16 NIPS]

Factored MDPs

Rank <= exp(in-degree)

[GKPV, 03; OV, 13, NIPS]

Linear Quadratic Regulator
Rank = O(d^2)

Linear Quadratic Regulator

Rank = O(d^2)

Rank <= # of hidden states

$$\tilde{O}\left(\frac{H^3R^2|\mathcal{A}|}{\epsilon^2}\log\left(\frac{|\mathcal{F}||\mathcal{P}|}{\delta}\right)\right)$$

Complexity of Discriminators & Models

Complexity of Discriminators & Models

Supervised Learning Type Generalization!

Generalization & Sample Efficiency via...

1. Expert Demonstration

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML]

[Sun, Gordon, Boots, Bagnell, 18, NeurIPS]

$$\tilde{O}\left(\frac{H^3R^2|\mathcal{A}|}{\epsilon^2}\log\left(\frac{|\mathcal{F}||\mathcal{P}|}{\delta}\right)\right)$$

Complexity of Discriminators & Models

Generalization & Sample Efficiency via...

1. Expert Demonstration

[Sun, Venkatraman, Gordon, Boots, Bagnell, 17, ICML]
[Sun, Gordon, Boots, Bagnell, 18, NeurIPS]

2. Exploiting Structures

[Sun, Jiang, Krishnamurthy, Agarwal, Langford, arXiv, 18]

Future Work

Medical Treatment

Autonomous Driving

Education

Assistance in Disaster Recovery

Interactive Imitation Learning

No Interaction
No Expert Action
No Reward

Imitation Learning from Observations

[Sun et.al, In Submission, 19]

No Interaction
No Expert Action
No Reward

Imitation Learning from Observations

[Sun et.al, In Submission, 19]

[Sun et.al, In Submission, 19]

[Sun et.al, In Submission, 19]

[Sun et.al, In Submission, 19]

[Sun et.al, In Submission, 19]

[Sun et.al, In Submission, 19]

[Sun et.al, In Submission, 19]

[Sun et.al, In Submission, 19]

[Sun et.al, In Submission, 19]

Learn policies using Integral Probability Metric

Supervised Learning Type Generalization!

Promising Simulation Results...

[Fetch Robot Simulator from OpenAl Gym]

Promising Simulation Results...

[Fetch Robot Simulator from OpenAl Gym]

Image from https://www.asme.org/engineering-topics/articles/ robotics/robots-kitchen-at-the-table

Promising Simulation Results...

[Fetch Robot Simulator from OpenAl Gym]

Image from https://www.asme.org/engineering-topics/articles/ robotics/robots-kitchen-at-the-table

Lots of Challenges:

- -Learn from videos
- Interaction with experts

Assistance in Disaster Recovery

Right Leg Jump Demo

Right Leg Jump Demo

Backward Demo

Right Leg Jump Demo

Backward Demo

Forward Demo

Right Leg Jump Demo

Backward Demo

Forward Demo

New task: Stand up with little to no training?

Right Leg Jump Demo

Backward Demo

Forward Demo

Offline Learning From Prior Relevant **Experiences**

New task: Stand up with little to no training?

Reduction from Policy Evaluation to No-Regret Online Learning [Sun, Bagnell, UAI 15, Best Student Paper]

Reduction from Policy Evaluation to No-Regret Online Learning [Sun, Bagnell, UAI 15, Best Student Paper]

System ID

Predictive State Inference Machines

[Sun et.al., ICML 16; Venkatraman & Sun et.al., IJCAI 16, Sun et.al., ICRA 14]

Reduction from Policy Evaluation to No-Regret Online Learning [Sun, Bagnell, UAI 15, Best Student Paper]

Predictive State Inference Machines

[Sun et.al., ICML 16; Venkatraman & Sun et.al., IJCAI 16, Sun et.al., ICRA 14]

Thank You

Reduction from Policy Evaluation to No-Regret Online Learning [Sun, Bagnell, UAI 15, Best Student Paper]

Predictive State Inference Machines

[Sun et.al., ICML 16; Venkatraman & Sun et.al., IJCAI 16, Sun et.al., ICRA 14]

