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ABSTRACT
Offlinemetrics for IR evaluation are often derived from a user model

that seeks to capture the interaction between the user and the rank-

ing, conflating the interaction with a ranking of documents with the

user’s interaction with the search results page. A desirable property

of any effectiveness metric is if the scores it generates over a set of

rankings correlate well with the “satisfaction” or “goodness" scores

attributed to those same rankings by a population of searchers.

Using data from a large-scale web search engine, we find that

offline effectiveness metrics do not correlate well with a behavioural

measure of satisfaction that can be inferred from user activity logs.

We then examine three mechanisms to improve the correlation:

tuning the model parameters; improving the label coverage, so that

more kinds of item are labelled and hence included in the evaluation;

and modifying the underlying user models that describe the metrics.

In combination, these three mechanisms transform a wide range

of common metrics into “card-aware” variants which allow for the

gain from cards (or snippets), varying probabilities of clickthrough,

and good abandonment.
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1 SEARCH ENGINE RESULT PAGES
Modern web search engine result pages (SERPs) contain adver-

tisements, “instant answers” and factoids, “deep” links into a site,

maps, rows of images or video frames, suggested query refinements,

and other elements. Even where the results are traditional links,

they are typically illustrated by text extracted from the underlying

resource such as titles, query-biased captions, or representative im-

ages. More generally cards—distinct elements onscreen, each with

their own self-contained information—might be static (for example,

a factoid answer with no supporting link), might be clickable (for
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example, a link to an underlying document), or might be interactive

in some other way. Different cards can convey different amounts of

information, can be differently attractive or unattractive relative to

the search that led to them being displayed, and can lead to different

documents or to none at all.

Conventional evaluation approaches that focus on document

relevance are a poor match for modern SERPs with varying kinds

of card. Established metrics typically model a user who reads all

linked documents returned in an answer list, and benefits only from

those documents. They do not allow for the additional gain that

might arise from other interface elements, and nor do they deduct

the gain from documents that—for whatever reason—do not get

looked at by the user. This is clearly a gross simplification, and

prevents accurate measurement of SERP usefulness.

As an example, consider the SERPs in Figure 1. Card A is ex-

cellent, and provides a direct answer. This card has a high gain,

potentially leading to “good abandonment”: cases where there is

no further interaction between the user and the SERP, because

they have already achieved their goal [15]. There is no underlying

document for card A, and nothing to click on; it is meaningless to

talk about “document A”, or about the (further) gain that might be

associated with it. Card B is similar although, with older data, the

gain may be partial. In this case there is a synthetic document avail-

able (that is, one that was constructed by the search service rather

than being a native crawled document published on a web site).

Card C summarises a relevant document, but does so by extracting

exactly the information that the user sought. As was the case with

cards A and B, good abandonment is possible, even though it is a

conventional extractive summary based on a published webpage.

CardsD and E are both attractive, and a searcher might be drawn

to click either one and browse the linked documents. As it turns

out, the document behind card D is not useful while that behind

document E is; note that there is no necessary connection between

the attractiveness of the card and the gain that accrues from some

further element that is activated if the card is selected.

In this work we develop “card-aware” metrics which allow for:

• gain from cards, as well as from documents;

• varying probability of clicking through to examine a document,

due to differing attractiveness, gain in the card, or whether a

document even exists; and

• the possibility of good abandonment, that is, satisfaction with-

out any clickthrough at all.

The approach we employ is applicable to any of the weighted preci-

sion family of metrics, including precision (P@k); scaled discounted
cumulative gain (that is, DCG@k normalised into the range zero
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Figure 1: Partial SERPs from Bing (left) and Google (right) for the query [population of melbourne], captured January 2018.

to one assuming there are k full-gain documents); reciprocal rank

(RR); rank-biased precision (RBP) [20]; and INST [22].

We employ session-based user interaction data from bing.com to

demonstrate the validity of this approach, focusing on a set of com-

mon queries, and the user actions associatedwith the corresponding

SERPs. We use query reformulation rate as a surrogate for satisfac-
tion, arguing that query reformulation within multi-query sessions

is a measurable signal of dissatisfaction. By independently con-

structing judgements for the main cards present in each SERP and

for the documents underlying those cards, we are able to compare

card-oblivious and card-aware metric variants, and demonstrate

that the scores generated by the card-aware approaches correlate

better with user satisfaction.

2 RELATEDWORK
Weighted-precision metrics. Many effectiveness metrics includ-

ing precision at k documents (P@k), reciprocal rank (RR), rank-

biased precision (RBP) [20], and average precision (AP), areweighted-
precisionmetrics [30]. Sometimes also known as cascade approaches
[8], metrics in this family assume that each user looks at the doc-

ument at rank one (and in general, the document at rank i), gets
some gain from doing so (possibly zero), and then decides whether

to continue on to the document at rank two (and in general, the doc-

ument at rank i +1) with some probability. Over a universe of users,

each document in the ranking is assigned a weight that corresponds
to the fraction of attention it gets, with the weights of necessity

being non-increasing as the depth in the ranking increases.

In this linear framework the user model (and metric) is defined

entirely by the behaviour at each decision point. Following Moffat

et al. [22], we use Ci to denote the conditional probability of any

single user continuing from rank i to rank i + 1, given they just

viewed the document at rank i . Weighted-precision metrics are

then defined solely by the corresponding values forCi . For example,

for RBP, Ci is a fixed value, Ci = ϕ, for some constant ϕ chosen

according to the anticipated persistence of the user; and for RR,

Ci = 1 when the i th document is not relevant, and Ci = 0 when it

is. Moffat et al. [22] provide other examples.

Given the vectorC, the corresponding weight vectorW is readily

computed [22]. The final metric value is then the inner product of

W and a vector of gain at each rank. If the continuation probability

Ci depends not only on i , but also on the gain values at ranks 1 to i ,
thenW and the user model it corresponds to are said to be adaptive.
In the case of RR, for example,Wi = 1/k for i ≤ k when the first

relevant document is at rank k , andWi = 0 when i > k .
Moffat et al. [22] describe a further adaptive weighted-precision

effectiveness metric, INST. They argue that the continuation prob-

ability Ci might be correlated with rank, i; with the user’s target

relevance, T ; and with the gains in the listing to depth i .

Beyond documents. Various researchers have examined the role

of the SERP as an artefact in the search process. Li et al. [15] intro-

duced “good abandonment”, describing how information on a SERP

might completely satisfy a searcher, and investigated its prevalance

using both PC and mobile search query logs. Chilton and Teevan

[7] further examined how direct answers in the SERP affect follow-

on interactions with SERP elements, and also in repeated search

behaviours. Search success metrics have also incorporated good

abandonment: see, for example, Khabsa et al. [13]. Bailey et al. [3]

introduced “whole page relevance” and described an evaluation

method SASI that allows labelling of various facets of SERP ele-

ments, beyond simple topical relevance, as well as capturing holistic

properties such as freshness or coherence. Arguello et al. [1] exam-

ined image and web results, and find that lack of coherence between
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the two has a significant effect on user behaviour. Kim et al. [14]

examined how aspects of the SERP affect the judging process in

side-by-side preference evaluation methods, finding that multiple

dimensions beyond topical relevance are factored into decisions.

Enhanced user modelling within metrics. Traditional evalua-
tion with test collections makes use of a set of search topics, ranked

lists of documents returned by a retrieval system, and a relevance

judgement for each topic-document combination This approach

assumes that users view documents, and that the content of rel-

evant documents provides gain. However, most IR systems don’t

display documents directly, but first show a search results page,

typically including short summaries of each document. Based on

the summary, the user then decides whether or not to view the

underlying document. This interaction is explored by Turpin et al.

[26], who conclude that system orderings may change substantially

when summaries are taken into account.

Using interaction data from users of a commercial search engine,

Yilmaz et al. [28] developed a search user model that incorporates

explicit probabilities for clicking on summaries, based on both the

summary quality and the relevance of the underlying document,

leading to the Expected Browsing Utility metric, EBU. Their experi-

ments demonstrate that EBU is more closely correlated with user

behaviour as indicated by clicks than are other metrics.

Smucker and Clarke [25] cast the search process into a frame-

work based on time, explicitly modelling the durations of stages

such as the relatively shorter period required to read a document

summary compared to reading the actual document, and define

the time-biased gain effectiveness metric. Azzopardi et al. [2] also

considered time, deriving a C function which takes into account

the time needed to read cards of different types and which is based

on models from information foraging.

Finally, Zhang and Zhai [29] proposed the interface card model,

which represents the retrieval model as a sequence of “interface

cards” that should be presented to the user to maximize their gain

and minimise the effort required. Their framework uses Markov

Decision Processes and reinforcement learning to solve the opti-

mization problem.

Other user considerations. Of ongoing interest is the relation-

ship between IR effectiveness metrics and user-based measures of

system performance. Jiang and Allan [11] investigated the corre-

lation between user-reported perceptions (performance and task

difficulty) and session-based metrics. They found that a variant

of sDCG (session-DCG, see Järvelin et al. [10]) normalised by the

number of queries in the session showed the strongest relationship.

The relationship between online and offline effectiveness metrics

and user satisfaction was studied by Chen et al. [6], who demon-

strated that offline metrics are more strongly correlated with user-

based measures in a homogeneous search environment such as the

traditional “ten blue links”, while online metrics show a higher cor-

relation in a heterogeneous environment such as when the results

from different verticals are incorporated into a results page. Other

work has investigated the extension of click models to account for

the presence of specialised vertical results on a search engine result

page. Wang et al. [27] developed a click model that accounts for dif-

ferent user behaviours depending on the type of result (for example,

multimedia or application) that is displayed. These models were

extended by Markov et al. [18] into vertical-aware effectiveness

metrics, and shown to correlate more strongly with online signals

such as click behavior than other metrics, depending on the kind

of vertical that was present in the answer list. To account for the

presence of verticals and cards in mobile search results, Luo et al.

[16] proposed Height-Biased Gain, a metric that takes the height

of different answer items into account when calculating gain.

Other indicators have also been employed. For example, Shok-

ouhi and Guo [24] determined good abandonment by tracking the

length of time each card is visible on the screen, calling it relevant

if visible for longer than some minimum time threshold, in the

expectation that the user paused at that point to obtain the card’s

gain. Kelly [12] surveyed work on developing and deploying signals

based on user actions. Finally, note that document “usefulness” may

be different to document relevance [17].

3 EVALUATING EFFECTIVENESS METRICS
Queries. We work with a set of 994 common English-language

queries issued to bing.com, from the United States. The queries are

used as they were typed and include alternative phrasings of what

is likely to be the same need (for example, [yahoo mail] and [yahoo

mail login]), as well as clear misspellings (example: [facebok]). The

query set represents a large number of clear navigational tasks, but

also broader queries such as [crossword puzzles], [taylor swift],

and [women scientists].

Cards. Each query was re-issued to bing.com, the (first) resulting

SERP was captured, and the resulting cards were recorded. The

median number of cards per SERP was 12 (interquartile range 10–

13), including “organic” results, advertisements, multimedia (video

and images), and a range of rich results spanning maps, business

information, reviews, download links, share tickers, sports results,

lottery results, dictionary lookups, and others. We excluded small,

largely content-free elements such as pagination, result counts, or

privacy notices, but included query suggestions as these may also

be useful to a searcher.

Amedian of 9 cards per SERP pointed to other web pages (median

1 advertisement and 8 organic results). Those referenced pages were

labelled for relevance on a four-point scale using labels “bad”, “fair”,

“good”, and “excellent”. (A fifth label, “perfect”, was combined with

“excellent”.) We used trusted crowd workers who were subject to

quality control checks and were paid by the hour. Results that did

not point to a web page did not receive relevance labels. Around 10%

of pageswere labelled by two judges, and under 3% of pages received

two different labels. In these cases we used the “lower”. Pages which

were without labels, e.g. if they could not be loaded, were assumed

non-relevant.

Reformulation. Since satisfaction cannot be observed at scale,

we use query reformulations as a proxy measure [9]. We say that

a query is reformulated if, at a later point in the same session, a

second query is issued which has at least one-third of the terms

in common: for example, if [Star Wars] is followed at some stage

by [Star Wars movie], or if [restaurant near me] is followed by

[cafe near me] or by [restaurants New York]. Reformulation is a

signal that the response to the first query was inadequate, and is

an indicator of failure in regard to the first query in the pair.

bing.com
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Figure 2: Success rate across 994 distinct queries at bing.com. The

figure shows the distribution, but for commercial reasons we do

not give actual rates (they are not from 0 to 1).

Terms that varied only slightly from one query to the next, for

example small typographical fixes, were counted as “in common”.

We also counted a reformulation if a later query in the same session

was [google], [yahoo], [bing], or any of a few variants. Sessions

were segmented by 30 minutes or more of inactivity.

The reformulation rate of a query Q is the proportion of times

it is reformulated; the success rate the proportion of times it is

not reformulated. This is a relatively crude measurement, since

reformulation might still mean success, and failure might not lead

to reformulation, but is a reasonable first-order estimate. Success

rate is somewhat skewed (skewness = 2.3) but does vary from

query to query, as shown in Figure 2.

Queries for which the standard error on the reformulation rate

was greater than 0.05 were removed. This left almost 10 million

query instances, with median 2628 instances per query (mean 8914).

Relatively few queries had high reformulation, because the search

engine works well for these 994 popular queries, and because refor-

mulation isn’t seen in every failure case. Some larger proportion of

queries had low (close to zero) reformulation.

Establishing a baseline. Using the relevance labels, we calculated
a number of standard metrics for each SERP:

• Precision at 10, using binary gains;

• RR, using binary gains;

• ERR [5], using graded gains;

• SDCG at 10 (that is, DCG@10, scaled by a fixed denominator

to lie in the range 0–1 [21, 30]), using graded gains;

• RBP [20], with persistence ϕ = 0.7 and using graded gains;

• INST [22], with relevance target T = 1 and using graded gains.

Binary gains were formed from the graded gains by mapping “poor”

to ri = 0, and the other three relevance levels to ri = 1, in keeping

with evaluation campaigns such as TREC. Where we used graded

gains, the categorical labels were mapped using rr ∈ {0, 1/4, 1/2, 1},
the exponential scheme often used with DCG. The reference point

for all results is a baseline that includes “organic” results only—that

is, only the conventional “ten blue links” results, each with a title

and caption, and each linking to another page on the web.

For each metric we measure how closely the metric predicts

searcher satisfaction—assessed, as already described, via the proxy
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Figure 3: Correlation between metric score and success rate (Spear-

man’s ρ) for P@k as a function of k , for three gain mappings.

of success (non-reformulation) rate. Spearman’s rank correlation ρ
between scores and success rate is used to assess their correspon-

dence. That is, we ask of each metric the extent to which increases

in score correspond, on average, to more successful query outcomes.

If ρ is high, then changes in that metric’s scores indicate changes

in success, and the metric is a useful proxy of success.

These baseline results are summarised in the left-hand column

of Table 1 (“baseline parameters, organic”), measured on a 20%

subset of the queries, stratified according to success rate (that is,

correlations are reported against queries 1, 6, 13, . . .when ordered

by success rate). The other 80% of the queries are used for training

in later experiments, and not used as test data at any stage.
1

The three shallow metrics—RR, ERR, and INST—correlate best

with success, although the correlation is not substantial, and, in the

case of INST, not significantly different to zero. The three deeper

metrics have negative correlations, a coincidence of the fold exam-

ined here, with other folds showing slight positive correlation or

no correlation. On average, for these deep metrics, there is little

signal either way, and the variation from fold to fold suggests that

no general conclusion about system effectiveness should be drawn

based on changes in these untuned metrics.

The correlations also vary considerably across parameter choices.

Figure 3 shows how ρ changes for precision (P@k) as the cutoff k
is varied: the conventional choice k = 10 in fact gives the lowest

correlation with success rate, and P@1 fares much better. There is

also a difference in correlations when shifting from binary gains

to ternary gains (with partial credit provided for the two middle

relevance labels), and to the full range of graded gains. There is

similar variationwith othermetrics. If metric scores are to be used to

predict reformulation behaviour, it is clear that the parameter values

must be carefully selected, including both the metric’s headline

parameter and also the four values that define the gain mapping.

4 TUNING PARAMETERS
We next tuned the metric parameters, to find their best performance.

In particular, we tuned:

• for P@k , k ∈ {1, 2, 3, . . . , 15};

1
Correlation coefficients for the other four folds for all results shown in Table 1 will be

made available via an online appendix after publication. While correlation coefficients

do vary somewhat from fold to fold, the trends in Table 1 are consistent in each case.
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Baseline parameters Tuned parameters Tuned+card-aware

Metric Org. Org.+ads All Org. Org.+ads All Org. Org.+ads All

P@k −0.256 −0.187 −0.110 0.184 0.154 0.196 0.183 0.154 0.220

RR 0.091 0.109 0.140 0.154 0.154 0.197 0.241 0.154 0.221

ERR 0.109 0.114 0.167 0.140 0.144 0.181 0.146 0.161 0.231

RBP −0.111 −0.011 0.071 0.178 0.161 0.198 0.179 0.151 0.217

SDCG@k −0.217 −0.114 −0.032 0.184 0.154 0.196 0.183 0.154 0.220

INST 0.049 0.100 0.147 0.086 0.131 0.171 0.172 0.152 0.236

See section §3 §5 §5 §4 §5 §5 §6 §6 §6

Table 1: Correlations of metric scores with success rate (Spearman’s ρ, higher is better). “Baseline” uses standard metric parameters; “tuned”

selects them to maximise ρ; and then “Tuned+card-aware” adds card attractiveness labels. Training for tuned varieties was on 80% of queries;

ρ is reported over the remaining 20% in all cases. In each case the “org.” columns are organic results only (“ten blue links”); “org+ads” includes

advertisements; and “all” includes all items on the SERP. Reported correlations all ±approx. 0.06 with 95% confidence.

• for SDCG@k , k ∈ {1, 2, 3, . . . , 15};
• for RBP, ϕ ∈ {0.05, 0.10, 0.15, . . . , 0.95};
• for INST, T ∈ {1, 2, 3, 4, 5}.

Reciprocal rank and ERR do not have parameters.

Gains were also fitted to the four relevance levels. The highest

gain was fixed at 1 and the lowest at 0; the other two gains could

take any values in {0.0, 0.1, 0.2, . . . , 1.0} subject to the partial or-

dering being preserved. This has the effect of turning precision into

graded precision, although if binary gains gave good correlation

this would be allowed. Parameters and gains were fitted to max-

imise correlation against the per-query success rate. (We note that

some of these parameters, for example T , might best be modelled

per-query, or even per-user per-query, but we do not attempt this

here.) As the optimisation was complex, and in general the sur-

face was not smooth, we used evolutionary algorithms from the

rgenoud R package [19]. Fitting used an 80% stratified subset, and

the reported correlations are for the remaining 20%.

Allowing each metric to align with measured success behaviour

makes a substantial improvement (see “tuned parameters, organic”

in Table 1). All metrics now positively correlate: that is, a metric

improvement does tend to mean an improvement in searcher be-

haviour. The improvement is small in some cases—for example,

INST improves only by 0.037 points—but dramatic in others. Preci-

sion and SDCG each move from ρ ≈ −0.2 to ρ ≈ 0.2.

Once tuned, several of the metrics have similar correlation at

about ρ = 0.18, because they have learned equivalent parameters.

Precision and SDCG are both best with cutoff k = 1, RBP with

ϕ = 0.1, and INST with T = 1, which makes them all extremely

top-heavy and is not surprising given the situation (web search)

and mix of queries (popular, and often navigational). Tuned gains

give partial but small credit for the middle two relevance levels:

precision and RBP use ri ∈ {0, 0.2, 0.2, 1}, reciprocal rank uses

{0, 0, 1, 1} (recall that reciprocal rank only uses binary gains), while

ERR and INST use {0, 0.5, 0.5, 1} and {0, 0.6, 0.6, 1} respectively.

These suggest that searchers do not make the same fine distinctions

between the categories “fair” and “good” that trained judges do.

Although there is good correlation with P@1, there may still be

reason to choose another metric. In particular, P@1 and SDCG@1

(which are equivalent) only take four values—or three when the

middle two relevance levels are the same. Users may well behave

differently as P@1 changes, but it is a metric which is insensitive

to most ranking changes. The best trade-off between validity, sen-

sitivity, and other attributes will vary from one evaluation to the

next. Regardless, the simple tuning exercise we carried out here

gives much better performance across the board.

We must note an important source of uncertainty: metrics were

tuned to the success rate of a set of queries, but the relevance labels

are only from a single instance. If the SERP varied from instance

to instance, even for the same query, different behaviour might

emerge, and might not be captured in the labels and hence metrics

we have. In practise, this is not likely to be a significant issue as

SERPs for popular queries are fairly consistent.

5 CONSIDERING RICH RESULTS
The metrics discussed so far have used only so-called “organic”

results, that is, pointers to web pages or the conventional “ten

blue links”’, and do not take into account the full variety of results

searchers see (Figure 1). Including more result types might lead to

better correlations. We investigate this possibility in two stages:

first including advertisements, then including all cards.

Reading order. Results in a modern SERP do not appear in a list.

As well as headers and footers with (for example) pagination and

other controls, there are two main areas in current SERP designs: a

main sequence or “core” where most results appear, and a “right

rail” which is commonly used for summaries of entities and related

features. The metrics considered here, however, require a simple

list of labels in reading order. If only organic results are considered—

which only appear in the core—we can safely assume that searchers

read top to bottom. When a right rail is present, that assumption

must be revisited. For these experiments we assume the reading

order shown in Figure 4: first, the top two cards in the core are

examined; then anything in the right-hand rail; then ranks 3 and

beyond in the core. This adapts the results of Azzopardi et al. [2],

who examine click times and mouse movements.

Advertisements. Ads are not often considered in effectiveness

evaluation, perhaps because they do not feature in many search

engines, and perhaps because searchers are often considered “blind”



Figure 4: Assumed reading order for rich SERPs. Readers are mod-

elled as looking at the first two cards in the core; then the right rail;

then any remaining cards in the main sequence.

to them [23]. Advertisements can clearly change a searcher’s expe-

rience, however, both because they are in fact attended to [4], and

because they can provide links to relevant documents, particularly

for navigational or shopping needs.

We collected relevance labels for the documents referenced by

advertisements, and had them judged by the trusted crowd work-

ers. The “org+ads” columns in Table 1 summarise the correlations

that emerge when the previous methodology is then repeated. For

the baseline (untuned) variants, including advertisements is useful

across the board, with gains in ρ of up to 0.1 when the metrics

are able to “see” the advertisements. As advertisements typically

appear before organic results, and the untuned metrics are rather

deep, this may also correspond to reduced noise at deeper ranks.

In the tuned case, adding advertisements makes little difference

at best and leads to degradations in general, an effect consistent

across all folds. The degradation is worst in the shallow metrics

(P@1, for example), and occurs because advertisements are more

variable than organic results, as they depend not just on topic and a

degree of personalisation but also on advertiser changes, auctions,

and fairness constraints, all of which enforce variety. These effects

lead to more noise at top ranks and in more missed labels, which,

in keeping with tradition, we treat as non-relevant. The best-fit

metrics are still shallow, but the extra noise hurts correlations.

Adding all cards. The captured SERPs contain almost 90 other

kinds of card including specialisations for dates, maps and direc-

tions, definitions, stock prices, social media, generic factoids, and

many others. These substantially change the searchers’ experience,

and even though there is often no linked “document”, many of these

richer cards are designed to efficiently expose information.

Adding all cards to the evaluation leads to marked improvement

in ρ (columns “All” in Table 1), and evenwith default parameters, RR,

ERR, and INST now correlate at ρ ≈ 0.15. With tuned parameters,

correlations are around 0.2 for precision, RR, RBP, and SDCG, with

ERR and INST at 0.18 and 0.19 respectively. Labelling more kinds

of result gives a list which more closely matches what searchers

Figure 5: Models of users actions and decisions. Top: the simple

model behind weighted-precision metrics, characterised by rele-

vance (gain) vector r and continuation vector C. Bottom: extended

model with cards, examination (clickthrough), and documents.

actually see, and lets metrics align better with searcher behaviour—

even in cases where there is no “document” present.

6 CARD-AWARE READING MODELS
Including advertisements and richer cards means metrics consider

more results, but they still do not take into account the range of

actions possible on a SERP, nor the information in a card itself.

In this section we describe a simple technique that allows any

weighted precision metric to be made “card-aware”.

The upper part of Figure 5 illustrates the user model behind

weighted-precision metrics. At each rank i , the user examines a

document; accumulates gain ri ; then with probability Ci proceeds
to document ri+1, or stops with probability 1 −Ci .



The lower flowchart extends the model by making three changes:

gain can come from cards as well as from documents; not all cards

get a click, and so not all documents are examined; and the user

might stop reading after a card, not just after a document.

Gain. Conventional metrics assign some degree of gain (or utility)

to each document. To account for information in the card itself,

we break this in two: r
card,i is the gain from the i th card without

any clickthrough, and r
doc,i the further gain from the underlying

document should the user click through. We assume summaries are

extractive, so any information in the card comes from the document,

and so r
card,i + rdoc,i ≤ 1. A card and document between them

cannot contribute more than a “perfectly informative” document.

We do not make any assumptions regarding the source of r
card

and r
doc

. In a typical case they will be assigned by third-party

judges after the fact, but they may come from observed behaviours,

think-aloud protocols, or anywhere else, and they may be on any

scale so long as the inequality above is preserved.

Examination. The searcher’s choice to click or not is modelled by

E (“examine”), where Ei represents the chance of them examining

document i . Again we make no assumptions about where E comes

from or what it is conditioned on, although it is reasonable to

assume it will vary with the gain from, and also the attractiveness

of, the card. The combination of E and r
card

allows two interesting

cases to be modelled: good abandonment, when r
card,i is high and

Ei is zero; and Ei = 0 when there is a card but no clickable link.

Inner product form. As can be seen in Figure 5, the extended

user model has an extra branch/merge, and two places to stop. To

resemble a weighted-precision metric, and be computable with an

inner product, the model is reduced to a single stopping point, with

a revised continuation function C and revised gain vector r.
We first define two continuation probabilities for each rank i ,

taking C
card,i to be the chance of continuing past a card, either to

read the underlying document or to look at the next card, given that

the user is looking at card i; and taking C
doc,i to be the chance of

continuing, and reading the next card, given the user is looking at

document i . Each of these will be defined by the underlying metric

via the appropriate function. For example, for P@k bothC
card,i and

C
doc,i depend on i , while for RBP both are equal to ϕ.
For a given card/document pair, there are four possible outcomes:

(1) stop after the card, with probability 1 −C
card,i , or

(2) continue past the card (C
card,i ), click (Ei ), and stop after the

document (1 −C
doc,i ), or

(3) continue past the card (C
card,i ), click (Ei ), and continue past

the document (C
doc,i ), or

(4) continue past the card (C
card,i ), not click (1 − Ei ), and continue

to the next card.

Combining cases 3 and 4 defines a single continuation function:

Ci = Ccard,i
(
Ei Cdoc,i + (1 − Ei )

)
,

and a single value for the expected gain from the pair,

ri = rcard,i +Ccard,i Ei rdoc,i .

From C we can deriveW as before, to create a card-aware metric.

Note that if r
card
= 0, C

card
= 1, and E = 1, each card-aware metric

is identical to the original, and the user models are also similar

(searchers get no gain from cards, always click through to read

documents, and get gain only from those documents).

Implementation. Algorithm 1 calculates the revised continuation

vectorC, the revised gain vector r, and the final effectiveness score.2

It takes as input the gains from cards r
card

and documents r
doc

, as

well as a vector of examination probabilities E. The underlying

metric is represented by its C-function.

Line 4 computes the chance of continuing past the card at rank i .
At this point the user has accrued gain from previous ranks (r) and
from card i (r

card,i ). Line 5 then computes the chance of continuing

past the ith document, assuming the user has examined it: here the

gain vector includes all previous gain, plus the gain from card i and
document i . Line 6 computes the overall probability of continuing

past rank i , as above. Finally, line 7 computes the expected gain from

rank i , and updates the gain vector. Once C has been computed,

line 8 coverts it to a weight vector in the usual way.

Algorithm 1 can be used with any weighted-precision metric,

provided it is defined by a C vector. For example, AP could also

be handled if the rank positions of all cards and documents with

non-zero gain were known [21, 22].

Data and method. As before, four-level relevance labels for each
page referenced in the SERP are used to give r

doc
. A second set

of trusted crowd workers assigned labels to each card, choosing

between labels for good abandonment (good abandon); attractive
cards (would click); and unattractive cards (would skip). These labels
were assigned to the whole range of cards on the SERP.

Just as relevance labels are mapped to gain levels, card labels

were mapped to E (probability of click) and r
card

(gain from the

card) values, again with ordering contraints to be observed. Then,

for each set of gainmappings, the r
doc

vector was decreased by r
card

.

If the extended model improves correlation, high Ei should match

would click; as well as high r
card,i for good abandon. If the extended

model does not help, we should see either low E throughout, or

high E but low r
card

.

Results. The final columns of Table 1 (“tuned + card-aware”) report

the resulting correlations. Once tuned, metrics correlate similarly;

again because the best-fit parameters give rise to similar models,

with ranks 1 and 2 heavily weighted, and modest gains assigned to

themiddle two relevance levels.We also see the same improvements

from considering all card types.

Further improvements arise from appearance labels and the

card-aware user model, although more so when “All” cards are

considered. Improvements are more limited when only organic

results are considered and the lack of variety is the most likely

explanation: organic results typically look reasonable, but do not

answer the searcher’s need up front, so get labelled would click
rather than good abandon or skip, meaning that there is no extra

information to improve the metrics.

7 REMARKS AND CONCLUSIONS
Limitations and extensions. There are several limitations in the

card-aware reading model presented here, and corresponding pos-

sible extensions. First, our formulation assumes that summaries are

2
Software covering a range of metrics including P@k , RR, ERR, RBP, SDCG@k , and
INST will be made available via github.org/Microsoft/irmetrics-r.

github.org/Microsoft/irmetrics-r


Algorithm 1 Calculate card-based metric value from gains r
card

and r
doc

, probabilities E, and a metric defined by C-function(r, i), assuming

that |r
card
| = |E| = |r

doc
|, that ∀i : 0 ≤ Ei ≤ 1, that ∀i : r

card,i + rdoc,i ≤ 1, and that ∀r, i : 0 ≤ C-function(r, i) ≤ 1.

1: function Card-metric(r
card

, r
doc

, E, C-function)
2: r← ⟨⟩ ◃ Need to compute ri , the expected gain at rank i
3: for i ← 1 . . . |r

doc
| do

4: C
card,i ← C-function(⟨r, r

card,i ⟩, i) ◃ Continue past this card?

5: C
doc,i ← C-function(⟨r, r

card,i + rdoc,i ⟩, i) ◃ Continue past this document?

6: Ci ← C
card,i (EiCdoc,i + (1 − Ei )) ◃ Get probability of continuing past this (card, document) pair

7: r← ⟨r, r
card,i + Eirdoc,i ⟩ ◃ Extend r vector to include expected gain at rank i

8: W← C-to-W(C) ◃Weight vectorW is derived from C following Moffat et al. [22]

9: return W · r ◃ Inner product of gain and weight vectors

extracted from documents (where there is a backing document at

all), so that r
card,i +Ccard,iEirdoc,i ≤ 1. If a card adds information

not in the document (perhaps annotations regarding the source,

or comparisons with other documents) this would not hold. The

consequences of allowing gain > 1 vary according to the metric.

Second, the model here does not penalise mismatches. A card

that encourages clicks but leads to a useless document is bad for

users, wasting their time. To some extent this can be captured

in the choice of C function, for example by saying that viewing

poor documents is likely to lead to abandonment. If the underlying

metric allows it, an alternative would be assigning negative r
doc,i

in these cases, so expected gain for the document is also negative.

Third is the limitation of weighted-precision metrics: they have

a simplistic notion of effort, measuring expected gain per document

(card/document pair), but not accounting for features such as read-

ing time. It may be worthwhile to blend the approach here with

notions from patch theory [2] or time-biased gain [25].

Conclusions. Modern SERPs and user responses to them have ad-

vanced beyond the behavioural models used for traditional offline

metrics. In particular, users may get information from the SERP

directly; may or may not click through to read each resulting doc-

ument; and may not even have the option of clicking. If we take

reformulation rate as indicator of success, then standard metrics

are demonstrably poor at predicting search outcomes.

We can improve this by: tuning the parameters of metrics in-

cluding the allocation of gain; assigning relevance labels to more

classes of object; and building user models which allow for good

abandonment, gain from cards, and varying click probability.
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