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ABSTRACT
Two food banks catering to populations of different sizes with

different needs must divide among themselves a donation of food

items.What constitutes a “fair” allocation of the items among them?

Competitive equilibrium from equal incomes (CEEI) is a classic

solution to the problem of fair and efficient allocation of goods

among equally entitled agents [Foley 1967, Varian 1974]. Every

agent (foodbank) receives an equal endowment of artificial cur-

rency with which to “purchase” bundles of goods (food items).

Prices for the goods are set high enough such that the agents can

simultaneously get their favorite within-budget bundle, and low

enough such that all goods are allocated (no waste). A CEEI satisfies

mathematical notions of fairness like fair-share, and also has built-

in transparency – prices can be published so the agents can verify

they’re being treated equally. However, a CEEI is not guaranteed

to exist when the items are indivisible.

We study competitive equilibrium from generic incomes (CEGI),

which is based on the idea of slightly perturbed endowments, and

enjoys similar fairness, efficiency and transparency properties as

CEEI. We show that when the two agents have almost equal en-

dowments and additive preferences for the items, a CEGI always

exists. We then consider agents who are a priori non-equal (like

different-sized foodbanks); we formulate a new notion of fair allo-

cation among non-equals satisfied by CEGI, and show existence in

cases of interest (like when the agents have identical preferences).

Experiments on simulated and Spliddit data (a popular fair division

website) indicate more general existence. Our results open opportu-

nities for future research on fairness through generic endowments,

and on fair treatment of non-equals.
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1 INTRODUCTION.
We study fair and efficient allocation of indivisible goods in set-

tings without money, where agents have possibly very different

a priori entitlements to the goods. Such settings arise in the con-

text of real-life allocation decisions, such as allocating donations to

food banks [48], allocating courses to students or shifts to work-

ers [17], or sharing scientific/computational resources within a

university or company. Important policy objectives often shape

different entitlements to the resources [28]. We wish to develop

notions of fairness that apply to such settings; our approach is to

study fairness through the prism of competitive market equilibrium

– a connection made long ago by [31, 56].

1.1 The economic concept of equilibrium in
Fisher markets with indivisible goods.

Let us suspend for a few paragraphs the discussion of fairness and

introduce the market equilibrium concept from microeconomics.

Imagine endowing the agents with budgets of some fake currency.

In a competitive equilibrium of the resulting market, goods are

assigned prices, each player takes his preferred set of goods among

those that are within his budget, and the market clears. By the first

welfare theorem, the resulting allocation is Pareto efficient.

In this paper we focus on the simple Fisher market model [10],

where a (hypothetical) seller bringsm goods to the market and the

n agents bring certain positive amounts of artificial currency in

the form of budgets b1, . . . ,bn . The seller has no use for the goods

and the players have no use for their budget, but each agent has a

preference order among all possible bundles of goods. In this model,

if some goods are divisible, a competitive equilibrium is known to

exist when agents’ preferences satisfy mild conditions (e.g., [29]).

We focus on the case where all goods are indivisible. It is not hard
to see that an equilibrium need not exist – just consider a single

indivisible item sold among two agents, both with the same budget

of 1. Indeed, if the item’s price is at most 1 then both agents desire

it, while if the price is strictly above 1 then neither can afford it and

the market does not clear.
1

In this simple example, non-existence is a knife-edge outcome:

if the budgets are 1 + ϵ and 1 instead of precisely equal, then an

equilibrium exists by setting the item price in between the two

budgets. To avoid such knife-edge non-existence results, Budish

[17] initiates the study of almost-equal budgets.2 In this paper we

1
Recall that players have no value for money, so an agent is not satisfied if the price is

1 but he does not get the item.

2
Budish [17] couples almost-equal budgets with an approximate equilibrium notion

that requires giving up market clearance; in contrast, our results will not require

market clearance relaxation.
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further advance this idea by considering generic budgets – arbitrary

budgets (possibly far from equal) to which small perturbations have

been added (see Section 2.2.2 for a definition).

While generic budgets may not be a silver bullet solution to equi-

librium non-existence, anecdotal evidence gathered from computer

simulations and real-life data suggests that existence in our model

is quite common with generic budgets. A computerized search we

ran over 2-player markets with generic budgets produced no non-

existence examples (details appear in Appendix C). This means that

a competitive equilibrium can be a useful way to allocate goods

in Fisher markets with indivisibilities and generic budgets, which

brings us to the question of its fairness properties.

1.2 Fairness with indivisible goods and
different entitlements.

Which allocations of goods among players should be considered

“fair”? A vast literature is devoted to this question (for expositions

see, e.g., [12, 13, Chapters 11–13]). Many standard notions of fair-

ness in the literature reflect an underlying assumption that all

players have an equally-strong claim to the goods. However, some

players may be a priorimuch more entitled to the goods than others

(see, e.g. [50, Chapters 3 and 11]). Real-life examples include – in

addition to the ones mentioned above – partners who own different

shares of the partnership’s holdings [23], different departments

sharing a company’s computational resources [34], or family mem-

bers splitting an heirloom [47]. Our model captures these situations,

since the entitlement of player i can be encoded by his budget bi
(we may assume without loss of generality that

∑
i bi = 1).

An appropriate notion of fairness should of course take into ac-

count the indivisible goods and different entitlements, and capture

the idea of “proportional satisfaction of claims” [16, p. 95]. In the

special case where all entitlements are equal (b1 = ... = bn = 1/n),
envy-freeness (no player prefers another’s allocation to his own)

is an important fairness criterion [31], but it is not clear how to

generalize this notion to heterogeneous entitlements. Fair share
(every player i prefers his allocation to a bi -fraction of all items)

is also an important fairness criterion [53], but it does not easily

extend to indivisible items.

In this paper we adapt a well-known approach to fair allocation

with equal entitlements – finding a competitive equilibrium from
equal incomes (CEEI ) [7, 56] – to the case of unequal entitlements.

We treat the players as buyers and their entitlements as budgets,

and seek a competitive equilibrium in the resulting Fisher market.

Such an equilibrium is not guaranteed to exist, but this is to be

expected – indivisibility can indeed undermine the ability to fairly

allocate. Our idea is to first perturb the entitlements (budgets), since

competitive equilibrium from generic incomes (CEGI) may exist

more widely and offer approximate fairness guarantees that are the

best possible given indivisibilities. Thus, a better understanding of
competitive equilibrium with generic budgets can help reach fair or
approximately fair division of indivisible items among players with
heterogeneous entitlements.

1.3 Our results.
We begin by showing in Section 3 that when a CE exists, its allo-

cation has a natural fairness property related to the well-known

cut-and-choose protocol. Recall that in the cut-and-choose protocol,

say with 2 players, one player (the “cutter”) divides the items into

2 sets, and the other player chooses her favorite set; the resulting

allocation is intuitively fair. More precisely, each player gets a bun-

dle she prefers at least as much as the one she can guarantee for

herself as the cutter, called her maximin share (MMS). We build

upon [17] to show that CE allocations have a generalized maximin

share guarantee which is appropriate for different budgets. Namely,

an ℓ-out-of-d maximin share of a player is any bundle at least as

good as the one she can guarantee by the following (hypothetical)

protocol: the player partitions the items into d parts (some may be

empty), and then takes the worst ℓ of these parts (since the other

players were entitled to d − ℓ of the parts and presumably their

choice was worst-case for the cutter).

Theorem 1.1 (Fairness). In any CE allocation, for every player
i ∈ N and rational number ℓ/d ≤ bi , player i gets her ℓ-out-of-d
maximin share.

In Section 3 we discuss in what sense the guarantee of Theo-

rem 1.1 improves upon that of [17], besides being applicable to a

priori non-equal players.

We then turn to the question of existence, focusing on the 2-

player case with additive preferences. Besides being the simplest

case in which it is not known whether generic budgets guarantee

CE existence, the 2-player case is probably the most important in

practice (e.g., Fair Outcomes Inc. is a website dedicated to 2 players).

As we shall see, it already provides rich technical challenges that

require novel techniques.

Our initial result for this setting is establishing the second theo-

rem of welfare (the first welfare theorem is known to hold):

Theorem 1.2 (Second welfare theorem). Consider 2 players
with additive preferences. For every Pareto efficient allocation S =

(S1,S2), there exist budgets b1,b2 and prices p such that (S,p) is a
CE.

We then identify large families of instances for which a CE exists:

Theorem 1.3 (Existence results). Consider 2 players with ad-
ditive preferences v1,v2. A CE with generic budgets always exists in
markets satisfying any one of the following conditions:

• Existence of a proportional allocation S = (S1,S2) in which
every player i receives at least a bi -fraction of his total value.

• Budgets are almost equal, as in Budish’s setting (but without
revoking market clearance).

• The 2 players have identical preferences.
Moreover, the CEs guaranteed to exist assign identical prices to iden-
tical copies of the same item.

The first condition of Theorem 1.3 shows that CEs are no rarer

than allocations which satisfy the fairness property of proportional-

ity. As for the second condition, we know from [17] that a CE with

almost equal budgets satisfies “envy-freeness up to one item”, so if

the goal is to reach such envy-freeness then it is always achievable

for 2 additive players. The third condition establishes CE existence

for the case that would seem to be hardest in terms of fairness, in

which players are in direct competition.

Our results for 2 additive players are via a characterization we

develop of CEs for 2 players, which has a particularly nice form for
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additive preferences. We use this to show that linear combinations

of the additive preferences form equilibrium prices under a certain

condition. To see when this condition is fulfilled, we use a graphical

representation of all allocations and their values for the players, as

depicted in the figures accompanying the text.

Finally, we also show that in all cases to which Theorem 1.3

applies, the CE has the following fairness property: each player i re-
ceives his truncated share, which is as close to proportionality as the
indivisibility of the items allows when no proportional allocation

exists.
3

We leave the following as our main open problem:

Open Problem 1. Does there always exist a CE for 2 players with
additive preferences and generic budgets?

1.4 Additional related work.
Discrete Fisher markets.Ourmodel is a special case of Arrow-Debreu

exchange economies with indivisible items. Several other variants

have been studied: [1, 32, 41, 43, 54] consider markets with indi-

visibilities in which an infinitely divisible good plays the role of

money, and so money carries inherent value for the players. Shapley

and Scarf [51], Svensson [55] and subsequent works focus on the

house allocation problem with unit-demand players. Several works

assume a continuum of players [e.g., 39], and/or study relaxed CE

notions [e.g., 25, 27, 49]. Closest are the models of combinatorial
assignment [17], which allows non-monotonic preferences, and of

linear markets [25], which crucially relies on non-generic budgets.

CEEI. Budish [17] circumvents the non-existence of CEEI due

to indivisibilities by weakening the equilibrium concept and al-

lowing market clearance to hold only approximately. He focuses

exclusively on budgets that are almost equal. In the same model,

Othman et al. [44] show PPAD-completeness of computing an ap-

proximate CEEI, and NP-completeness of deciding the existence of

an approximate CEEI with better approximation factors than those

shown to exist by Budish. The preferences used in the hardness

proofs are non-monotone, leading Othman et al. to suggest the

research direction of restricting the preferences (as we do here) as

a way around their negative results. Brânzei et al. [15] study (exact)

CEEI existence for two valuation classes (perfect substitutes and

complements) with non-generic budgets. For divisible items, there

has been renewed interest in CEEI under additive preferences due

to their succinctness and practicality. Bogomolnaia and Moulin [7]

offer a characterization based on natural axioms, and Bogomolnaia

et al. [8] analyze CEEI allocations of “bads” rather than goods.

Fairness with indivisibilities.Most notions of fair allocation in the

classic literature apply to divisible items. Bouveret et al. [9] survey

research on fairness with indivisible items, emphasizing compu-

tational challenges (see also [6, 24]). The works of [37, 38] study

envy minimization (rather than elimination) with indivisibilities.

Guruswami et al. [36] study envy-freeness in the context of profit-

maximizing pricing. Several recent works [3, 14, 19, 21, 22, 33]

consider the approximation of Nash social welfare and related fair-

ness guarantees. As for practical implementations of fair division

with indivisibilities, these are discussed by Budish and Cantillon

3
We define truncated share as any bundle the player prefers at least as much as

his most preferred Pareto efficient allocation S = (S1, S2) for which vi (Si ) ≤

bi · vi ({1, . . . ,m }).

[18] (for responsive preferences), Othman et al. [45] (implementing

findings of Budish [17]), Goldman and Procaccia [35] (presenting

the Spliddit website for additive preferences), and Brams and Taylor

[12] (presenting the adjusted winner algorithm in which one item

may need to be divided). Mechanism design aspects appear in [2].

For further discussion see Section 2.3.

Concurrent and subsequent work. Recently there has been in-

creasing interest in fair division of indivisible goods; the following

works appeared concurrently or subsequently to early versions of

our paper. Several additional results related to CEs with generic

budgets appear in our companion paper, which studies other classes

of preferences and more than 2 players (citation omitted to accom-

modate the double-blind policy). Farhadi et al. [30] independently

develop a new fairness notion for allocation among agents with

cardinal preferences and different entitlements. Their notion is dis-

tinct from ours and is not directly related to the solution concept of

a CE. For example, their fairness notion is not always guaranteed

when allocating 3 items among players with generic budgets (as

implied in their Theorem 2.1). This is at odds with our CE existence

results and resulting fairness guarantees according to our notions

of fairness (Proposition 3.3 and companion paper), demonstrating

the difference between the approaches. Several recent papers have

advanced our understanding of envy-freeness, including [46] which

studies the envy-free relaxation EF-1
*
suggested by [19], and the

works of [5] and [20] which study envy-freeness with incomplete

knowledge.

2 MODEL.
In this section we formulate our market model and competitive

equilibrium notion (with generic budgets), and present fairness

preliminaries.

2.1 Market setting.
We study discrete Fisher markets which consist of m indivisible

items M and n = 2 agents N = {1, 2}, whom we refer to by the

game-theoretic term players. We refer to subsets of items as bundles

and often denote them by S or T . Each player i ∈ N has a cardinal
preference, represented by a valuation function vi : 2

M → ℜ+

which assigns to every bundle S a nonnegative value vi (S). Player i
prefers bundle S to bundleT iffvi (S) > vi (T ), and cardinality allows
us to compare by how much – by considering the ratio vi (S)/vi (T ).
The absolute values themselves however don’t matter, hence a

cardinal valuation can be normalized without loss of generality

(wlog).

Our results hold primarily for the class of additive preferences. A
cardinal preference vi is additive if vi (S) =

∑
j ∈S vi ({j}) for every

bundle S . We assume wlog thatvi is normalized, i.e.,vi (M) = 1. We

also assume that preferences are monotone (satisfy free disposal),

i.e., vi (S) < vi (T ) whenever S ⊂ T . Moreover we assume strict
preferences (no indifferences), i.e., either vi (S) < vi (T ) or vi (S) >
vi (T )whenever S , T . We allow one exception to strictness – items

may be identical in which case preferences over them are allowed

to be weakly-monotone rather than strictly so.
4

4
All the CEs in our existence results assign the same prices to identical items. This is

similar to the treatment of identical items in [17], where prices are assigned to classes

rather than to individual seats.
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In addition to preferences, players in our model have budgets. Let
b = (b1,b2, . . . ,bn ) be a budget profile, where bi > 0 is player i’s
budget. Unless stated otherwise, we assume wlog that

∑n
i=1

bi = 1,

and b1 ≥ b2 ≥ . . . ≥ bn (every market can be converted to satisfy

these properties by renaming and normalization).

We emphasize that budgets and “money” in our model are only

means for allocating items among players with different entitle-

ments. Money has no intrinsic value for the players, whose pref-

erences are over subsets of items and who disregard any leftover

budget. For this reason, it is important that the preferences are

scale-free, in contrast to a model with money where a value vi, j
can be interpreted as the amount player i is willing to pay for item

j. Similarly, scale-dependent measures of social efficiency and fair-

ness like welfare and egalitarianism (maximizing the value of the

worst-off player) are inappropriate in our model.

2.2 Competitive equilibrium (CE).
The goal of the market is to allocate the items among the players.

An allocation S = (S1,S2, . . . ,Sn ) is a partition of all items among

the players, i.e., Si ∩Sk = ∅ for i , k and

⋃
i Si = M . By definition,

an allocation is feasible (no item is allocated more than once) and

market clearing (every item is allocated).

A competitive equilibrium is an allocation together with item

prices that “stabilize” it. Let p = (p1,p2, . . . ,pm ) denote a vector

of non-negative item prices. The price p(S) of a bundle S is then∑
j ∈S pj . We say that S is within budget bi if p(S) ≤ bi , and that it

is demanded by player i at price vector p if it is the most preferred

bundle within her budget at these prices. Formally, p(Si ) ≤ bi , and
p(T ) > bi for every T such that v(T ) > v(Si ). We can now define

our equilibrium notion:

Definition 2.1 (CE). A competitive equilibrium (CE) is a pair (S,p)
of allocationS and item pricesp, such thatSi is demanded by player

i at prices p for every i ∈ N .

Given a market with preferences {vi }i ∈N and budget profile b,
an allocation S is supported in a CE if there exist item prices p such

that (S,p) is a CE. Where only preferences are given, we overload

this notion and say that S is supported in a CE if there exist prices

p and budgets b such that (S,p) is a CE.
Given budgets b and an allocation S, we say that prices p are

budget-exhausting if p(Si ) = bi for every player i . Note that if p is

budget-exhausting then every player is allocated, i.e., Si , ∅ for

every i (since bi > 0). We observe that budget-exhaustion is wlog

when every player is allocated, and use this throughout the paper:

Claim 1 (Budget-exhausting prices are wlog). For every CE
(S,p) such that Si , ∅ for every i ∈ N , there exists a CE (S,p′) in
which p′ is budget-exhausting.

Proof. As every player is allocated at least one item, we can

raise the price of that item in his allocated bundle until her budget

is exhausted. The new prices form a CE with the original allocation

since every player still gets her demanded set. �

2.2.1 Pareto optimality (PO).. What does it means for an allocation

(CE or otherwise) to be “efficient”?

Definition 2.2 (PO). Consider a market with preferences {vi }i ∈N .

An allocation S is Pareto optimal (PO) (a.k.a. Pareto efficient) if no

allocation S′ dominates S, i.e., if for every S′ , S there exists a

player i for whom vi (Si ) > vi (S
′
i ).

We use the notation P̃O = P̃O(v1,v2) to denote the set of all

different PO allocations for preferences v1,v2.

There are two kinds of fundamental welfare theorems in eco-

nomics that apply to various market equilibrium notions. The first

is about Pareto optimality and holds for CEs in our setting; we

discuss the second in Section 4.

Theorem 2.3 (First welfare theorem). Let (S,p) be a CE. Then
S is PO.

Proof (for completeness). Assume for contradiction an alter-

native allocation S′
, such that for every player i for whom Si , S′

i
it holds that vi (Si ) < vi (S

′
i ). Consider the total payment

∑
i p(S

′
i )

for the alternative allocation given the CE prices p. By market clear-

ance,

∑
i p(S

′
i ) =

∑
i p(Si ). Therefore there must exist a player i

for whom Si , S′
i but p(S

′
i ) ≤ p(Si ). This means that Si cannot

be demanded by player i , leading to a contradiction. �

2.2.2 Generic budgets (vs. different budgets). We are interested

in showing generic existence of a CE for classes of markets. We

use the standard notion of genericity, i.e., “all except for a zero-

measure”, or equivalently, “with tiny random perturbations”. By

generic existence we thus mean that for every market in the class,

for every vector of budgets except for a zero-measure subset, a CE

exists. An equivalent way to say this is: for every market in the class,

for every vector of budgets, by adding tiny random perturbations

to the budgets we get a new instance in which a CE exists with

probability 1.

A useful way of specifying a zero-measure subset of budgets is

as those which satisfy some condition, for instance, b1 = 2b2. The

conditions we use differ among different CE existence results, and

for concreteness we shall list them explicitly within each result;

we emphasize however that the conditions themselves are entirely

irrelevant to our contribution, as long as the measure of budgets

satisfying them is zero.

Generic budgets are not to be confused with different (or arbi-
trary) budgets, by which we mean budgets that are not necessarily

close to one another. While fair allocation among (almost) equal

players is well-studied, much less is known for players who have a

priori different entitlements, as modeled by different budgets.

2.3 Fairness preliminaries.
We include here the fairness preliminaries most related to our

results; a more detailed account – including ordinal preferences in
addition to cardinal ones, envy-freeness in addition to fair share, and

Nash social welfare – appears in Appendix 2.3 and is summarized in

Tables 1-2. These tables also show where our new fairness notions

fit in with existing ones.

The “two most important tests of equity” according to Moulin

[42, p.166] are (i) guaranteeing each player his fair share (FS); and
(ii) envy-freeness (EF). Our main concern is FS, “probably the least

controversial fairness requirement in the literature” [8] – in the

setting of indivisible items and players with different budgets for

which not much is known. Intuitively, FS for divisible items and
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equal-budget players guarantees that each player believes she re-

ceives at least 1/n of the divisible “cake” (while EF guarantees she

believes no one else receives a better slice than hers). More formally,

FS requires for each player to receive a bundle that she prefers at

least as much as the bundle consisting of a 1/n-fraction of every

divisible item on the market.

When items are indivisible, to define FS we must use the cardinal

nature of the preferences in our model. The parallel of FS is the

notion of proportionality, which extends naturally to players with

different budgets: Given a budget profile b, an allocation S gives

player i his budget-proportional share if player i receives at least a
bi -fraction of his value for all items, that is vi (Si ) ≥ bi ·vi (M). An

allocation is budget-proportional (a.k.a. weighted-proportional) if
every player receives his proportional share. When all budgets are

equal, such an allocation is simply called proportional.
Unfortunately, budget-proportionality is a very restrictive fair-

ness requirement when dealing with indivisible items (see Section

5). Budish [17] studies the following weaker notion:

Definition 2.4 (FS with indivisibilities). An allocation S guaran-

tees 1-out-of-n maximin share (MMS) if every player receives a

bundle she prefers at least as much as the bundle she can guarantee

for herself by the following procedure: partitioning the items into

n parts, and allowing the n − 1 other players to chose their parts

first (assuming their choice is the worst possible for her).

Every CE for n players with equal budgets gives every player

his 1-out-of-n maximin share and achieves EF. Budish [17] shows

that every CE for n players with almost equal budgets guarantees
1-out-of-(n + 1) maximin share (as if there were an extra player).

In Proposition 3.3 we generalize this result to different budgets, by
defining the fairness notion of ℓ-out-of-d maximin share.

3 FAIRNESS PROPERTIES OF EQUILIBRIUM.
We are interested in fairness properties that are guaranteed by

the existence of a CE when players have arbitrary budgets (not

necessarily equal or almost equal). In a sense, we are building upon

the classic connection between CE with equal budgets and fairness,
expanding it to different budgets, and using it to derive a natural

fairness notion appropriate for a priori non-equal players.

In Section 3.1 we define our notion (Def. 3.2): a parameterized

version of the 1-out-of-n maximin share guarantee (Def. 2.4), gener-

alizing it to accommodate arbitrary (possibly very different) budgets.

In Section 3.2 we show that every CE guarantees fairness according

to our notion (Proposition 3.3), and in Section 3.3 we briefly discuss

implications. (We remark that in subsequent sections we discuss a

different fairness notion – truncated share – which is guaranteed

by all of our CE existence results but not by every CE in general.)

3.1 Definition of ℓ-out-of-d maximin share.
Consider a player i . Her ℓ-out-of-d maximin bundle is the bundle she

can guarantee for herself by the following (hypothetical) protocol:

the player partitions the items into d parts, lets the other players

choosed−ℓ of these parts (their choice is assumed to be worst-case),

then receives the remaining ℓ parts.

Example 3.1. The 2-out-of-3 maximin bundle of an additive

player who values items (A,B,C) at (1, 2, 3) is {A,B}.

Player i’s ℓ-out-of-d maximin share reflects how preferable her ℓ-

out-of-d maximin bundle is for her. We now give a formal definition:

Definition 3.2. An allocation S guarantees player i her ℓ-out-of-d
maximin share if

vi (Si ) ≥ max

partition (T1, ...,Td )

{
min

L⊆[d ], |L |=ℓ

{
vi

(⋃
t ∈L

Tt

)}}
.

3.2 ℓ-out-of-d maximin share in equilibrium.
The following proposition holds generally for any market setting

(for any number of players, preference class, etc.), and shows that

a CE guarantees for every player her fair share in the sense of

Definition 3.2. The parameters ℓ and d in the ℓ-out-of-d maximin

share guarantee correspond to the budget bi of the player, thus

mirroring her a priori entitlement to the items.

Proposition 3.3. Let b be an arbitrary budget profile. Every CE
guarantees player i her ℓ-out-of-d maximin share for every rational
number ℓ/d ≤ bi .

Proof. Let (S,p) be a CE and let P denote the sum of prices∑
j ∈M pj . Since S is an allocation of all items, every item is “pur-

chased” by a player and so P =
∑
j pj ≤

∑
i bi = 1. Let (T1, . . . ,Td )

be any partition of the items into d parts, and observe that 1 ≥ P =∑
j pj = p(

⋃d
t=1

Tt ) =
∑d
t=1

p(Tt ) (using linearity of the prices). By

the pigeonhole principle, there exists a subset of ℓ parts whose total

price is at most
ℓ
d P ≤ ℓ

d . Let us call this “the cheap subset”. By the

proposition’s assumption,
ℓ
d ≤ bi . Therefore, agent i can afford the

cheap subset, and by definition of a CE the bundle actually allo-

cated to agent i must be at least as preferred by him as the cheap

subset. �

3.3 Discussion.
For the case of almost equal budgets, Proposition 3.3 subsumes the

celebrated result of Budish [17] that every CE with almost equal

budgets gives every player her 1-out-of-(n + 1) maximin share. To

see this notice that if budgets are almost equal then b1 ≥ b2 ≥ · · · ≥

bn ≥ n
n+1

b1 ≥ 1

n+1
for every player i (the last inequality follows

since b1 must be ≥ 1/n for the budgets to sum up to 1). Thus the

result of Budish can be deduced from Proposition 3.3.

Proposition 3.3 also strengthens the result of Budish in the fol-

lowing sense. Consider n = 3 a priori equal players andm = 7 items.

The 1-out-of-(n+1)maximin share in this case guarantees the worst

part out of a partition of the 7 items into 4 parts; the ℓ-out-of-d
maximin share applies with ℓ = 2,d = 7 (since ℓ/d = 2/7 ≪ 1/3),

guaranteeing the worst 2 parts out of a partition of the 7 items

into 7 parts. If a player views the items as roughly equal, the latter

guarantee is better.

The flexibility allowed by the parameters ℓ and d is even more

important when dealing with different (i.e. not almost equal) bud-

gets. Considerm = 3 items and a player with budget 5/13. Dividing

the 3 items into 13 parts and taking the worst 5 parts does not

guarantee the player anything beyond an empty bundle, whereas

taking the worst part among 3 (using that 1/3 ≤ 5/13) guarantees

her at least one item.
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4 SUFFICIENT CONDITION FOR EXISTENCE
AND 2NDWELFARE THEOREM.

In this section we state and prove Lemma 4.3 – a sufficient con-

dition for CE existence which is the workhorse of our existence

results in subsequent sections. We demonstrate its usefulness by

showing a fundamental theorem of welfare (Theorem 4.4) that was

not previously known to hold in our setting.

4.1 Equilibrium Characterization.
We begin by presenting necessary and sufficient conditions for a

budget-exhausting pricing and PO allocation to form a CE, when

each of the n = 2 players gets a non-empty set (in this case budget-

exhaustion is wlog by Claim 1). The characterization holds beyond

additive preferences for any pair of cardinal preferences. To state

it we use the following standard notation: for a preference vi and
disjoint sets S,T , the marginal value of S given T is denoted by

vi (S | T ) = vi (S ∪T ) −vi (T ).

Proposition 4.1 (Characterization). Given 2 players with
monotone cardinal preferences v1,v2, consider a PO allocation S =

(S1,S2) in which Si , ∅ for i ∈ {1, 2}, and budget-exhausting item
prices p. Then (S,p) forms a CE if and only if for i,k ∈ {1, 2}, i , k ,
and for every two bundles S ⊆ Si ,T ⊆ Sk ,

vi (S | Si \ S) > vi (T | Si \ S) and

vk (S | Sk \T ) > vk (T | Sk \T )

=⇒ p(S) > p(T ). (1)

Proof. For the first direction, assume by way of contradiction

that (S,p) is a CE but Condition (1) is violated. Wlog assume that

this is the case for S ⊆ S1 and T ⊆ S2, i.e., it holds that v1(S |

S1 \ S) > v1(T | S1 \ S) and v2(S | S2 \ T ) > v2(T | S2 \ T )
while p(S) ≤ p(T ). Then player 2 prefers to swap T for S and has

enough budget to do so, in contradiction to the fact that he gets his

demanded set in the CE.

For the other direction, consider a pair (S,p) such that Con-

dition (1) holds for every S,T as in the proposition statement.

Assume by way of contradiction that (wlog) player 2 is not allo-

cated his demanded set. Then since player 2’s budget is exhausted,

this means there must be bundles S ⊆ S1 and T ⊆ S2 such that

v2(S | S2 \ T ) > v2(T | S2 \ T ) and p(S) ≤ p(T ). Therefore,
v1(S | S1 \ S) ≤ v1(T | S1 \ S), and so by swapping S,T in the

allocation we arrive at a new allocation strictly preferred player 2,

and no worse for player 1, in contradiction to the Pareto optimality

of S. �

4.2 Sufficient condition for existence.
When preferences are additive, prices can be derived from weighted

linear combinations of the preferences:

Definition 4.2. Consider 2 additive preferencesv1,v2, and param-

eters α , β ∈ ℜ+ such that max{α , β} > 0. The combination pricing
p with parameters α , β is an item pricing that assigns every item j
the price pj = αv1({j}) + βv2({j}).

Observe that by additivity of v1,v2 in Definition 4.2, the combi-

nation pricing p with parameters α , β assigns every bundle S the

price p(S) = αv1(S) + βv2(S). Note that identical items have identi-

cal prices (items j, j ′ are identical precisely if vi ({j}) = vi ({j
′}) for

every player i).
The following lemma presents a sufficient condition for CE exis-

tence:

Lemma 4.3 (Budget-exhausting combination pricing is suf-

ficient). Consider 2 players with additive preferences and budgets
b1 ≥ b2 > 0 (possibly equal). If for a PO allocation S there exists a
budget-exhausting combination pricing p, then (S,p) is a CE.

Proof. The existence of a budget-exhausting pricing indicates

that both players are allocated nonempty bundles in S. Thus by

Proposition 4.1, to prove the lemma it is sufficient to show that

Condition (1) holds. For additive preferences this condition can be

written as: for every i,k ∈ {1, 2}, i , k , and for every two bundles

S ⊆ Si ,T ⊆ Sk ,

vi (S) > vi (T ) and vk (S) > vk (T ) =⇒ p(S) > p(T ).

Plugging in the combination pricing, for every S,T such thatv1(S) >
v1(T ) and v2(S) > v2(T ), it holds that p(S) = αv1(S) + βv2(S) >
αv1(T ) + βv2(T ) = p(T ). So Condition (1) holds for any i , k ∈

{1, 2}, and (S,p) is a CE. �

4.3 Second welfare theorem.
A second fundamental theorem of welfare economics is of the

form [40, Part III, p. 308]:

“[A]ny Pareto optimal outcome can be achieved as a
competitive equilibrium if appropriate lump-sum trans-
fers of wealth are arranged.”

In particular, this means that any socially-efficient allocation that a

social planner deems desirable for its equitability can be realized

in equilibrium. In our context, such a theorem would say that for

every set of players and their preferences, for every PO allocation S

of items among them, we can find budgets for the players and prices

for the items which support S as a CE. From the companion paper

we know that such a theorem does not hold for 2 players with

general preferences. We use Lemma 4.3 to establish the second

welfare theorem for two players with additive preferences:

Theorem 4.4 (Second welfare theorem). Consider 2 players
with additive preferences. For every PO allocation S, there exist bud-
gets b1,b2 and prices p for which (S,p) is a CE.

Moreover, if both players are allocated non-empty bundles in S,
then (S,p) is a CE for any combination pricing p and corresponding
budgets b1 = p(S1),b2 = p(S2).

Proof. If S allocates all items to a single player, wlog player

1, then we can get a CE by pricing every item at some arbitrary

price ρ > 0, setting b1 =mρ, and setting b2 < ρ (the budgets can

of course be normalized). Otherwise, fix any combination pricing

p; in particular, a combination pricing with parameters α = β = 1.

Set bi = p(Si ) for every player i . By Lemma 4.3, (S,p) is a CE,

completing the proof. �

5 BUDGET-PROPORTIONALITY.
Section 5.1 shows that if we are fortunate enough to face a set-

ting in which a budget-proportional allocation exists despite item
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indivisibility, then a CE is also guaranteed to exist (Theorem 5.2).

This existence result does not rely on generic budgets. Section 5.2

deals with the case of no budget-proportional allocation, identi-

fying two alternative candidates for CE allocations which are as

close to budget-proportional as possible. These are the basis for the

existence results in Sections 6-8.

5.1 Equilibrium existence when a
budget-proportional allocation exists.

Since preferences are normalized, player i gets his budget-proportional
share precisely when vi (Si ) ≥ bi . We say that player i gets at
most his budget-proportional share if vi (Si ) ≤ bi , and call an

allocation anti-proportional if every player gets at most his budget-

proportional share and at least one player gets strictly below it

(Claim 3 in Appendix B demonstrates the existence of markets in

which the allocation of every CE is anti-proportional.)

We show that every budget-proportional PO allocation is sup-

ported in a CE. By the same argument, anti-proportional PO al-

locations are also supported in a CE. The proof is by exploiting

(anti-)proportionality to construct a budget-exhausting combina-

tion pricing.

Proposition 5.1. For 2 players with additive preferences and any

budgets, every budget-proportional PO allocation is supported in a
CE. Additionally, every anti-proportional PO allocation is supported
in a CE.

Proof. Let v1,v2 be the preferences and b1,b2 the budgets (all

normalized), and let S = (S1,S2) be a budget-proportional PO

allocation.

Since v1(S1) ≥ b1, v2(S2) ≥ b2 and by normalization, we have

that v1(S2) = 1 −v1(S1) ≤ 1 − b1 = b2 and v2(S1) = 1 −v2(S2) ≤

1 − b2 = b1.

We now construct a budget-exhausting combination pricing with

parameters α , β . If it is the case that v1(S1) +v2(S2) = 1 (and thus

b1 = v1(S1) and b2 = v2(S2)), we set α = 1 and β = 0. Otherwise,

v1(S1) +v2(S2) − 1 , 0, and we can set

α =
v2(S2) − b2

v1(S1) +v2(S2) − 1

, β = 1 − α =
v1(S1) − b1

v1(S1) +v2(S2) − 1

. (2)

Observe that

αv1(S1) + βv2(S1) =

v2(S2) − b2

v1(S1) +v2(S2) − 1

v1(S1) +

v1(S1) − b1

v1(S1) +v2(S2) − 1

(1 −v2(S2)) = b1,

and that similarly αv1(S2) + βv2(S2) = b2. Since the allocation is

budget-proportional, it holds that α , β ≥ 0. In each of the cases we

thus have a combination pricing p with parameters α , β such that

p(S1) = b1 and p(S2) = b2, and thus by Lemma 4.3, (S,p) is a CE.
It remains to consider anti-proportional PO allocations. For ev-

ery such allocation in which one player gets at most his budget-

proportional share and the other gets less, the same pair of param-

eters α , β defined in Eq. (2) will give a budget-exhausting combina-

tion pricing with non-negative parameters, and thus a CE. �

Observe that every budget-proportional allocation is dominated

by a budget-proportional PO allocation. The following theorem

thus follows directly from Proposition 5.1.

Theorem 5.2. If there exists a budget-proportional allocation then
a CE exists.

5.2 As close as possible to
budget-proportionality.

Let us assume from now on that a budget-proportional allocation

does not exist (and nor does an anti-proportional PO allocation).

When it is not possible to simultaneously give each player her

budget-proportional share, the next best thing in terms of fairness

is her “truncated” share: the best she can obtain in any PO allocation

in which she is allocated at most her budget-proportional share. In
this section we formalize this notion, and show two PO allocations

that give both players their truncated shares. Both of these are

natural candidates for CEs, and we indeed validate this intuition in

Sections 6-8. Thus, all of our positive results establish the existence

of CEs for allocations that are “as fair as possible”. In Example 5.6

we show that not every CE has this property.

Figure 1 depicts the setting and fixes our notation.

Definition 5.3 (Truncated share). Let

b−i = max

S∈P̃O |vi (Si )≤bi
{vi (Si )}

be the maximum share player i can obtain in any PO allocation in

which she gets at most her budget-proportional share. Denote by

ˆSi = ˆSi (bi ) the maximizing PO allocation, i.e., b−i = vi (
ˆSi
i ).

5
An

allocation S gives player i her truncated budget-proportional share,
or truncated share for short, if vi (Si ) ≥ b−i .

An analogous definition is the following:

Definition 5.4 (Augmented share). Let

b+i = min

S∈P̃O |vi (Si )≥bi
{vi (Si )}

be the minimum share player i can obtain in any PO allocation

in which she gets at least her budget-proportional share. Denote

by
ˇSi = ˇSi (bi ) the minimizing PO allocation, i.e., b+i = vi ( ˇSi

i ).

An allocation S gives player i her augmented share (and thus in

particular her truncated share) if vi (Si ) ≥ b+i .

The following lemma establishes a simple but important fact

about the four allocations
ˆSi , ˆSk , ˇSi , ˇSk

, which give players i,k
their truncated or augmented shares, respectively. Namely, it turns

out that these four allocations are in fact two, since
ˆSi = ˇSk

and

ˆSk = ˇSi
. By definition, each of these two allocations gives each

player at least her truncated share.

Lemma 5.5 (Two “as fair as possible” allocations). Consider
2 players i , k ∈ {1, 2} with additive preferences and arbitrary
budgets. Assume there are no budget-proportional allocations nor PO
anti-proportional allocations. Then the PO allocation ˇSi coincides
with the PO allocation ˆSk . That is, ˇSi obtains share b+i for player i
and share b−k for player k .
5
The allocation

ˆSi (bi ) is well-defined: it is possible to give nothing to player i , so the
maximum is taken over a non-empty set of allocations.
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Figure 1: This figure illustrates the setting and nota-
tion when neither a budget-proportional nor an anti-
proportional PO allocation exists. It shows the value of an
allocation for player 1 on thev1-axis and the value of an allo-
cation for player 2 on the v2-axis. Every allocation S can be
represented by the point (v1(S1),v2(S2)) on the (v1×v2)-plane.
The two pointsA,B ∈ P̃O represent two PO allocations. The
players’ budgets b1,b2 are shown on the same axes.
The closure of the solid blue area (at or above b2 and at or
to the right of b1) includes all allocations that are budget-
proportional, and is empty by assumption. The closure of
the red dotted area represents anti-proportional allocations
and has no PO allocations by assumption. By Pareto opti-
mality, the blue striped areas to the right and above A and
B are both empty (the only allocation in their closures are
A and B). The figure also depicts rectangles T1,T2,X ,Y , and
Z , which will play a role in our arguments in Sections 6-8.

Proof. Let k = 1, i = 2 (the complementary case k = 2, i = 1 is

similar). Denote A = ˇS1
and B = ˇS2

. The notation we use for the

proof is depicted in Figure 2, where indeed in allocation A player

1 can be seen to receive value above b1, and in allocation B player

2 can be seen to receive value above b2. We now use Figure 2 to

argue that B = ˆS1
(showing that A = ˆS2

is similar).

By assumption, the closure of the blue striped area is empty of

allocations except for A and B (recall Figure 1). By definition, B

is the lowest PO allocation at or above b2. Any PO allocation at or

to the left of b1 that is to the right of B must be in the interior of

the gray rectangle X (using that there are no PO anti-proportional

allocations, i.e., no PO allocations in the closure of the dotted red

area). Yet such a point in the interior of X is not only to the right of

B, it is also below it. This means that it is closer than B to b2 from

above, yielding a contradiction.

The closed rectangleX must therefore be empty of PO allocations

except for B (and thus must also be empty of non-PO allocations).

b1

b2

10
0

1

X

v1

v2

ℬ

𝒜

Figure 2: Illustration of the proof of Lemma 5.5.

But the point corresponding to allocation
ˆS1

must fall within the

closure of rectangle X by definition (it is the rightmost PO point at

or to the left of b1, and it cannot lie to the left of B). Thus
ˆS1 = B,

completing the proof. �

The following example demonstrates that not every CE gives

every player her truncated share.

Example 5.6 (Less fair than possible). Consider 2 additive players
who both value items (A,B,C,D) at (7.9, 1, 5, 2) (unnormalized). The

budgets areb1 =
1

2
+ϵ,b2 =

1

2
−ϵ for some sufficiently small ϵ . Every

allocation is PO. The allocation ({B,C,D}, {A}) is an equilibrium

allocation in which player 2 gets a share of
7.9
15.9 < b2. The allocation

({A,B}, {C,D}) is also an equilibrium allocation, despite the fact

that player 2’s share drops to
7

15.9 .
6

6 MAIN TECHNICAL TOOL.
In this section we build our main technical tool for establishing

generic existence of CEs for players with almost equal budgets

(Section 7), and for players with the same preferences and different

budgets (Section 8). This tool is formalized in Lemma 6.3, which

establishes two conditions that together are sufficient for a CE to

exist. Namely, for a fixed player i , the conditions are:

(1) Genericity of the budgets, defined as not belonging to a zero-
measure subset Ri ;

(2) Emptiness of “rectangle” Ti from any allocations (see Fig. 1).

The genericity condition is what drives our existence results, and is

therefore to be expected. The condition that Ti is empty, however,

is a necessary artifact of our proof techniques.
7
Dropping this

6
The supporting prices for the two allocations are, respectively,p = ( 1

2
−ϵ, 1

6
, 1

6
, 1

6
+ϵ )

and p = ( 1+ϵ
2
, ϵ

2
, 1

4
, 1

4
− ϵ ).

7
Our simulations identified an example in which for each player i , Ti is

not empty, and there is no CE with item prices based on scaling vi ({j })
(other CEs were found). The example includes 7 items. Player 1’s values
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condition requires novel ideas, andwe leave this as an open question

for future research.

6.1 Definitions.
We now formally define Ri ,Ti . For the definition of Ti , recall the

allocations
ˆSi , ˆSk

(Definition 5.3).

Definition 6.1 (Rectangle of allocations Ti ). Let Ti = Ti (bi ,v1,v2)

be the set of allocations S satisfyingvi ( ˆSi
i ) < vi (Si ) < vi (

ˆSk
i ) and

0 < vk (Sk ) < vk ( ˆSk
k ).

For the definition of Ri , let d = | P̃O | be the total number of

PO allocations. Order all allocations in P̃O by player i’s preference,
such that his r -th least preferred PO allocation is at index r ≤ d .
Denote this allocation by S(r ), so that vi (S(r + 1)i ) > vi (S(r )i )
for every index r ≤ d − 1.

Definition 6.2 (Zero-measure subset of budgets Ri ). Every bud-

get pair (bi , 1 − bi ) for players (i,k), respectively, belongs to Ri =

Ri (v1,v2) iff there exists an index r such that bi
vi (S(r+1)i )

=
1−bi

1−vi (S(r )i )
.

Note that Ri is a zero-measure subset of the budget pairs.

6.2 Statement and proof.
Lemma 6.3 (Main technical tool). Consider 2 players with

additive preferences v1,v2 and budgets b1 > b2. Assume there are no
budget-proportional allocations nor PO anti-proportional allocations.
If for some player i , (b1,b2) < Ri (v1,v2) and the setTi = Ti (bi ,v1,v2)

is empty, then a CE exists. Moreover, in this CE every player gets his
truncated share.

For space considerations the proof is deferred to Appendix A.

7 EXISTENCE FOR ALMOST EQUAL
BUDGETS.

In this section we present our main result for almost equal budgets:

the generic existence of a CE for 2 additive players who are a priori

equal. The genericity of the budgets serves as a tie-breaking mech-

anism among the players, and is sufficient to ensure CE existence

for any number of items. The proof utilizes Lemma 6.3.

Theorem 7.1. Consider 2 players with additive preferences and
budgets b1 > b2. For sufficiently small ϵ > 0, if b1 −b2 ≤ ϵ then there
exists a CE that gives every player his truncated share.

For space considerations the proof is deferred to Appendix A.

8 EXISTENCE FOR DIFFERENT BUDGETS.
In this section we present our main result for different budgets:

the generic existence of a CE for 2 additive players with the same
preferenceswho can be a priori non-equal (and in fact quite different)
in their entitlement to the items.

Theorem 8.1. Consider 2 players with additive preferences and
budgets b1 > b2, such that the pair (b1,b2) does not belong to the
zero-measure subset Ri (Def. 6.2) for some player i . If the players have

are (0.1420, 0.0808, 0.1921, 0.1717, 0.1651, 0.1200, 0.1283), player 2’s values are

(0.0827, 0.1056, 0.1743, 0.1515, 0.1862, 0.1123, 0.1874). The budgets are 0.8093

and 0.1907.

the same preferences then there exists a CE that gives every player his
truncated share.

When both players share the same additive preferences, we have

a “constant-sum game” – whatever one player gains the other loses.

As a consequence, every allocation among such players is PO, and

in addition there is no anti-proportional allocation, in which both

players would get at most their truncated share and one of them

strictly so. Theorem 8.1 thus follows directly from the next lemma,

whose proof utilizes Lemma 6.3:

Lemma 8.2. Consider 2 players with additive preferences and bud-
gets b1 > b2, such that the pair (b1,b2) does not belong to the zero-
measure subset Ri (Def. 6.2) for some player i . If every allocation
among the players is PO then there exists a CE. Moreover, if there is
no anti-proportional PO allocation then this CE gives each player his
truncated share.

Proof. If there exists a budget-proportional or anti-proportional

PO allocation, then there exists a CE by Proposition 5.1. In the for-

mer case, this CE clearly gives each player his truncated share.

Otherwise, the conditions of Lemma 6.3 hold: any allocation in

T1 would be dominated by
ˆS2
, and any allocation in T2 would be

dominated by
ˆS1
, but since there are no Pareto dominated alloca-

tions these two rectangles must be empty. There thus exists a CE

in which every player gets at least his truncated share, completing

the proof. �

9 SUMMARY.
Fairness notions applicable to the allocation of indivisible items

among players with different entitlements are an under-explored

area of theory. In this paper we develop new such notions through

a classic connection to competitive equilibrium. For the question

of equilibrium existence, our main conceptual contribution is to

show that for interesting classes of 2-player additive markets, it is

sufficient to exclude degenerate market instances to get existence.

This is done by adding small noise to the players’ budgets to make

them generic (in the spirit of smoothed analysis for getting positive

computational tractability results [52]). Unlike Budish’s approach

[17], there is no need to relax the equilibrium notion, and our model

allows for possibly very different budgets. In a companion paper

we establish additional existence results and we expect more to

be added to this list in the future. Many exciting open directions

remain, including:

• What is the appropriate notion of envy-free fairness (as op-

posed to fair share) for players with different entitlements

and indivisible items? For a preliminary discussion see Ap-

pendix B.

• For which classes of markets are fair allocations according

to our notions guaranteed to exist?

• How far can we push CE generic existence? E.g., when pref-

erences are the same does it hold for more than 2 additive

players?

For the last two questions, thewidespread existence for simulated

and real data (Appendix C) seems suggestive.
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A MISSING PROOFS.
Proof of Lemma 6.3. Let i be the player for which the condi-

tions of the lemma hold. By Lemma 5.5, both PO allocations
ˇS1

and

ˇS2
give both players their truncated share. To prove the claim it

is thus sufficient to show that at least one of these allocations is

supported in a CE. We next show that indeed for some γ ∈ (0, 1),

at least one of these two allocations is supported by item prices of

the form pj = γvi ({j}) for every item j.
We first characterize the set of allocations that are within the

budget of each player when prices are set to pj = γvi ({j}) for
every item j, and γ ∈ (0, 1) (i.e., prices are a linearly scaled down

version of player i’s valuation). Player i can afford any allocation

S such that γvi (Si ) ≤ bi . Player k can afford any allocation S

such that γvi (Sk ) ≤ bk , or equivalently γ (1 − vi (Si )) ≤ 1 − bi
(using that both valuations and budgets are normalized, that is,

b1 + b2 = v1(M) = v2(M)). We illustrate this for γ = 1 in Figure 3.

Now define

γi = max

{
bi

vi ( ˇSi
i )
,

1 − bi

1 −vi ( ˇSk
i )

}
= max

{
bi
b+i
,

bk

vi ( ˇSk
k )

}
< 1,

and note thatγi is well-defined and less than 1. The assumption that

the pair of budgets does not belong to Ri (v1,v2) implies that the

maximum is obtained by only one of the terms. The proof follows by

analyzing two cases, as illustrated in Figures 4 and 5, respectively:

• Case 1. γi = bi/b+i . We show that
ˇSi

is supported by item

prices pj = γivi ({j}). For player i , every allocation S =

(Si ,Sk ) that he can afford satisfies vi (Si ) ≤ bi/γi , and this

holds with equality for
ˇSi
i . For player k , every allocationS =

(Si ,Sk ) that he can afford satisfies (bi/b
+
i )vi (Sk ) ≤ 1 − bi .

Since we are in the case that bi/b
+
i > (1 − bi )/(1 −vi ( ˇSk

i )),

we derive:

bi
b+i

(1 −vi (Si )) =
bi
b+i

vi (Sk ) ≤ 1 − bi <
bi
b+i

(1 −vi ( ˇSk
i )),

or equivalently vi (Si ) > vi ( ˇSk
i ). We claim that player k’s

most preferred allocation that satisfies this is
ˇSi
: By Lemma

5.5 it holds that
ˇSi = ˆSk

, i.e.,
ˇSi

is also the PO allocation in

which player k gets at most bk while maximizing his share.

Since there is no allocation S in which vi (Si ) > vi ( ˇSk
i ) and

vk (Sk ) > vk ( ˇSi
k ), the claim follows.

• Case 2. γi = bk/vi ( ˇSk
k ). We show that

ˇSk
is supported

by item prices pj = γivi ({j}). For player k , every allocation

S = (Si ,Sk ) that he can afford satisfiesvi (Sk ) ≤ bk/γi , and

this holds as equality for
ˇSk
k . For player i , every allocation

S = (Si ,Sk ) that he can afford satisfies vi (Si ) ≤ bi/γi <
bi

bi /vi ( ˇSi
i )
= vi ( ˇSi

i ), asbi/vi (
ˇSi
i ) <

1−bi
1−vi ( ˇSk

i )
= γi . SinceTi is

empty, it cannot be the case that vi ( ˇSk
i ) < vi (Si ) < vi (

ˇSi
i ).

Thus the most preferred allocation that player i can afford

gives him at most vi ( ˇSk
i ). This is indeed what he gets in

allocation
ˇSk
, thus

ˇSk
i is demanded by player i .

�

Proof of Theorem 7.1. Case 1. Assume first that there exists

an allocation which gives each player a value of exactly 1/2. Then

there is a PO allocation S that gives each player at least 1/2. Such

b1

b2

10
0

1

v1

v2

T1
𝒜

ℬ

Figure 3: This figure illustrates the first part of the proof of
Lemma 6.3, using the notation of Figures 1 and 2. It shows
the allocations that each player can afford given his budget
when prices are p = v1 (i.e., according to player 1’s valua-
tion). Allocations in the yellow rectangle (at or to the left
of b1) have value at most b1 for player 1, and thus also price
at most b1, so player 1 can afford them. Allocations in the
red rectangle (at or to the right of b1) have value at least b1

for player 1, and thus player 1 values player 2’s allocation at
most at 1−b1 = b2 (by normalization), so the price is at most
b2 and affordable for player 2.
The blue striped area marks allocations with value for
player 1 that is above his value for B, and value for player
2 that is above his value for A. This area has no allocation
at all, as it is subset of the union of the following areas: the
blue areas from Figure 1 without allocations below B and to
the left of A; the interiors of X and Y that are empty by the
proof of Lemma 5.5 in Figure 2; and the interior of Z that
must be empty, as an allocation there must be dominated by
some PO allocation in the areas we just argued are empty, or
by an anti-proportional PO allocation (which does not exist
by assumption).
Therefore, if rectangleT1 is empty then at these prices player
1 demands the allocation B = ˇS2 (the rightmost allocation
within the yellow area – his budget), while player 2 demands
the allocation A = ˇS1 (the highest allocation within the red
area – his budget).

an allocation is budget-proportional for b1 = b2 = 1/2, and thus by

Proposition 5.1, there exists a CE (S,p). For sufficiently small ϵ > 0,

let b1 = ( 1

2
+ ϵ)/(1 + ϵ) > 1

2
and b2 = 1 − b1 (that is, we slightly

increase the budget of player 1 while normalizing the sum b1 + b2

to 1). We claim that (S,p) is also a CE with the perturbed budgets.

Indeed, as prices have not changed, player 2 gets his demand. As

for player 1, while his budget is slightly larger, he cannot afford
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b2

10
0

1

v1

v2

b1

𝒜

ℬ

T1

Figure 4: This figure illustrates Case 1 in the proof of Lemma
6.3, using the notation of Figures 1 and 2, for player i = 1.
Prices are pj = γ1v1({j}) for every item j, where γ1 = b1/b

1

+.
The yellow and red rectangles are the allocations that play-
ers 1 and 2 can afford, respectively. Both players can afford
more allocations than when γ = 1 (cf. Figure 3). The over-
lap (the closure of the orange rectangle) contains the allo-
cations that both players can afford. The value of γ1 is such
that player 1 can exactly afford allocationA, which is clearly
demanded by him at these prices (the rightmost allocation
within his budget). We show in the proof that player 2 can-
not yet afford allocation B and any other allocation that
gives him the same value, and so allocation A is in his de-
mand (the highest allocation within his budget, using that
the blue striped area above A that is within his budget, is
empty). Thus (A,p) is a CE.

any set that is more expensive than his set S1, provided ϵ is smaller

than the difference in prices of any two bundles with non-identical

prices.

Case 2. Consider now the complementary case, in which no

allocation gives each player a value of exactly 1/2. Case 2(a). If
there is an allocation that gives both players strictly more than

1/2, consider any PO allocation that dominates it. For sufficiently

small ϵ , the PO allocation is budget-proportional for any budgets

b1 > b2 ≥ b1 − ϵ , and so the result follows from Proposition 5.1.

Note that if there is an allocation that gives both players strictly

less than 1/2 then the allocation in which the two players swap

their bundles gives both players more than 1/2.

Case 2(b). From now on we assume that every allocation gives

strictly more than 1/2 to one player, and strictly less than 1/2

to the other player. For sufficiently small ϵ , such an allocation is

neither budget-proportional nor anti-proportional for any budgets

b1 > b2 ≥ b1 − ϵ .

b2

10
0

1

v1

v2

b1

𝒜

ℬ

T1

Figure 5: This figure illustrates Case 2 in the proof of Lemma
6.3, using the notation of Figures 1 and 2, for player i = 1.
Prices are pj = γ1v1({j}) for every item j whereγ1 = b2/v1(

ˇS2

2
).

The yellow and red rectangles are as in Figure 4. The value of
γ1 is such that player 2 can exactly afford allocationB, which
is clearly demanded by him at these prices (the highest allo-
cation within his budget, using that the blue striped area is
empty and that B is PO). We show in the proof that player 1
cannot yet afford allocation A, and so allocation B is in his
demand (the rightmost allocation within his budget, using
the fact that within his budget, there are no allocations that
are also in the blue striped area right of B or in T1). Thus
(B,p) is a CE.

Recall from Definition 5.3 that
ˆS1(b1), ˆS2(b2) are PO allocations

that give players 1, 2 their truncated shares. As the set of PO alloca-

tions is finite, we can find ϵ > 0 such that there is no PO allocation

S such that 1/2 − 2ϵ < v1(S1) < 1/2 + 2ϵ . For such an ϵ , con-
sider budgets b1 > b2 ≥ b1 − ϵ . Using the notation of Figure 2, let

A = ˆS2(b2) and B = ˆS1(b1).

We first claim that A = ˆS2(1/2) and B = ˆS1(1/2). This holds

becauseB is the PO allocation that gives the largest value to player 1

that is below 1/2 − 2ϵ , but there are no PO allocations that give

player 1 value between 1/2 − 2ϵ and 1/2, and thus it also gives the

largest value to player 1 that is below 1/2. A similar argument holds

for A and the truncated share of player 2.

Because every allocation gives strictly more than 1/2 to one

player and strictly less to the other, v2(A2) < 1/2 =⇒ v1(A1) >

1/2, and v1(B1) < 1/2 =⇒ v2(B2) > 1/2.

We now show thatA andB are “symmetric” in the sense that one

is obtained from the other by swapping bundles among the players

(and so v1(A1) = v1(B2) = 1 − v1(B1) and v2(A2) = 1 − v2(B2),

as can be seen in Figure 6). The proof of the symmetry claim is

depicted in Figure 6, which also shows that T1,T2 (as defined in

Definition 6.1) are both empty. The budgets b1,b2 are almost equal,
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ℬ′

Q

Figure 6: Illustration of the proof of Theorem 7.1.

i.e., both are very close to 1/2. For every allocation S there is

a “symmetric” allocation
˜S obtained by swapping the allocated

bundles, which corresponds to a 180
◦
rotation around the point

(1/2, 1/2). Assume for contradiction that A is not symmetric to B,

that is B , Ã = B′
. Then it is also the case that A , ˜B = A ′

.

Notice that for sufficiently small ϵ , one of A ′,B′
must be located

in the interior of the axes-parallel rectangle Q as illustrated in the

figure. But since A = ˆS2(b2) gives player 2 his truncated share

closest to b2 ≈ 1/2 from below, A ′ , A cannot be located as in

the figure. Similarly, B′ , B cannot be located in the interior of

Q as in the figure, a contradiction. We have thus established that

A,B are symmetric. We now show that the closure of T1 must be

empty, except forA: If that were not the case – say,T1 contained an

allocation C , A – then its symmetric allocation
˜C would Pareto

dominate B (due to the symmetry ofA,B), a contradiction.T2 only

contains the allocation B by a similar argument using the Pareto

optimality of A.

We can set ϵ to be sufficiently small such that (b1,b2) < Ri (v1,v2).

The proof is complete by invoking Lemma 6.3. �

B CE AND FAIRNESS.
B.1 Detailed fairness preliminaries.
The discussion in this section is summarized in Tables 1 and 2,

which also show where our fairness concepts fit in with some of

the existing concepts.

B.1.1 Ordinal preferences. A player i ∈ N has an ordinal prefer-
ence ≺i among bundles of items if S ≺i T for every T preferred to

S , and there is no representation of the preference via a numerical

valuation functionvi . Fair share and envy-freeness are well-defined
for ordinal preferences when items are divisible. Intuitively, fair
share guarantees that each player believes he receives at least 1/n

Table 1: Fair share and envy-free notions for ordinal prefer-
ences (our contribution in bold).

Equal budgets Arbitrary budgets

Divisible Fair share (FS) [53] Budget-FS

items Envy-freeness (EF) [31] Budget-EF
a

Indivisible 1-out-of-n MMS [17] ℓ-out-of-d MMS
items (Definition 2.4)

EF-1 [17], EF-1
*
[19] Justified-EF

(Definition B.5), open

a
Budget-FS and budget-EF are natural generalizations of FS and EF, defined in

Appendix B.1.

Table 2: Fair share notions for cardinal preferences (our con-
tribution in bold).

Equal budgets Arbitrary budgets

Divisible items Proportionality [53] Budget-proportionality

[11, 50]

Indivisible items Proportionality [53] Truncated share
(Def. 5.3)

of the “cake” being divided, and envy-freeness guarantees he be-

lieves no one else receives a better slice than him. More formally,

fair share (FS) requires for each player to receive a bundle that he

prefers at least as much as the bundle consisting of a 1/n-fraction of

every item on the market. Player i envies player k given allocation

S if Si ≺i Sk , and an allocation is envy-free (EF) if no player envies

another player.

We observe that for divisible items, both notions extend naturally

to budgeted players: Budget-FS requires every player to prefer his

bundle at least as much as a bi -fraction of the bundle of all items.

Player i envies player k with a larger budget if he prefers a bi/bk -
fraction of Sk to Si , and player k

′
with a smaller budget if he prefers

Sk ′ to a bk ′/bi -fraction of Si ; the budget-EF property excludes such

envy.

When items are indivisible, FS is not well-defined; EF is well-

defined but often cannot be satisfied [26]. To circumvent the defini-

tion and existence issues stemming from indivisibilities, Budish [17]

proposes appropriate variants: 1-out-of-n maximin share (Defini-

tion 2.4) and envy-free up to one good (Definition B.1). Caragiannis

et al. [19] introduce a strengthening of EF-1 called EF-1
*
(or EFX),

envy-freeness up to any good, in which for every players i,k and

any item j ∈ Sk it holds that Sk \ {j} ≺i Si .
We discuss how to generalize the maximin share guarantee for

budgeted players in Section 3, defining the notion of ℓ-out-of-d max-

imin share (Definition 2.4). We also define a notion called justified-

EF for budgets (Definition B.5), and leave the question of how to

generalize (non-justified) EF to budgets as an open direction.

Application to CEs. It is well-known that every CE with n equal

budgets gives every player his 1-out-of-nmaximin share and achieves

EF. Budish [17] shows that every CE with almost equal budgets

guarantees 1-out-of-(n + 1) maximin share (whereas 1-out-of-n
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maximin share cannot always be guaranteed). Proposition 3.3 gen-

eralizes this to arbitrary budgets using the notion of ℓ-out-of-d
maximin share.

Budish [17] also shows that every CE with almost equal bud-

gets is EF-1 (a short proof appears for completeness in Proposition

B.2). We demonstrate that a CE with almost equal budgets is not

necessarily EF-1
*
(Claim 4), but any CE with arbitrary budgets is

justified-EF (Claim 5).

B.1.2 Cardinal preferences. For cardinal preferences, the parallel of
FS is the notion of proportionality, which extends naturally to play-

ers with different budgets: Given a budget profile b, an allocation

S gives player i his budget-proportional share if player i receives at
least abi -fraction of his value for all items, that isvi (Si ) ≥ bi ·vi (M).

An allocation is budget-proportional (a.k.a. weighted-proportional)
if every player receives his proportional share. When all budgets

are equal, such an allocation is simply called proportional. Budget-
proportional allocations play a central role in our positive results in

Section 5. It is clear that a budget-proportional allocation does not

always exist with indivisible items (e.g., with a single one). In Sec-

tion 5.2 we present a relaxation of budget-proportional share that

we call truncated share, which is guaranteed to exist (Definition 5.3).

Budget-EF also extends naturally to players with cardinal pref-

erences and budgets, by saying that player i envies player k if

v(Si ) < bi · vi (Sk )/bk . It is not hard to see that budget-EF implies

budget-proportionality. Another fairness notion for cardinal prefer-

ences which naturally extends to budgets (e.g., [14]) is Nash social
welfare maximization. Given a budget profile b, an allocation S is

Nash social welfare maximizing if it maximizes

∏
i (vi (Si ))

bi
, or

equivalently,

∑
i bi logvi (Si ), among all allocations (notice that the

maximizer is invariant to budget or valuation scaling).

Application to CEs. In all settings for which we prove CE exis-

tence in Sections 7 and 8, the CEs guarantee every player his trun-

cated share. A CE with equal budgets maximizes the (unweighted)

Nash social welfare; in contrast, we show a simple market with

different budgets in which a CE exists, but the allocation that maxi-

mizes Nash social welfare is not supported by a CE:

Claim 2. There exists a market of 2 items and 2 players with
additive preferences and unequal budgets, such that the unique PO
allocation that maximizes (weighted) Nash social welfare is not sup-
ported in a CE, but a CE exists.

Proof. Proof. Consider 2 players Alice and Bob with budgets

101, 100, and 2 items A,B valued by Alice v1(A) = 5,v1(B) = 4 and

by Bob v2(A) = 1000,v2(B) = 1. Clearly the only CE gives item A
to Alice and item B to Bob (since Bob cannot prevent Alice from

taking item A even if he pays his full budget for it), but the only

allocation maximizing the Nash social welfare (i.e., maximizing

101 logv1(S1) + 100 logv2(S2)) gives item A to Bob and item B to

Alice. �

Claim 3. There exists a market of 2 items and 2 players with
unequal budgets, for which a CE exists and every CE allocation is
anti-proportional.

Proof. Proof. Let b1 = 5/8,b2 = 3/8, v1(A) = 100, v1(B) = 101,

v2(A) = 1, v2(B) = 1000. Since b1 > b2, in every CE player 1 gets

his preferred item, item B. Moreover, he cannot get both items, as

b2 > b1/2 so player 2 can always afford at least one item. So in every

CE, player 1 gets item B and player 2 gets item A, and their shares

are 100/201 < 5/8 and 1/1001 < 3/8, respectively. Equilibrium

prices that support this allocation are p(A) = 3/8,p(B) = 5/8. �

B.2 Variants of envy-freeness.
In this section we discuss variants of envy-freeness, and define a

notion called justified-EF for budgets (Definition B.5). We leave the

question of how to generalize (non-justified) EF to budgets as an

open direction.

Definition B.1 (EF with indivisibilities [17]). An allocation S is

envy-free up to one good (EF-1) if for every two players i,k , for some
item j ∈ Sk it holds that Sk \ {j} ≺i Si .

Budish [17] establishes an envy-free property of CEs with almost

equal budgets, as follows (we include a short proof for complete-

ness):

Proposition B.2 (Budish [17]). Consider a CE (S,p) with almost
equal budgets b1 ≥ b2 ≥ · · · ≥ bn ≥ m−1

m b1, then the CE allocation
S is EF-1.

Proof. Proof. Fix any two players i,k . We show that there is

some item j∗ ∈ Sk such that Si ≻i Sk \ {j∗}. By Claim 1, we may

assume without loss of generality that the budget of player k is

exhausted. So there exists some item j∗ ∈ Sk such that its price pj∗

is at least bk/|Sk | ≥ bk/m. The price of Sk \ {j∗} is therefore at
most

m−1

m bk ≤ bn ≤ bi , and so i can affordSk \{j
∗}. SinceS is a CE

allocation and bundle Sk \ {j
∗} is within i’s budget, Si ≻i Sk \ {j

∗}

as needed. �

A requirement stronger than (implying) EF-1 and weaker than

(implied by) EF is the following:

Definition B.3 (Caragiannis et al. [19], Definition 4.4). An allo-

cation S is EF-1
*
if for every two players i and k , for every item

j ∈ Sk it holds that Sk \ {j} ≺i Si .

An EF-1
*
allocation always exists for 2 players – the cut-and-

choose procedure from cake-cutting results in such an allocation.

It is an open question whether it always exists in general. We

demonstrate (by an example with non-strict preferences) that an

EF-1
*
allocation is not necessarily EF even when an EF allocation

exists in the market:

Example B.4. Consider 3 symmetric additive players, 22 “small”

items worth 1 each, and 2 “large” items worth 7 each. An EF alloca-

tion is two bundles of 1 large item and 5 small items each, and one

bundle of 12 small items. An EF-1
*
allocation that is not EF is one

bundle of 2 large items, and two bundles of 11 small items each.

While Proposition B.2 shows that a CE implies EF-1 for almost

equal budgets, we next prove that a CE does not imply the stronger

property EF-1
*
.

Claim 4. The allocation of a CE from almost equal budgets is
not necessarily EF-1

*, even for 2 symmetric players with an additive
preference over 4 items.
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Proof. Proof. The proof follows from Example 5.6. Recall that

the allocation ({A,B}, {C,D}) is a CE allocation, but it is not EF-1
*
:

player 2 envies player 1 even if he gives up item B. �

We conclude this section by defining a notion of envy-freeness

that a CE with different budgets guarantees. Borrowing from the

matching literature, we define justified envy as the envy of a player

with a higher budget towards a player with a lower budget. The

intuition is that any envy of a lower-budget player towards the

allocation of a higher-budget player isn’t justified and so “doesn’t

count”, because the higher-budget player “deserves” a better alloca-

tion. We thus only care about eliminating justified envy.

Definition B.5. An allocation S is justified-EF given budgets

b1 ≥ · · · ≥ bn if for every two players i < k , player i (with the

higher budget) does not envy player k (with the lower budget). An

allocation S is justified-EF for coalitions if for every player i and
set of players K such that i < K and bi ≥

∑
k ∈K bk , player i does

not envy K , i.e.,
⋃
k ∈K Sk ≺i Si .

Claim 5. Every CE allocation (with possibly very different budgets)
is justified-EF for coalitions.

Proof. Proof. Assume that bi ≥
∑
k ∈K bk . Since the total price∑

k ∈K p(Sk ) is at most

∑
k ∈K bk , player i can afford the bundle⋃

k ∈K Sk . BecauseS is a CE allocation, it must hold that

⋃
k ∈K Sk ≺i

Si . �

C COMPUTERIZED SEARCH FOR
EQUILIBRIA.

We attempted to find a market with no CEs for additive as well as

general preferences. The instances examined were either randomly

generated by sampling from distributions, or taken from real-world

Spliddit data. The computational results suggest that CE existence

is a wider phenomenon than theoretically verified at this point.

C.1 Two players with randomly sampled
preferences.

Setup. Our computerized search ran on instances with between

4 and 8 items and 2 players with randomly generated preferences.
8

We generated both random additive preferences, where the values

for the items were drawn from the uniform or Pareto distributions

and then normalized to sum up to 1, as well as random general

monotone preferences. To generate the monotone preferences we

randomly picked an order for all singletons, then randomly placed

all pairs among the singletons while maintaining monotonicity,

then placed all triplets and so on.

In choosing budgets for the random additive instances, our goal

was to avoid instances for which we know from Lemma 6.3 or

from our companion paper that a CE exists. We thus iterated over

consecutive pairs of allocations on the Pareto optimal frontier, and

for each such pair tested several budgets that “crossed” in between

those allocations. To illustrate this, recall Figure 2 in which the

budgets “cross” between A and B. This choice ruled out the exis-

tence of budget-proportional allocations. We used additional such

considerations to carefully chose the budgets in order to rule out

8
The instances with 4 items were generated as a “sanity check”, as we know from our

companion paper that a CE exists for these instances.

all “easy cases”. For random non-additive instances, we simply used

several choices of arbitrary non-equal budgets.

Running the search. For each of the resulting instances we con-

ducted an exhaustive search for an equilibrium: we iterated over

all possible PO allocations, and for each one of them we used CVX

with the LP solver MOSEK 7 to look for equilibrium prices. Note

that although the problem is possibly computationally hard, our

instances were small enough that they could be completely solved

by the solver in a matter of seconds. We verified the equilibria found

by the LP solver by implementing a demand oracle. The run time

for 10,000 instances of 4 items was several minutes, and run time

increased noticeably as the number of items increased.

In all instances with additive preferences that we tested, we

found and verified an equilibrium. As for general preferences, in

all cases with 4 items we found an equilibrium (as expected), and

even for 5 items we needed to go over several hundred instances

before we found one that does not have an equilibrium. Instances

with general preferences that do not have an equilibrium seemed

to become more rare as the number of items increased.

C.2 Spliddit data with additive preferences.
Setup. We ran our second computerized search on instances

of Spliddit data, specifically, 803 instances created so far through

Spliddit’s “divide goods” application that were kindly provided to

us by the Spliddit team [cf. 19, Sec. 4.3]. In every Spliddit instance,

every player divides a pool of 1000 points among the instance’s

indivisible items in order to indicate his values for the items; the

resulting preference is additive in these values.

Running the search. We implemented a simple tâtonnement pro-

cess: Prices start at 0, and all players are asked for their demand at

these prices. Then the price of over-demanded items is increased

by 1, and the price of undemanded items is decreased by 1. Prices

thus remain integral throughout the process, and since our budgets

are reasonably-sized integers the process is likely to converge rea-

sonably quickly (we do not allow it to run for more than 20, 000

iterations). The running time was typically well under a minute,

usually no more than a second or two. One issue that deserves

mention (and possibly further research) is how to update the prices

when more than a single item is over- or under-demanded. Our first

attempts either updated only a single such item’s price in every it-

eration, or updated all such items’ prices – both variants converged

to a CE fairly often. We improved upon this by randomly deciding

after each price update whether or not to continue updating prices

in the current iteration.

Special case of interest. An anecdotal but interesting case is non-

demo instances with between 5 and 10 items. There were 14 such

instances available in the data, with between 3 and 9 players each.

As Spliddit assumes that players have equal entitlements, we started

by giving all players equal budgets of 100, in which case an equilib-

rium was found for less than half of the instances. When we added

small perturbations to make the budgets only almost equal (result-
ing in the budget vector (100, 103, 106, . . . )), we found a CE in all

instances. The same was true for other small perturbations that we

tried (resulting in budget vectors like (100, 101, 104, 109, . . . )). We

also tried several other budget vectors with budgets that are far
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from equal (such as (100, 151, 202, . . . ) or (100, 200, 300, . . . )), and

CEs were always found for these as well.
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