
Concurrent Prefix Recovery:
Performing CPR on a Database

Guna Prasaad∗
University of Washington
guna@cs.washington.edu

Badrish Chandramouli
Microsoft Research

badrishc@microsoft.com

Donald Kossmann
Microsoft Research

donaldk@microsoft.com

ABSTRACT

With increasing multi-core parallelism, modern databases
and key-value stores are designed for scalability and presently
yield very high throughput for the in-memory working set.
These systems typically depend on group commit using a
write-ahead log (WAL) to provide durability and crash recov-
ery. However, a WAL is expensive, particularly for update-
intensive workloads, where it also introduces a concurrency
bottleneck (the log) besides log creation and I/O overheads.
In this paper, we propose a new recovery model based on
group commit, called concurrent prefix recovery (CPR). CPR
differs from traditional group commit implementations in
two ways: (1) it provides a semantic description of commit-
ted operations, of the form “all operations until time ti from
session i”; and (2) it uses asynchronous incremental check-
pointing instead of a WAL to implement group commit in
a scalable bottleneck-free manner. CPR provides the same
consistency as a point-in-time commit, but allows a scal-
able concurrent implementation. We used CPR to make two
systems durable: (1) a custom in-memory transactional data-
base; and (2) Faster, our state-of-the-art, scalable, larger-
than-memory key-value store. Our detailed evaluation of
these modified systems shows that CPR is highly scalable
and supports concurrent performance reaching hundreds of
millions of operations per second on a multi-core machine.
ACM Reference Format:

Guna Prasaad, Badrish Chandramouli, and Donald Kossmann. 2019.
Concurrent Prefix Recovery: Performing CPR on a Database. In
2019 International Conference on Management of Data (SIGMOD ’19),

June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3299869.3300090
∗Work performed during internship at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3300090

1 INTRODUCTION

The last decade has seen huge interest in building extremely
scalable, high-performance multi-threaded data processing
systems – both databases and key-value stores. For instance,
main memory databases [9, 10, 18] exploit multiple cores
(up to thousands of cores in some cases [30]) as well as
NUMA, SIMD, HTM, and other hardware advances to drive
performance to orders-of-magnitude higher levels than those
achieved by traditional databases. Key-value stores are push-
ing performance even further: for instance, Masstree [24]
achieves high in-memory throughput – up to 30M ops/sec
on one machine – compared to traditional range indices. Our
recent open-source key-value store, FASTER [6], achieves
more than 150M ops/sec on one machine for point updates
and lookups, while supporting larger-than-memory data and
caching the hot working set in memory.

1.1 New Bottleneck and Today’s Solutions

Applications using such systems generally require some
form of durability for the changes made to application state.
Modern systems can handle extremely high update rates
in memory but struggle to retain their high performance
when durability is desired. Two broad approaches address
this requirement for durability today:
• WAL with Group Commit: The traditional approach to
achieve durability in databases is to use a write-ahead log
(WAL), in which every change to the database is recorded.
Techniques such as group commit [8, 13] enable writing
the log to disk in larger chunks, but update-intensive ap-
plications stress disk write bandwidth. Even without the
I/O bottleneck, a WAL introduces overhead – one study
found that 30% of CPU cycles are spent in generating
log records [15] due to lock contention, excessive context
switching, and buffer contention during logging.

• Checkpoint-Replay: An alternate to using a WAL, popu-
lar in streaming databases, is to take periodic, consistent,
point-in-time checkpoints, and use themwith input replay
for recovery. Taking an asynchronous checkpoint is trivial
with a WAL: we could take a fuzzy checkpoint and use the
log to recover a consistent snapshot. However, as noted
earlier, this approach limits throughput due to the WAL
bottleneck. We could avoid this if we quiesce the database

https://doi.org/10.1145/3299869.3300090
https://doi.org/10.1145/3299869.3300090

(a) Write-Ahead
Logging

(c) Concurrent Prefix
Recovery

input op sequence

(b) Point-in-time
Checkpoint

CPU

! ! + 1

ops

$%$&$' $($) $*$+$,$-

!

CPU

input op sequence

ops

$%$&$' $($) $*$+$,$-

$%$&$' $($)$*$+

$%$& $'$($)$*

$%$&$' $($) $*$+

! + 1

CPU

group commit

WAL

$& $* $% $($, $' $%.

ops

Figure 1: Approaches to Durability

but would lose asynchronicity and create downtime. A
recent proposal, CALC [26], uses asynchronous consistent
checkpoints but depends on an atomic commit log (instead
of the WAL) to define the consistency point. However, the
atomic commit log then becomes the new bottleneck, pre-
cluding scalable multi-threaded performance.
These alternatives are depicted in Fig. 1(a) and (b). Both

write-ahead logging and point-in-time checkpoints have scal-
ability issues due to the WAL and commit log bottlenecks
respectively. To validate this point, we augmented our key-
value store, Faster [6], with a WAL. Results showed that
an in-memory workload that previously achieved more than
150M ops/sec dropped to around 15M ops/sec after the WAL
was enabled, even when writing the log to memory. Creat-
ing a copy of data on the log for every update is expensive

0 20 40 60
Threads

0

20

40

60

80

T
hr

ou
gh

pu
t(

M
tx

ns
/s

ec
)

CPR
CALC
WAL

Figure 2: Scalability

and stresses contention on the
log’s tail. We also built an in-
memory transactional database
and found its throughput with
both a WAL and point-in-time
checkpointing to bottleneck at
around 20M single-key txns/sec
(see Fig. 2 and Sec. 7 for details).

This huge performance gap has caused many real deploy-
ments to forego durability altogether, e.g., by disabling the
WAL in RocksDB [27], or by using workarounds such as ap-
proximate recovery and quiesce-and-checkpoint [5]. These
approaches introduce complexity, latency, quality, and/or
performance penalties (see Sec. 8 for related work).

1.2 Our Solution

In this paper, we advocate a different approach. We adopt
the semantics of group commit, which commits a group of
operations at once, as our user model for durability. However,
instead of acknowledging individual commits, we convey
commit as “all operations issued up to time t”: we call this

model prefix recovery. Clients can use this information to
prune1 their in-flight operation log until t and expose com-
mit to users. Based on this durability model, we make the
following contributions:
• We argue that in a multi-threaded system, it is not possible
to provide a prefix recovery guarantee over a global oper-
ation timeline without introducing system blocking or a
central bottleneck. To address this problem, we propose an
augmented model called concurrent prefix recovery (CPR).
In CPR (see Fig. 1(c)), the system periodically notifies each
user thread (or session) Si of a commit point ti in its lo-
cal operation timeline, such that all operations before ti
are committed, but none after. We show that CPR has the
same consistency as prefix recovery, but allows a scalable
asynchronous implementation.

• Traditional group commit is implemented using a WAL.
Instead, we implement CPR commits using asynchronous
consistent checkpoints that capture all changes between
commits without introducing any scalability bottleneck.
However, this solution requires the ability to take incre-
mental checkpoints very quickly. Fortunately, systems
such as Faster store data in an in-place-updatable log-
structured format, making incremental checkpoints very
quick to capture and commit. Our approach unifies the
worlds of (1) asynchronous incremental checkpoints; and
(2) a WAL with group commit, augmented with in-place
updates on the WAL between commits.

• CPR commits all operations before a per-thread point in
time and none after. While it appears desirable for appli-
cations to choose specific CPR points, e.g., at input batch
boundaries, we show that if the application were to ask
for a specific set of commit points, we would be unable to
satisfy the request without causing some threads to block.
Instead, we flip the request: the application requests the
system to commit, and the system coordinates the global
construction of some commit point for each threadwithout
losing asynchronicity or creating a central bottleneck.

• While CPR makes it theoretically possible to perform
group commit in a scalable asynchronous fashion, it is
non-trivial to design systems that achieve these properties
without introducing expensive runtime synchronization.
To complete the proposal, therefore, we use CPR to build
new scalable, non-blocking durability solutions for (1) a
custom in-memory transactional database; and (2) Faster,
our state-of-the-art larger-than-memory key-value store.
We use an extended version of epoch protection [19] as
our building block for loose synchronization, and intro-
duce new state-machine based protocols to perform a CPR

1Prefix recovery and CPR also work with reliable messaging systems such
as Kafka [12], which can prune input messages until some point in time.

commit. As a result, our simple main-memory database im-
plementation scales linearly (see Fig. 2) up to 90M txns/sec
– an order-of-magnitude higher than current solutions –
while providing periodic CPR commits. Further, our im-
plementation of Faster with CPR2 reaches up to 180M
ops/sec, while supporting larger-than-memory data and
periodic CPR commits.
To recap, we identify the scalability bottleneck introduced

by durability on update-intensive workloads, and propose
CPR to alleviate this bottleneck. We then develop solutions
to realize CPR in two broad classes of systems: an in-memory
database and a larger-than-memory key-value store. Our de-
tailed evaluation shows that it is possible to achieve very
high performance in both these CPR-enabled systems, incur-
ring no overhead during normal runtime, and low overhead
during commit (in terms of throughput and latency).

The rest of the paper is organized as follows. Sec. 2 defines
CPR. We review epochs (a key building block for our designs)
in Sec. 3. Sec. 4 designs CPR for an in-memory database.
Next, we design CPR for Faster in Secs. 5 and 6. Finally, we
evaluate our solutions (Sec. 7), survey related work (Sec. 8),
and provide concluding remarks (Sec. 9).

2 CONCURRENT PREFIX RECOVERY

A database snapshot is said to be transactionally consistent if
it reflects all changes made by committed transactions, and
none made by uncommitted or in-flight transactions. In the
event of a failure, the database can recover to a consistent
state using such a snapshot, but some in-flight transactions
may be lost.

A stricter recovery guarantee is prefix recovery, where the
database – upon failure – can recover to a system-wide prefix
of all issued transactions, i.e., those that have been accepted
for processing by the database. The database state at any
given moment may not be transactionally consistent since
transactions are always being executed. A naïve method to
obtain a snapshot for prefix recovery is to stop accepting
new transactions until we obtain a consistent snapshot. This
technique, called commit-consistent checkpointing [3], force-
fully creates a physical point in time at which the database
state is consistent, but reduces availability.
An alternate method achieves this asynchronously by

maintaining two versions of the database, called stable and
live. Logically, transactions that belong to the prefix update
both the live and the stable version, whereas transactions
that do not belong to the prefix update only the live version.
The stable version is then captured asynchronously as the
snapshot for prefix recovery. The challenge, however, is in
determining an appropriate prefix since transactions are be-
ing executed concurrently. Previous approaches [26] have

2Get FASTER with CPR at https://github.com/Microsoft/FASTER.

Database

T1 T2 T3 T4 T5 T6 T7C1

C2

C3

C4

Transactions Issue Sequence of C4

Commit 2Commit 1

T1 T2 T3 T4 T5 T6 T7

T1 T2 T3 T4 T5 T6 T7 T8

T1 T2 T3 T4 T5 T6 T7

...

...

...

Figure 3: Concurrent Prefix Recovery Model

used an atomic commit log that records every transaction
commit to dynamically choose the prefix. However, as Secs. 1
and 7 reveal, such a log introduces a serial bottleneck that
greatly impedes system scalability.

We now argue that one cannot obtain a snapshot for prefix
recovery without introducing a serial bottleneck. The key
insight is that to obtain such a snapshot, we must create a
virtual time-point t corresponding to a prefix. As incoming
transactions are processed simultaneously, depending on
whether they occur before or after t , they must be executed
differently. For example, consider two transactions: T that
executes before t andT ′ that executes after. Threads must ex-
ecuteT andT ′ differently as the effect ofT must reflect in the
snapshot, whereas that ofT ′ should not. So, all threads must
agree on a common mechanism to determine this unique t ,
when chosen. To guarantee prefix recovery, threads must
coordinate before executing every transaction, which is not
possible without introducing a serial bottleneck.

To overcome this limitation, we introduce Concurrent Pre-
fix Recovery (CPR). Recall that on obtaining a prefix snapshot,
the database commits all transactions issued before a time-
point t by each of its clients. CPR consistency relaxes this
requirement by eliminating the need for a system-wide time
t . Instead, it provides a client-local time, tC , to each client C ,
such that all transactions issued byC before tC are committed
and none after tC are. We formally define CPR below:

Definition 1 (CPR Consistency). A database state is CPR

consistent if and only if, for every client C , the state contains
all its transactions committed before a unique client-local time-

point tC , and none after.

Consider the example shown in Fig. 3. The database has
4 clients issuing transactions, each assigned a client-local
sequence number. A CPR commit, commit 1 (marked as
curve) for instance, commits the transactions C1 : {T1,T2},
C2 : {T1,T2,T3}, C3 : {T1,T2}, and C4 : {T1,T2,T3}. Upon fail-
ure, the database recovers the appropriate prefix for each
client: for instance, the effects of {T1,T2,T3} for client C2.
Transaction T4 of C2 cannot be recovered. A later commit,
commit 2, persists the effects of transactions until T7 for C2,
including T4, and hence T4 can then be recovered.

It is desirable to be able to commit at client-determined
CPR points. For example, concurrent clients issuing update
requests as batches of transactions might want to commit
at batch boundaries. We claim that client-determined CPR
commit cannot be performed without quiescing the database.
Let a client-determined set of CPR points for a commit with
k clients be s1, s2, ..., sk . A transaction request s ′ by client
Ci just after si can be executed only when all transactions
issued before each of s1, s2, ..., sk have been executed. Hence,
s ′ is blocked till then. Extending this to all clients, the entire
database is blocked until all transactions before s1, ..., sk have
been processed. As a result, client-determined CPR commits
are unattainable without blocking.
A key insight from the preceding argument is that s ′ is

blocked because it must read the effects of transactions before
CPR points of every client, and these are predetermined (e.g.
at a batch boundary). To circumvent this problem, we flip
the roles: clients request for a commit, and the database
collaboratively determines the CPR point for each client
while trying to perform a CPR commit. We review the basics
of epoch protection framework next, which forms the basis
of our CPR commit algorithms.

3 EPOCH FRAMEWORK BACKGROUND

Epoch protection helps avoid coordination whenever possible.
A thread performs user operations independently without
any synchronization most of the time. It uses thread-local
data structures extensively and maintains system state by
lazily synchronizing over the state. Maintenance operations
(e.g., deciding to flush a page to disk) can be performed
collaboratively by leveraging an extended epoch protection
framework. We use epochs as a key building block to design
CPR commit protocols in this paper.

Epoch Basics. We maintain a shared atomic counter E,
called the current epoch, that can be incremented by any
thread. Every thread T has a thread-local version of E, de-
noted by ET . Threads refresh their local epoch values peri-
odically. All thread-local contexts, including the epoch val-
ues ET , are stored in a shared epoch table, with one cache-
line per thread. An epoch c is said to be safe, if all threads
have a strictly higher thread-local epoch value than c , i.e.,
∀T : ET > c . Note that if epoch c is safe, all epochs less
than c are safe as well. We additionally maintain a global
counter Es, which tracks the current maximal safe epoch. Es
is computed by scanning all entries in the epoch table and is
updated whenever a thread refreshes its epoch. The system
maintains the following invariant: ∀T : Es < ET ≤ E.

Trigger Actions. Threads can register to execute arbitrary
global actions called trigger actions when an epoch becomes
safe and a certain condition is satisfied by all thread-local

REST

PREPARE

IN-
PROGRESS

WAIT
FLUSH

! (! + 1)

Figure 4: State Machine for CPR Commit in DB

contexts. When incrementing the current epoch, say from
e to e + 1, threads can optionally associate with it a con-
dition C on the thread-local context and an action A. The
epoch framework automatically triggers A when e becomes
safe and when all thread-local contexts in the system sat-
isfy condition C . This is enabled using a drain-list, a list of
⟨epoch, cond, action⟩ tuples, where action is the callback
code fragment that must be invoked after epoch is safe and
cond is the condition that must be satisfied by all thread-local
contexts. We expose epoch protection using the following
operations that can be invoked by any thread T :
• Acquire: Reserve an entry for T and set ET to E

• Refresh: Update ET to E, Es to current maximal safe
epoch and trigger any ready actions in the drain-list

• BumpEpoch(cond, action): Increment counter E from
e to (e + 1) and add ⟨e, cond,action⟩ to drain-list

• Release: Remove entry for T from epoch table

4 CPR COMMIT IN AN IN-MEMORY

TRANSACTIONAL DATABASE

We now present an asynchronous algorithm for performing
CPR commit in a simple in-memory transactional database
that uses strict 2-Phase Locking with No-Wait deadlock-
prevention policy for concurrency control. We chose this
specific protocol for ease of exposition, and we believe that
our algorithm can be extended for other protocols as well.
We also assume memory twice the size of the database to
simplify explanation of the key benefit of adding CPR. Sec. 6
covers CPR for a real system without this assumption.

4.1 Commit Algorithm

The database has a shared-everything architecture where
any thread can access any record. All transactions issued by
a client C are processed by the same thread TC , and differ-
ent threads handle transactions from different clients using
pseudo-code in Alg. 1. A CPR commit is coordinated using
the epoch framework (Sec. 3) as shown in Alg. 2.
The algorithm eliminates the need to coordinate among

execution threads and instead, relies on fine-grained infor-
mation maintained at the records to perform a CPR commit.
Each record in the database has two values: stable and live,

Function Run()
phase, version = Global.phase, Global.version;
while true do

repeat

if inputQueue.TryDequeue(txn) then

if not Execute(txn, phase, version) then

if txn aborted due to CPR then

break;
until k times;
Refresh();
newPhase, newVersion = Global.phase, Global.version;
if phase is PREPARE and newPhase is IN_PROGRESS then

Record time tT for thread T ;
phase, version = newPhase, newVersion;

Procedure Execute(txn, phase, version)
foreach (record, accessType) in txn.ReadWriteSet() do

if record.TryAcquireLock(accessType) then
lockedRecords.Add(record);
if phase is PREPARE then

if record.version > version then

Unlock all lockedRecords;
Abort txn due to CPR;

else if phase is IN_PROGRESS or WAIT_FLUSH then

if record.version < version + 1 then

Copy record.live to record.stable;
record.version = version + 1;

else

Unlock all lockedRecords;
Abort txn;

Execute txn using live values;
Add txn to thread-local staged transactions;
Unlock all lockedRecords;

Algorithm 1: Pseudo-code for Execution Threads

and an integer that stores its current version. In steady state,
the database is at some version v . A CPR commit corre-
sponds to shifting the database version from v to (v + 1)
and capturing its state as of version v . This is lazily coordi-
nated using the epoch framework. The algorithm executes
over three phases: prepare, in-progress and wait-flush.
We maintain two shared global variables, Global.phase and
Global.version, to denote the database’s current phase and
version. Threads have a thread-local view of these variables
and update them only during epoch synchronization. Avoid-
ing frequent synchronization of these global state variables
is key to the scalability of CPR-based systems. The global
state machine corresponding to Alg. 2 is shown in Fig. 4.

Rest Phase. A commit request is issued when the database
is in rest phase and at some version v . When in rest, trans-
actions execute normally using strict 2PL with No-Wait
policy, the default high-performance phase. The algorithm is
triggered by invoking the Commit function (Alg. 2). This up-
dates the global state to prepare and adds an epoch trigger
action PrepareToInProg, which is triggered automatically

Function Commit()
Atomically set Global.phase = PREPARE;
BumpEpoch(all threads in PREPARE, PrepareToInProg);

Procedure PrepareToInProg()
Atomically set Global.phase = IN_PROGRESS;
BumpEpoch(all threads in IN_PROGRESS,

InProgToWaitFlush);

Procedure InProgToWaitFlush()
Atomically set Global.phase = WAIT_FLUSH;
foreach record in database do

if record.version == Global.version + 1 then

Capture record.stable;
else

Capture record.live;
Atomically set Global.phase, Global.version = REST,
Global.version + 1;

Commit all staged transactions;

Algorithm 2: Epoch-based State Machine

after all threads have entered prepare. Execution threads
update their local view of the phase during subsequent epoch
synchronization and enter prepare.

Prepare Phase. The prepare phase ‘prepares’ execution
threads for a shift in database version. A transaction is exe-
cuted in prepare only if its entire set of read-write instruc-
tions can be executed on version v of the database. Such
transactions are part of the commit and hence can be re-
covered on failure. To ensure CPR consistency, they must
not read the effects of transactions that are not part of the
commit. Upon encountering any record with version greater
than v , the transaction immediately aborts, and the thread
refreshes its thread-local view of system phase and version.
Interestingly, at most one transaction per thread is aborted
this way for every commit, since the thread advances to the
next phase, in-progress, when it refreshes.

In-Progress Phase. PrepareToInProg action is executed au-
tomatically after all threads enter prepare. It updates the
system phase to in-progress and adds another trigger action,
InProgToWaitFlush. When a thread refreshes its thread-local
state now, it enters in-progress. An in-progress thread
executes transactions in database version (v + 1); it updates
the version of records it reads/writes to (v+1)when it is ≤ v .
This prevents any transaction belonging to the commit from
reading the effects of those that are not. To process (v + 1)
transactions without blocking, and at the same time capture
the record’s final value at version v , we copy the live value
to the stable value location as shown in Alg. 1.

Wait-Flush Phase. Once all threads enter in-progress, the
epoch framework executes trigger action InProgToWaitFlush.
First, it sets the global phase to wait-flush, then it captures

Time Database State (Before) Thread 1 Thread 2

1 A : ⟨1, 3, −⟩, B : ⟨1, 2, −⟩ A = 5 B = 3
2 1,rest→ 1,prepare
3 A : ⟨1, 5, −⟩, B : ⟨1, 3, −⟩ B = 2 ⊗

4 A : ⟨1, 5, −⟩, B : ⟨1, 2, −⟩ ⊗ B = 1
5 1,prepare→ 1,in-progress
6 A : ⟨1, 3, −⟩, B : ⟨1, 1, −⟩ A = 5 ⊗

7 A : ⟨1, 5, −⟩, B : ⟨1, 1, −⟩ B = 7 A = 9
8 A : ⟨2, 9, 5⟩, B : ⟨1, 7, −⟩ ✘✘✘A = 3 =⇒ ⊗ B = 5
9 1,in-progress → 1,wait-flush
10 A : ⟨2, 9, 5⟩, B : ⟨2, 5, 7⟩ ⊗ A, 3
11 A : ⟨2, 3, 5⟩, B : ⟨2, 5, 7⟩ A = 9 ⊗

12 1,wait-flush→ 2,rest
13 A : ⟨2, 9, 5⟩, B : ⟨2, 5, 7⟩ ⊗ A = 1
14 A : ⟨2, 1, 5⟩, B : ⟨2, 5, 7⟩ B = 4 ⊗

15 A : ⟨2, 1, 5⟩, B : ⟨2, 4, 7⟩
rest prepare in-progress

wait-flush ⊗ Epoch-Refresh key: ⟨version, live, stable⟩

Figure 5: Sample Execution of CPR Algorithm

versionv of the database: if a record’s version is (v + 1), then
its stable value is captured, else its live value is captured as
part of the commit. Meanwhile, incoming transactions in
wait-flush are processed similar to those in in-progress.
After all records are captured and persisted, the global phase
and version are updated to rest and (v + 1) respectively.
This concludes the CPR commit of version v of the database.
Note that we may reduce commit size by capturing only
records that changed since last commit; this is an orthogonal
optimization covered in prior work [26].

4.2 CPR By Example

We now illustrate CPR on two threads for a simple database
that has two records,A and B, using Fig. 5. Each row denotes
a time step in which threads execute a 1-key write trans-
action: for instance A = 5 is a transaction that updates A’s
value to 5. Threads update their thread-local state during
epoch refresh (denoted using ⊗). Initially, both threads are
in rest, processing transactions by updating the live values.
We receive a commit request at t = 2, which updates the
global phase to prepare. Threads 1 and 2 enter prepare at
t = 4 and t = 3 respectively. Threads in prepare additionally
check if record version is > 1, the current version of database,
before executing the transactions.
Since all threads have entered prepare, the system ad-

vances to the in-progress phase at t = 5. Thread 2 enters
in-progress by refreshing its epoch at t = 6. This transi-
tion from prepare to in-progress demarcates its CPR-point.
When a record version is 1, in-progress threads copy its
live value to stable value and update the version before pro-
cessing the transaction. At t = 7, thread 2 copies 5, the live
value of A, to stable value, updates version to 2 and writes
9 to live value. Thread 1, which is still in prepare, tries to
update A at t = 8 but aborts since its version is greater than

RecordsHash IndexThreads

..., r2 ,r1

...

...

...

Figure 6: Faster Overall Architecture

1 and immediately refreshes its epoch. Thread 1 enters in-
progress now, marking its CPR-point. As all threads are in
in-progress, the system enters the wait-flush phase. We
capture the stable values of records, A = 5 and B = 7, in the
background while threads execute transactions belonging to
version 2 on the live values. For other records with version
≤ 1, the live value is captured as part of the commit. Once
the captured values are safely persisted on disk, the system
transits to rest with version 2. This ends the CPR commit of
version 1 of the database with CPR-points t = 8 and t = 6.

4.3 Correctness

Theorem 1. The snapshot of the database obtained using
algorithms 1 and 2 has the following properties:

(a) It is transactionally consistent.

(b) For every thread T , it reflects all transactions committed

before tT , and none after.
(c) It is conflict-equivalent to a point-in-time snapshot.

We prove the above theorem in Appendix A.

4.4 Recovery

Recovery in a CPR-based database is straightforward: we
simply load the database back into memory from the latest
commit. Unlike traditional WAL-based recovery, there is no
need for UNDO processing since the value of each record
captured in Alg. 2 is transactionally-consistent, and it is the
final value after all v transactions have been executed. So,
this corresponds to a database state when all transactions
issued before time tT for every threadT have been committed.
Transactions issued after tT by thread T are lost, according
to the definition of CPR-consistency.

5 BACKGROUND ON FASTER

We present an overview of Faster [6], our recent open-
source concurrent latch-free hash key-value store that com-
bines in-place updates with larger-than-memory data han-
dling capabilities, by efficiently caching the hot working set
in memory. It supports reads, blind upserts, and read-modify-
write (RMW) operations. In the Faster paper, we report a
scalable in-memory throughput of more than 150M ops/sec,
making it a good candidate to apply CPR-based durability.

Head Offset
Read-Copy-Update

Stable

LA = 0

Read-Only

LA = ∞

Mutable

Increasing
Logical Address

In-Place Update

Read-Only
Offset

Disk

In-Memory

Figure 7: HybridLog Organization in Faster

Faster has two main components (Fig. 6): a hash index

and a log-structured record store called HybridLog. The index
is a map from the key hash to an address in a logical address
space. Keys with the same hash share a single 64-bit slot in
the hash index. All reads and updates to the slots are atomic
and latch-free. The HybridLog record store defines a logical
address space that spansmainmemory and secondary storage.
The tail portion of the logical address space is present in
memory. Each record in HybridLog contains some metadata,
a key, and a value. Records corresponding to keys that share
the same slot in the hash index are organized as a reverse
linked list (see Fig. 6): each record’s metadata contains the
logical address of the previous record mapped to that slot.
The hash index points to the tail record of this linked list.

5.1 Hybrid Log

Faster stores records in HybridLog (Fig. 7), a log-structured
record store that spans main memory and disk. The logical
address space is divided into an immutable stable region
(on disk), an immutable read-only region (in memory), and
a mutable region (also in memory). The head offset tracks
the smallest logical address available in memory. The read-
only offset divides the in-memory portion of the log into
immutable and mutable regions. The tail offset points to the
next free address at the tail of the log. Faster threads perform
in-place updates on records in the hot mutable region of the
log. If a record is in the immutable region, a new mutable
copy of the record is created at the end of tail to update it.
This organization captures the hot working set for in-place
updates in the mutable region. This key design choice makes
Faster capable of reaching high throughput by avoiding an
atomic increment of the tail offset, a read-copy-update of the
record, and an update of the index entry for records in the
hot mutable region – creating a WAL entry in this critical
path would bring down performance.
The head and read-only offsets are maintained at a con-

stant lag from the tail offset. As the log grows, the head and
read-only offsets shift. Faster threads use epochs to lazily
synchronize offset values, so one thread may read a stale
value of the read-only offset and update a record in-place,

T1 T2 T3 T4

Read-Only Region

Fuzzy Region

Mutable Region

Minimum
RO Offset

Maximum
RO Offset

Figure 8: Thread-Local View of HybridLog Regions

while a second thread sees the record to be immutable and
copies it over to the tail: this leads to a lost update anomaly,
where the update by the first thread is lost. To avoid this
anomaly, Faster maintains an additional marker called the
safe read-only offset, which tracks the largest read-only offset
seen by all threads (using the epoch framework). A Faster
thread copies a record to the tail only if its logical address
is less than the safe read-only offset. If the record falls in
between the read-only and the safe read-only offset (called
the fuzzy region; see Fig. 8), the request is added to a pending
list to be processed later.

The update scheme is summarized next (we focus on RMW
for brevity). To process an RMW request for key k , Faster
first obtains the logical address l from the hash index. If l
is ⊥ (invalid), it creates a new record by allocating required
space at the tail of the hybrid log (say l ′) and update the slot
corresponding to k atomically using a compare-and-swap

operation to point to l ′. If l is less than the head offset, it
issues an asynchronous I/O request. If l is more than the
head offset, the record is present in memory. Faster updates
the record in-place when it is mutable, i.e., when l is greater
than the read-only offset. If l is less than the safe read-only
offset, it creates a new updated copy at the tail and updates
the hash index atomically. If l is in the fuzzy region (between
the read-only and safe read-only offsets), the operation goes
pending as described earlier.

5.2 Towards Adding Durability

By default, the in-memory portion of HybridLog is lost on
failure. We added the ability to commit in-flight operations
in the mutable region using CPR, by adding a session-based
persistence API to Faster. Clients can start and end a ses-
sion, identified by a unique Guid, using StartSession and
StopSession. Every operation such as Upsert on Faster
occurs within a session, and carries a session-local serial
number. On failure, a client can re-establish a session by
invoking ContinueSession with its session Guid as param-
eter. This call returns the last serial number (CPR point) that
Faster has recovered on that session. As described earlier,
CPR commits are session-local, and Faster recovers to a spe-
cific CPR point for every session. The client can also register
a callback with Faster, to be notified of new CPR points
whenever Faster commits.

6 ADDING DURABILITY TO FASTER

The unflushed in-memory portion of HybridLog and the
hash index are lost on failure. For durability, we augment
Faster with CPR-based group commit, by periodically per-
sisting a CPR-consistent checkpoint on disk. On failure,
Faster recovers from the most recent commit. Because of
the log-structured nature of HybridLog, checkpoints can
be incremental. This enables CPR to be a frequent group-
commit mechanism, with fast in-place updates to records in
the log between commits.
For ease of exposition, assume a one-to-one mapping be-

tween a Faster thread and a user-session. Each user request
(e.g. RMW, Read, Upsert) is associated with a strictly increas-
ing session-local serial number. For Faster with N threads,
we wish to create a CPR-consistent checkpoint with commit
points s0, s1, . . . , sN such that for every threadTi , the commit
makes only and all requests before serial number si durable.

6.1 Challenges

There are two main challenges in adding CPR to Faster:
• Faster provides threads unrestricted access to records
in the mutable region of HybridLog, letting user code
control concurrency. Handled naïvely, this could lead to
a lost-update anomaly (see Sec. 5). Since CPR enforces
a strict only and all policy, it is challenging to obtain a
CPR-consistent checkpoint without compromising on fast
concurrent memory access.

• Faster supports disk-resident data using an asynchronous
model: an I/O request is issued in the background, while
the requesting thread processes future requests. The user-
request is executed later once the record is retrieved from
disk. This model improves performance, but complicates
CPR in a fundamental way since some requests before
a CPR point may be pending. CPR consistency enforces
that, semantically, a request r1 not belonging to the commit
must not be executed before a request r2, potentially from
a different session, belonging to the commit. This leads to
quiescing when handled naively.

6.2 HybridLog Checkpoint
We augmented the 64-bit per-record header in HybridLog
(used previously to store the 48-bit previous address and
status bits such as invalid and tombstone; see [6] for details)
to include a 13-bit version number v for a record. During
normal processing, Faster is in the rest phase and at a
particular version v . HybridLog checkpointing involves (1)
shifting the version from v to (v + 1); and (2) capturing mod-
ifications made during version v . We leverage our epoch
framework (Sec. 3) to loosely coordinate a global state ma-
chine (see Fig. 9a) for CPR checkpointing without affecting

user-space performance. It consists of 5 states: rest, pre-
pare, in-progress, wait-pending and wait-flush; state
transitions are realized by Faster threads lazily, when they
refresh their epochs. A sample execution with 4 threads is
shown in Fig. 9b. Following is a brief overview of each phase:
• rest: Normal processing on Faster version v , with iden-
tical performance to unmodified Faster.

• prepare: Requests accepted before and during the prepare
phase for every thread are part of v commit.

• in-progress: Transition from prepare to in-progress
demarcates a CPR point for a thread: requests accepted in
in-progress (or later) phases do not belong to v commit.

• wait-pending: Complete pending requests of version v .
• wait-flush: All unflushed v records are written to disk
asynchronously.

• rest: Normal processing on Faster version (v + 1).
A CPR commit request (from user or triggered periodi-

cally) first records the current tail offset of HybridLog, say
Lhs , and updates the global state from rest to prepare. Threads
enter prepare during their subsequent epoch refresh.

6.2.1 prepare. A thread in prepare ‘prepares’ to handle
a shift in version. Recall that every Faster thread has a
thread-local list of pending requests since some of them are
processed asynchronously. When a thread enters prepare, it
acquires a shared-latch on the key’s bucket (we may instead
use a per-record latch as well) for each pending request.
These latches are released only after the request is completed.

A prepare threadT processes an incoming user-request as
follows (see Alg. 4 of Appendix B): It first acquires a shared-
latch on the key’s bucket. When the record is in memory
with version ≤ v , T processes the request based on which
HybridLog region the record belongs to — modifies it in-
place when in mutable region, performs a copy-on-write
when in safe read-only region, and adds it to a thread-local
pending list to retry later when in fuzzy region. When not in
memory, it adds the request to its pending list and issues an
asynchronous I/O request to retrieve it from disk. A pending
request holds on to the shared-latch until it is processed later,
while it is released immediately in all other cases.

When the shared-latch acquisition fails or when the record
version is > v , T detects that the CPR shift has begun and
refreshes its epoch immediately, entering the in-progress
phase. If it never encounters such a scenario, the CPR shift
happens during a subsequent epoch refresh.

6.2.2 in-progress. After all threads enter the prepare phase
and acquire shared latches for its pending requests, the epoch
framework (using the BumpEpoch mechanism from Sec. 3)
advances the state machine to in-progress. A thread transits
from prepare to in-progress during a subsequent epoch

REST

PREPARE

IN-
PROGRESS

WAIT
FLUSH

WAIT
PENDING

1 2

3
4

5

1○ User Request to commit
2○ When all threads have acquired shared-latches

on pending requests
3○ When all threads have entered in-progress phase
4○ When all v pending requests are processed
5○ When snapshot written to disk

(a) Global State Machine with Transition Conditions

Time (or) Operation Sequence ➝
(v+1)T1 v s1

T2 (v+1)v s2

T3 (v+1)v s3

T4 v s4 (v+1)

1 2 3 4 5

(b) FASTER Threads during checkpoint

Figure 9: Overview of CPR for Faster

refresh, thus demarcating its CPR point. It now processes
incoming requests as belonging to version (v+1). All user re-
quests received before this point by the thread are part of the
commit, and none after. The pseudo-code for in-progress
(and later) phases are shown in Alg. 5 of Appendix B. The
key idea here is not to let the thread modify any record of
version ≤ v in-place and instead, force a read-copy-update
without violating CPR-consistency.

When the record is in memory with version ≤ v , an in-
progress thread acquires an exclusive latch on the key’s
bucket, performs a copy-on-update creating an updated (v +
1) record at the tail and releases the latch. Exclusive-latch
acquisition succeeds only when no other request holds a
shared-latch. When it fails, the request is added to a thread-
local pending list corresponding to version (v + 1).

If record version is (v + 1), the thread modifies it in-place
when in mutable region, performs a copy-on-write when in
safe read-only region, and adds to thread-local pending list
for version (v + 1) when in fuzzy region. When the record is
not in memory, it issues an asynchronous I/O request and
adds the user-request to (v + 1) pending list.

6.2.3 wait-pending. When all threads enter in-progress,
Faster enters wait-pending. CPR-consistency requires that
all requests accepted before the CPR points be recoverable
on failure. Faster stays in the wait-pending phase until all
pending requests - if any - that are part of the commit are
completed. These requests hold a shared-latch on the key’s
bucket, which is released as they are completed.

When the system is in thewait-pending phase, all Faster
threads are either in in-progress or wait-pending. A wait-
pending thread processes incoming user-requests similar to
an in-progress thread. Since there are no prepare threads in
the system, it performs a copy-on-update for record version
≤ v when the shared latch count is zero, without acquiring
any exclusive-latch. When the count is non-zero, there is a
pending v request belonging to the bucket. Since processing
the (v + 1) request now may violate CPR consistency, it is
added to the thread-local pending list to be processed later.

6.2.4 wait-flush. Once allv requests have been completed,
we record the tail offset of HybridLog, say Lhe , and shift

the read-only offset to Lhe , which asynchronously flushes
HybridLog until Lhe to disk. All v records on the HybridLog
occur before Lhe . There may also be some (v + 1) records in
this section, but they are invalidated during recovery (see
Sec. 6.4). We add a trigger action to the epoch framework that
advances the global state machine to wait-flush. Incoming
requests in wait-flush are processed identical to the rest
phase since all v records are in the safe read-only region and
hence immutable. Once the asynchronous write to disk is
complete, system moves back to rest with version (v + 1).
This concludes the HybridLog checkpoint for CPR commit.

6.3 Faster Hash Index Checkpoint

In addition to the HybridLog checkpoint, we obtain a fuzzy
checkpoint of the hash index that maps key-hash to logi-
cal addresses on HybridLog. The index can be checkpointed
independently from HybridLog. The main reason for check-
pointing the index is to reduce recovery time by replaying
a smaller suffix of the HybridLog during recovery (similar
to database checkpoints for WAL truncation). Hence, it can
be done much less frequently, particularly with slower log
growth due to in-place updates in HybridLog. Since hash
bucket entries are updated only using atomic compare-and-
swap instructions, the index is always physically consistent.
To obtain a fuzzy checkpoint, we write the hash index pages
to storage using asynchronous I/O. We also record the tail
offset of HybridLog before starting (Lis) and after comple-
tion (Lie) of the fuzzy checkpoint. We use these offsets during
recovery, which is described next.

6.4 Recovery

Faster recovers to a CPR-consistent state using a combina-
tion of a fuzzy hash index and HybridLog checkpoint (say
of version v). During recovery, we scan through records in a
section of HybridLog, from logical address S = min(Lis , Lhs)
to E = max(Lie , Lhe), updating the hash index appropriately.
The recovered index must point to the latest record with
version ≤ v for each slot. Due to the fuzzy nature of our
index checkpoint, it could point to (v + 1) records or records
that are not the latest.

S = min(Lis , Lhs); E = min(Lie , Lhe);
foreach record R at LR between S and E do

if R.version ≤ v then

update slot address to LR ;
else

R.invalid = true;
addr = address in slot of R.key;
if addr ≥ LR then

update slot address to R.previousAddress;

Algorithm 3: Pseudo-code for Recovery

The pseudo-code for recovery is shown in Alg. 3. For
records in the section of HybridLog between S and E: If
the version is ≤ v , we update the index slot to point to the
record’s logical address, LR . When the version is > v , we
mark the record invalid as it does not belong to v commit of
Faster. Additionally, when the address in the slot is ≥ LR ,
we update the index to point to the previous address stored in
the record header. This fix-up may be considered the UNDO
phase of our recovery in Faster. As noted earlier, each slot
in the hash index points to a reverse linked-list (see Fig.6)
of records stored in the HybridLog. The copy-on-update
scheme in Faster ensures that records in this list have de-
creasing logical addresses, while the HybridLog checkpoint
design ensures that (v + 1) records occur only before all v
records in the list. Together, these two invariants result in
a consistent Faster hash index after recovery – each slot
points to the latest record with version ≤ v in its linked-list.

6.5 Solution Variants

Implementing CPR on Faster presents a range of design
choices. We discuss two major ones here. A critical transi-
tion in CPR is from the prepare to in-progress phase: when
a thread demarcates its CPR point and starts processing in-
coming requests as version (v + 1). The algorithm in Sec. 6.2
uses fine-grained bucket-level latches to enable this. An al-
ternate coarse-grained approach is to use HybridLog offsets
for this purpose, which is explained in Appendix C.

Another design consideration is howwe capture the volatile
v-records on storage. The solution in Sec. 6.2, called a fold-
over commit, advances the read-only offset of HybridLog to
its tail, to offload these records to disk. While this provides
incremental checkpoints, it forces a copy-on-update for ev-
ery record after a commit, resulting in a slower recovery of
performance. We could instead obtain a snapshot of entire
volatile HybridLog in a separate file, called snapshot com-
mit, without advancing the read-only offset: the section of
HybridLog remains immutable only during the commit, and
can be updated in-place afterwards. This design is described
in Appendix D.

These two choices impact the design of Faster in signifi-
cant ways. We compare them empirically in Sec. 7.3.

7 EVALUATION

We evaluate CPR in two ways. First, we compare CPR with
two state-of-the-art asynchronous durability solutions for a
main-memory database: CALC [26] and WAL [25]. Next, we
evaluate CPR on Faster, our high-performance, hash-based
key-value store for larger-than-memory data.

7.1 Implementation, Setup, Workloads

Implementation. For the first part, we implemented a stand-
alone main-memory database, that supports three recovery
techniques (CPR, CALC, and traditional WAL). Both CALC
and CPR implementations have two values, stable and live,
for each record, while WAL only has a single value. An op-
timal implementation of CPR does not require two values
for each record; we do this for a head-to-head comparison
with CALC [26]. The entire database is written to disk asyn-
chronously during a CPR/CALC checkpoint. We do not ob-
tain fuzzy checkpoints for WAL but periodically flush the
log to disk. All three versions use the main-memory version
of Faster [6] as the data store and implement two-phase
locking with NO-WAIT deadlock avoidance policy.

We added CPR to the C# and C++ versions of Faster, and
use the C# version for our evaluation. Threads first load the
key-value store with data, and then issue a sequence of oper-
ations. Commit requests are issued periodically. We measure
and report system throughput and latency every 2 seconds.
We point Faster to our SSD, and employ the default expira-
tion based garbage collection scheme (not triggered in these
experiments). The total in-memory region of HybridLog is
set at 32GB, large enough that reads never hit storage for our
workloads, with the mutable region set to 90% of memory
at the start. By default, the Faster hash index has #keys/2
hash-bucket entries. Prior work [6] has shown that other
persistent key-value stores such as RocksDB achieve an or-
der of magnitude lower performance (less than 1M ops/sec)
even whenWAL is disabled. Therefore, we omit comparisons
to these systems in this paper.

Setup. The transactional database experiments are con-
ducted on a Standard D64s v3 machine [2] on Microsoft
Azure. The machine has 2 sockets and 16 cores (32 hyper-
threads) per socket, 256GBmemory and runsWindows Server
2018. Experiments on CPR with Faster are carried out on a
local Dell PowerEdge R730 machine with 2.3GHz Intel Xeon
Gold 6140 CPUs, running Windows Server 2016. The ma-
chine has 2 sockets and 18 cores (36 hyperthreads) per socket,
512GB memory and a 3.2TB FusionIO NVMe SSD drive. The
two-socket experiments shard threads across sockets. We
pre-load input datasets into memory for all experiments.

Workloads. For our stand-alone database, we use a mix of
transactions based on the Yahoo! Cloud Serving Benchmark

0 20 40 60
Threads

0

20

40

60

80

T
hr

ou
gh

pu
t(

M
tx

ns
/s

ec
)

CPR
CALC
WAL

(a) Scalability; Size:1

0 20 40 60
Threads

0

2

5

7

10

T
hr

ou
gh

pu
t(

M
tx

ns
/s

ec
)

CPR
CALC
WAL

(b) Scalability; Size:10

0 20 40 60
Threads

2

4

6

L
at

en
cy

(µ
s)

CPR
CALC
WAL

(c) Latency; Size:1

0 20 40 60
Threads

5

10

15

L
at

en
cy

(µ
s)

CPR
CALC
WAL

(d) Latency; Size:10

C
PR

C
A

L
C

W
A

L

C
PR

C
A

L
C

W
A

L

C
PR

C
A

L
C

W
A

L

C
PR

C
A

L
C

W
A

L

0

50

100

Pe
rc

en
ta

ge
(%

)

Size: 1 Size: 10
1 64 1 64

Abort
Exec

Tail Contention
Log Write

(e) Analysis

Figure 10: Scalability and Latency on Low Contention (θ= 0.1) YCSB workload

0 50 100
Time (secs)

25

50

75

T
hr

ou
gh

pu
t(

M
tx

ns
/s

ec
)

0 50 100 150
Time (secs)

2

5

7

10

CPR (50:50)
CALC (50:50)

WAL (50:50)
CPR (100:0)

CALC (100:0)
WAL (100:0)

(a) Throughput; Size:1 (b) Throughput; Size:10

0 25 50 75
Read %

20

40

60

80

T
hr

ou
gh

pu
t(

M
tx

ns
/s

ec
)

CPR
CALC
WAL

(c) Throughput; Size:1

0 25 50 75
Read %

2

4

6

8

10

T
hr

ou
gh

pu
t(

M
tx

ns
/s

ec
)

CPR
CALC
WAL

(d) Throughput; Size:10

1 3 5 7 10
Txn Size

0

20

40

60

80

T
hr

ou
gh

pu
t(

M
tx

ns
/s

ec
)

CPR
CALC
WAL

(e) Throughput; Mix: 50:50

Figure 11: Throughput during Checkpoint and Performance on Different Transaction Mixes

(YCSB) [7]. Transactions are executed against a single table
with 250 million 8 byte keys and 8 byte values. Each transac-
tion is a sequence of read/write requests on these keys, which
are drawn from a Zipfian distribution. A request is classified
as read or write randomly based on a read-write ratio written
asW:R; a read copies the existing value, and a write replaces
the value in the database with a provided value. We mainly
focus on a low contention (θ = 0.1) workload here since
it incurs the most performance penalty due to logging or
tail contention. Additional experiments on high contention
YCSB and TPC-C [28] benchmarks are in Appendix E.

For Faster with CPR, we use an extended version of the
YCSB-A workload, with 250 million distinct 8 byte keys, and
value sizes of 8 bytes and 100 bytes. After pre-loading, records
take up 6GB of HybridLog space and the index takes up 8GB
of space. Workloads are described as R:BU for the fraction of
reads and blind updates. We add read-modify-write (RMW)
updates in addition to the blind updates supported by YCSB.
Such updates are denoted as 0:100 RMW in experiments
(we only experiment with 100% RMW updates for brevity).
RMW updates increment a value by a number from a user-
provided input array with 8 entries, to model a running
per-key “sum” operation. We use the standard Uniform and
Zipfian (θ = 0.99) distributions in our workloads.

7.2 Transactional Database Comparisons

We first plot average throughput (Figs. 10a, 10b) and latency
(Figs. 10c, 10d) of the three systems against a varying number
of threads for a mixed read-write (50 : 50) workload – for
1- and 10-key transactions. We also profiled the experiment;
the breakdown for 1 and 64 threads are shown in Fig. 10e.

"Exec" refers to the cost of in-memory transaction processing
including acquiring and releasing locks, "Tail-Contention"
is the overhead of LSN allocation (in WAL) and appending
to the commit log (in CALC), while "Log Write" denotes the
cost of writing WAL records on the log.

7.2.1 Scalability. CPR scales linearly up to 90M txns/sec on
64 threads for 1-key transactions, whereas CALC and WAL
reach a maximum of 10M txns/sec and 25M txns/sec respec-
tively. The breakdown analysis reveals that tail contention in
WAL and in CALC’s atomic commit log are a scalability bot-
tleneck. WAL performs better than CALC here since every
transaction is appended to the commit log, while 50% read-
only 1-key transactions do not generate any WAL records.
In case of 10-key transactions, CPR again scales linearly up
to 10M txns/secs, while WAL and CALC scale only up to 3.5
and 6.2M txns/sec. Tail contention is still a bottleneck (about
30 − 40%) for both CALC and WAL, while WAL incurs an
additional 20% overhead for writing log records. Unlike the
1-key case, CALC outperforms WAL since most transactions
contain at least one write resulting in a WAL record.

7.2.2 Latency. 1-key transactions (Fig 10c) in CPR are exe-
cuted in approximately 700 nanoseconds and the latency al-
most remains constant as we increase the number of threads.
This is due to the highly efficient design of the underlying
Faster hash index [6]. Due to tail contention, latency in
CALC and WAL increases as we scale. CALC results in a
latency of 6µs on 64 threads, while WAL incurs an average
latency of only 2µs due to 50% read-only transactions. In
CPR, 10-key transactions (Fig 10c) incur a cost of 7µs , which
is 10x that of a 1-key transaction. CALC latency, even though
higher than CPR due to tail contention in the atomic commit

Fold-Over (Zipf) Fold-Over (Uniform) Snapshot (Zipf) Snapshot (Uniform)

0 20 40 60
Time (secs)

100

125

150

175

T
hr

ou
gh

pu
t(

M
op

s/
se

c)

(a) Throughput; YCSB 90:10

0 20 40 60
Time (secs)

50

100

150

T
hr

ou
gh

pu
t(

M
op

s/
se

c)
(b) Throughput; YCSB 50:50

0 20 40 60
Time (secs)

50

100

150

T
hr

ou
gh

pu
t(

M
op

s
/s

ec
)

(c) Throughput; YCSB 0:100

0 20 40 60
Time (secs)

10

15

L
og

Si
ze

(i
n

G
B

)

(d) Log growth; YCSB 0:100

Figure 12: Faster Throughput and Log Growth vs. Time; Full Fold-over and Snapshot Commits at 10 and 40 secs

log, remains almost constant because the cost of execution
is higher in 10-key transactions. Since most 10-key transac-
tions result in a WAL record, the effect of tail contention and
writing log records is evident from the increasing trend.

7.2.3 Throughput vs. Time. We now plot average through-
put during the lifetime of a run for CPR, CALC and WAL
on 64 threads, with checkpoints at 30, 60 and 90 secs both
for mixed (50 : 50) and write-only (100 : 0) workloads;
Fig. 11a and Fig. 11b correspond to 1- and 10-key transac-
tions respectively. In all three systems, there is no observable
drop in throughput during checkpointing. This is due to
the asynchronous nature of the solutions. Even for 10-key
transactions, the effect of copying over records from live
to stable values is minimal as they are already available in
upper levels of the cache. CPR design scales better overall
and does not involve any serial bottlenecks, yielding a check-
point throughput of 90M txns/sec. As noted earlier, WAL is
better than CALC in 50 : 50 1-key transactions due to 50%
read-only transactions. There is a minor difference between
write-only and mixed workloads for all three systems, since
writes are more expensive than reads.

7.2.4 Varying transaction mix. We now investigate the im-
pact of read-write ratio on performance by varying the read
percent from 0% to 90% on 64 threads. We plot results for
both 1- and 10-key transactions in Fig. 11c and Fig. 11d re-
spectively. In both cases, the read-write ratio does not impact
the performance of CPR greatly; it increases marginally as
reads are cheaper than writes. In a 1-key transaction, the
read-write ratio directly affects the contention on tail of
WAL: performance of WAL improves with increasing reads
due to fewer log records generated. CALC appends every
transaction to an atomic commit log resulting in a serial
bottleneck and that outweighs any gains due to more reads.
In case of 10-key transactions, contention at log reduces as
throughput of entire system is much smaller. Tail contention,
even though still a bottleneck, is not the most significant
one, and so cheaper reads result in performance improve-
ment for both WAL and CALC. Performance gain in WAL is
higher with increasing read percent since it eliminates two

writes: an update to the record value and during WAL record
generation.

7.2.5 Varying transaction size. The cost of executing a trans-
action is directly proportional to the amount of computa-
tion and number of read/write accesses. We present average
throughput for transactions of size 1, 3, 5, 7 and 10 for mixed
(50 : 50) workload on 64 threads in Fig. 11e. CPR through-
put, which is an order of magnitude higher than the other
two, drops linearly as there is no other bottleneck in the
system. Since CALC throughput is already restricted at 10M
txns/sec due to a significant overhead (tail contention), there
is not much reduction in its performance with increasing
size. WAL, on the other hand, writes a lot more data in the
WAL record as we increase transaction size. WAL outper-
forms CALC for smaller transactions, and as size increases
the trend reverses due to log write overhead.

7.3 Evaluation of Faster with CPR

7.3.1 Throughput and Log Size. We plot throughput vs. wall-
clock time during the lifetime of a Faster run. We perform
two “full” (index and log) commits during the run, at the 10
sec and 40 sec mark respectively, and plot results for two
key distributions (Uniform and Zipf). We evaluate both our
commit techniques – fold-over and snapshot to separate file
– in these experiments.

Fig. 12a shows the result for a 90:10 workload (i.e., with
90% reads). Overall, Zipf outperforms Uniform due to better
locality of keys in Zipf. After commit, both snapshot and fold-
over slightly degrade in throughput because of read-copy-
updates. It takes 6 secs to write 14GB of index and log, close
to the sequential bandwidth of our SSD. After the second
commit, the Zipf throughput of fold-over returns to normal
faster than snapshot because of its incremental nature. With
a 50:50 workload, in Fig. 12b, fold-over drops in throughput
after commit, because of the overhead of read-copy-update
of records to the tail of HybridLog. Performance increases
as the working set migrates to the mutable region, with
Zipf increasing faster than Uniform as expected. For this
workload, snapshot does better than fold-over as it is able

0 20 40 60
Time (secs)

0

50

100

150

T
hr

ou
gh

pu
t(

M
op

s/
se

c)

0 20 40 60
Time (secs)

64
32

16
8

4

(a) 50:50 Zipf distribution (b) 50:50 Uniform distribution

Figure 13: Throughput vs. Time; Varying #Threads

0 20 40 60
Time (secs)

10−3

10−2

10−1

L
at

en
cy

(m
se

cs
)

0 20 40 60
Time (secs)

Coarse-Grained (Zipf)
Coarse-Grained (Uniform)
Fine-Grained (Zipf)
Fine-Grained (Uniform)

(a) 0:100 blind updates (b) 0:100 RMW updates

Figure 14: Latency vs. Time; Log-only Fold-over

31 61 122 244 488 977
Per-Client Buffer Size (KB)

0

20

40

60

80

100

T
hr

ou
gh

pu
t(

M
op

s/
se

c)

0.54s
0.73s 1.50s

1.76s
3.33s 7.50s

0.46s 0.90s 1.76s
3.00s

5.00s 10.00s

Zipfian Uniform

Figure 15: End-to-end Experiment; YCSB 50:50

to dump the unflushed log to a snapshot file and quickly re-
open HybridLog for in-place updates. A 0:100 workload with
only blind updates demonstrates similar effects, as shown
in Fig. 12c. We also profiled execution for the time taken in
each CPR phase: each phase lasted for around 5ms, except for
wait-flush, which took around 6 secs as described above.

Fig. 12d depicts the size of HybridLog vs. time, for a 0:100
workload.We note that (1) HybridLog size grows muchmore
slowly with snapshot, as the snapshots are written to a sepa-
rate file; and (2) HybridLog for Uniform grows faster than
for Zipf, because more records need to be copied to the tail
after a commit for Uniform.
We also experimented with checkpointing only the log,

with more frequent commits, since the index is usually check-
pointed infrequently. The results are in Appendix E; briefly,
we found CPR commits to have much lower overhead as
expected, with a similar trend overall.

7.3.2 Varying number of threads. We plot throughput vs.
time for varying number of threads from 4 to 64, for a 50:50
workload. We depicts the results for Zipf and Uniform distri-
butions in Figs. 13a and 13b respectively, with full fold-over
commits taken at the 10 sec and 40 sec mark. Both figures
show linear throughput improvement with increasing num-
ber of threads, indicating that CPR does not affect scalability.
In fact, normal (rest phase) performance is unaffected by
the introduction of CPR. At lower levels of scale, the effect
of CPR commits is minimal due to lower rest phase per-
formance. Further, performance recovery after a commit is
faster with more threads, since hot data migrates to mutable
region faster.

7.3.3 Operation Latency; Fine- vs. Coarse-Grained. Fig. 14a
shows average latency (in msecs) vs. time, for a 0:100 blind

update workload using the fold-over strategy, log-only check-
points, for Uniform and Zipf distributions. We depict latency
for the two version transfer schemes introduced in this paper:
coarse-grained and fine-grained. Latency during the rest
phase is around 100-300ns as the working set is entirely in
memory. During CPR commit, latency increases to 1µs for
Zipf and around 0.5µs for Uniform because of slightly more
contention on index entries for hot keys in Zipf. Since there
is no data-dependency between v and (v + 1) version for
blind updates, contended operations do not go pending in
this experiment.

We finally repeat this experiment with a 0:100 RMWwork-
load. With RMW, due to the data dependency betweenv and
(v + 1) versions of a record, we expect the hand-off to have
a greater effect as (v + 1) operations may have to wait for
records being updated by v operations (using a lock in fine-
grained or going pending in coarse-grained). This is validated
in Fig. 14b, where the latency spikes during CPR are more
pronounced than before. It is clear that coarse-grained intro-
duces significantly more latency than fine-grained, because
requests go pending. Further, the latency spike is higher for
Zipf than Uniform because of greater contention when hand-
ing off records for the hot keys. Overall, latency degrades
slightly as expected, but with fine-grained, it stays below
2.2µs even during CPR.

7.3.4 End-to-End Experiment. We evaluate an end-to-end
scenario with 36 client threads feeding a 50:50 YCSB work-
load to Faster. Each client has a buffer of in-flight (uncom-
mitted) requests. When a buffer reaches 80% capacity, we is-
sue a log-only fold-over commit request, which allows clients
to trim their buffers based on CPR points. Clients block if
their buffers are full. Each entry in the buffer takes up 16
bytes (for the 8 byte key and value). Fig. 15 shows the results
for Zipf and Uniform workloads, as we vary the per-client
buffer size. Above each bar is the corresponding average
checkpoint interval, or the latency of CPR commit, observed
for the given buffer size. We take one full checkpoint, and
report average throughput over the next 30 secs.

Increasing the buffer size allows more in-flight operations,
and hence improves throughput for both workloads. Even a
small buffer is seen to provide high throughput. For small

buffer sizes, commits are issued more frequently (e.g., every
0.5 secs for a 30KB buffer) as expected. The Zipf workload
reaches a higher maximum throughput with a larger buffer
because the smaller working set reaches the mutable region
faster between commits. With the smallest buffer, Uniform
outperforms Zipf due to the higher contention faced in Zipf
when moving items to the mutable region after every (fre-
quent) commit.

8 RELATEDWORK

This paper falls in the realm of “Durability and Recovery”,
which are well-studied problems in the database community.
Our work is inspired by prior work in this area.

Write-Ahead Logging. The write-ahead logging (WAL) pro-
tocol originally defined in [1] has been the standard for pro-
viding durability in databases. Nearly all DBMSs use WAL
based on ARIES [25], which integrates concurrency control
with transaction rollback and recovery. Database archive
checkpointing [3] techniques often use epochs, similar to
CPR, but depend on a WAL to bring the database to the com-
mitted state. Shadow paging [22] maintains a dual mapping
between pages and their “shadow” on disk, which speeds
up checkpointing and provides page integrity, but requires
a WAL to restore transactional consistency. Many [14, 20]
have proposed adopting fuzzy checkpointing to main mem-
ory databases, which requires aWAL.WAL has been reported
to be a significant overhead [15] (roughly 12% of total time in
a typical OLTP workload) even in a single-threaded database
engine. Johnson et. al. [16] identify I/O related delays, log-
induced lock contention, log buffer contention, and excessive
context switches to be key factors resulting in overhead. To
reduce log contention at the tail, Aether [16] consolidates
log allocation. Jung et. al. [17] address the same problem by
creating a scalable data structure for log buffer allocation.
I/O has become less of a bottleneck due to modern hard-
ware. Some recent [11, 29] studies demonstrate speedups
due to better response times and better handling of small
I/Os. However, even the fastest flash drives do not eliminate
all overhead. Zhen et al. present SiloR [31] that avoids cen-
tralized logging bottleneck by letting each worker thread
copy transaction-local redo logs to per-thread log buffers
after validation. In spite of such attempts, recording every
update remains expensive at scale.

Distributed Logging. While traditional log implementa-
tions enforce a particular serial order of log entries using
LSNs, distributed logging exploits the fact that there is more
than one correct order for a given serializable order. Lomet
et. al. [21] propose a redo logging method where individual
nodes can maintain a private log and upon a crash failure

recover from its own private log; in case of a media failure,
they merge other existing logs in any order that results in the
same serializable order. This method is found to be infeasible
in a multi-socket scenario as the protocol requires dirty page
writes during migrations. Johnson et. al. [16] propose a dis-
tributed logging protocol based on Lamport Clocks instead
of traditional LSNs, which is then used to derive an appro-
priate serial order during recovery. While this alleviates log
contention due to LSNs, it does not address the problem of
expensive log writes, which is also a significant overhead
in update-intensive scenarios. CPR checkpoints are transac-
tionally consistent and do not need any WAL, thus allowing
fast in-place updates in memory.

Transactionally-Consistent Checkpoints. Another approach
to provide durability is to obtain point-in-time snapshots
that are transactionally-consistent. Applications such as mul-
tiplayer games naturally reach points during normal execu-
tion when no new transactions are being executed. Cao et.
al. [4] propose two different checkpoint algorithms, zig-zag
and interleaved ping-pong, that capture entire snapshots
of a database without key locking using multiple versions.
Similarly, VoltDB [23] uses an asynchronous checkpointing
technique which takes checkpoints by making every data-
base record “copy-on-write”. This approach is shown to be
expensive [6] in update-intensive scenarios. CALC [26] uses
an atomic commit log and limited multi-versioning to cre-
ate a virtual point of consistency, which is then captured
asynchronously while transactions are being processed si-
multaneously. As discussed earlier, these techniques suffer
from a serial bottleneck that limits scalability.

9 CONCLUSION

Modern databases and key-value stores have pushed the
limits of multi-core performance to hundreds of millions of
operations per second, leading to durability becoming the
central bottleneck. Traditional durability solutions have scal-
ability issues that prevent systems from reaching very high
performance. We propose a new recovery model based on
group commit, called concurrent prefix recovery (CPR), which
is semantically equivalent to a point-in-time commit, but
allows a scalable implementation. We design solutions to
make two systems durable using CPR, a custom in-memory
database and Faster, our larger-than-memory hash-based
key-value store. A detailed evaluation of both systems shows
that we can support highly concurrent and scalable perfor-
mance, while providing CPR-based durability.

Acknowledgments. We would like to thank Phil Bernstein,
James Hunter, and the anonymous reviewers for their com-
ments and suggestions.

REFERENCES

[1] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N.
Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl,
G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson. 1976. System R:
Relational Approach to Database Management. ACM Trans. Database

Syst. 1 (June 1976), 97–137. Issue 2.
[2] Microsoft Azure. 2018. Azure Windows VM Sizes. https://aka.ms/

AA1t6ge. [Online; accessed 09-July-2018].
[3] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. 1987.

Concurrency Control and Recovery in Database Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[4] Tuan Cao,Marcos Antonio Vaz Salles, Benjamin Sowell, Yao Yue, Alan J.
Demers, Johannes Gehrke, andWalker M.White. 2011. Fast checkpoint
recovery algorithms for frequently consistent applications. In Proceed-

ings of the ACM SIGMOD International Conference on Management of

Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011. 265–276.
[5] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert De-

Line, Danyel Fisher, John C. Platt, James F. Terwilliger, and JohnWerns-
ing. 2014. Trill: A High-performance Incremental Query Processor for
Diverse Analytics. Proc. VLDB Endow. 8, 4 (Dec. 2014), 401–412.

[6] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levan-
doski, James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent
Key-Value Store with In-Place Updates. In Proceedings of the 2018 In-

ternational Conference on Management of Data (SIGMOD ’18). ACM,
New York, NY, USA, 275–290.

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing

(SoCC ’10). ACM, New York, NY, USA, 143–154.
[8] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro,

Michael R Stonebraker, and David A. Wood. 1984. Implementation
Techniques for Main Memory Database Systems. In Proceedings of the

1984 ACM SIGMOD International Conference on Management of Data

(SIGMOD ’84). ACM, New York, NY, USA, 1–8.
[9] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin

Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Heka-
ton: SQL Server’s Memory-optimized OLTP Engine. In Proceedings

of the 2013 ACM SIGMOD International Conference on Management of

Data (SIGMOD ’13). ACM, New York, NY, USA, 1243–1254.
[10] Franz Faerber, Alfons Kemper, Per-Åke Larson, Justin J. Levandoski,

Thomas Neumann, and Andrew Pavlo. 2017. Main Memory Database
Systems. Foundations and Trends in Databases 8, 1-2 (2017), 1–130.

[11] Daniela Florescu and Donald Kossmann. 2009. Rethinking cost and
performance of database systems. SIGMOD Record 38, 1 (2009), 43–48.

[12] Apache Software Foundation. 2017. Apache Kafka. https://kafka.
apache.org/. [Online; accessed 30-Oct-2017].

[13] Dieter Gawlick and David Kinkade. 1985. Varieties of Concurrency
Control in IMS/VS Fast Path. IEEE Database Eng. Bull. 8 (1985), 3–10.

[14] R. B. Hagmann. 1986. A Crash Recovery Scheme for a Memory-
Resident Database System. IEEE Trans. Comput. C-35, 9 (Sept 1986),
839–843.

[15] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael
Stonebraker. 2008. OLTP Through the Looking Glass, and What We
Found There. In Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data (SIGMOD ’08). ACM, New York,

NY, USA, 981–992.
[16] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis,

and Anastasia Ailamaki. 2012. Scalability of write-ahead logging on
multicore and multisocket hardware. VLDB J. 21, 2 (2012), 239–263.

[17] Hyungsoo Jung, Hyuck Han, and Sooyong Kang. 2017. Scalable Data-
base Logging for Multicores. PVLDB 11, 2 (2017), 135–148.

[18] Alfons Kemper, Thomas Neumann, Jan Finis, Florian Funke, Viktor
Leis, Henrik Mühe, Tobias Mühlbauer, and Wolf Rödiger. 2013. Pro-
cessing in the Hybrid OLTP & OLAP Main-Memory Database System
HyPer. IEEE Data Eng. Bull. 36, 2 (2013), 41–47.

[19] H. T. Kung and Philip L. Lehman. 1980. Concurrent Manipulation
of Binary Search Trees. ACM Trans. Database Syst. 5, 3 (Sept. 1980),
354–382.

[20] Jun-Lin Lin and Margaret H. Dunham. 1996. Segmented Fuzzy Check-
pointing for Main Memory Databases. In Proceedings of the 1996 ACM

Symposium on Applied Computing (SAC ’96). ACM, New York, NY, USA,
158–165.

[21] David B. Lomet and Mark R. Tuttle. 1995. Redo Recovery After System
Crashes. In Proceedings of the 21th International Conference on Very

Large Data Bases (VLDB ’95). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 457–468.

[22] Raymond A. Lorie. 1977. Physical Integrity in a Large Segmented
Database. ACM Trans. Database Syst. 2, 1 (March 1977), 91–104.

[23] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stone-
braker. 2014. Rethinking main memory OLTP recovery. In IEEE 30th

International Conference on Data Engineering, Chicago, ICDE 2014, IL,

USA, March 31 - April 4, 2014. 604–615.
[24] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache

Craftiness for Fast Multicore Key-value Storage. In Proceedings of the

7th ACM European Conference on Computer Systems (EuroSys ’12). ACM,
New York, NY, USA, 183–196.

[25] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter
Schwarz. 1992. ARIES: A Transaction Recovery Method Supporting
Fine-granularity Locking and Partial Rollbacks Using Write-ahead
Logging. ACM Trans. Database Syst. 17, 1 (March 1992), 94–162.

[26] Kun Ren, Thaddeus Diamond, Daniel J. Abadi, and Alexander Thomson.
2016. Low-Overhead Asynchronous Checkpointing in Main-Memory
Database Systems. In Proceedings of the 2016 International Conference

on Management of Data (SIGMOD ’16). ACM, New York, NY, USA,
1539–1551.

[27] Facebook Open Source. 2017. RocksDB. http://rocksdb.org/. [Online;
accessed 30-Oct-2017].

[28] Transaction Processing Performance Council. 2010. http://www.tpc.
org/tpcc/. [Online; accessed 31-Oct-2018].

[29] Jason Tsong-LiWang (Ed.). 2008. Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD 2008, Vancouver,

BC, Canada, June 10-12, 2008. ACM.
[30] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and

Michael Stonebraker. 2014. Staring into the Abyss: An Evaluation of
Concurrency Control with One Thousand Cores. PVLDB 8, 3 (2014),
209–220.

[31] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014.
Fast Databases with Fast Durability and Recovery Through Multicore
Parallelism. In Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation (OSDI’14). USENIX Association,
Berkeley, CA, USA, 465–477.

https://aka.ms/AA1t6ge
https://aka.ms/AA1t6ge
https://kafka.apache.org/
https://kafka.apache.org/
http://rocksdb.org/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/

if bucket.TrySharedLatch() then
if L ≥ HeadOffset then

if record.version ≤ v then

if L ≥ ReadOnlyOffset then

update record in-place concurrently;
bucket.ReleaseLatch();
return OK;

else if L ≥ SafeReadOnlyOffset then

add request to v pending list;
return PENDING;

else

create updated v record at tail;
bucket.ReleaseLatch();
return OK;

else

issue async IO request;
add request to v pending list;
return PENDING;

bucket.ReleaseLatch();
return CPR_SHIFT_DETECTED;

Algorithm 4: Pseudo-code for prepare in Faster

if L ≥ HeadOffset then

if record.version ≤ v then

switch thread.Phase do

case in-progress do

if bucket.TryExclusiveLatch() then

create updated (v + 1) record at tail;
ReleaseLatch();
return OK;

case wait-pending do

if bucket.SharedLatchCount == 0 then

create updated (v + 1) record at tail;
return OK;

case wait-flush do

create updated (v + 1) record at tail;
return OK;

add to (v + 1) pending list;
return PENDING;

else

if L ≥ ReadOnlyOffset then

update record in-place concurrently;
return OK;

else if L ≥ SafeReadOnlyOffset then

add to (v + 1) pending list;
return PENDING;

else

create updated (v + 1) record at tail;
return OK;

else

issue async IO request;
add to (v + 1) pending list;
return PENDING;

Algorithm 5: Pseudo-code for Other Faster Phases

A PROOF OF THEOREM 1

Theorem. The snapshot of the database obtained using

algorithms 1 and 2 has the following properties:

(a) It is transactionally consistent.

(b) For every thread T , it reflects all transactions committed

before tT , and none after.
(c) It is conflict-equivalent to a point-in-time snapshot.

First, the snapshot obtained is transactionally consistent
because it ensures that the current version of all records in
the read-write set of a transaction are either v (in prepare)
or (v + 1) (in in-progress or later) when executed. So, a
transaction can either belong to the commit or not.
All transactions executed in prepare belong to version

v , while those executed in in-progress or later belong to
(v + 1). Since, for every thread T , there is a unique point in
time tT when it shifts from prepare to in-progress, which
also marks the set of transactions forT that are included, the
snapshot is CPR-consistent.

Consider two transactions,T1 andT2, such thatT1 belongs
to the commit and T2 does not. If both T1 and T2 belong to
the same thread, T1 ≺ T2 in the serial order. If T1 and T2
are executed on different threads, then there are two pos-
sibilities depending on their read-write sets: when they do
not intersect, T1 ≺ T2 is a valid serial order as is T2 ≺ T1,
since they are conflict-equivalent; if they intersect on a set
of records R, T1 must have executed when version of each
record r in R is v ; similarly T2 must have executed when the
record versions are (v + 1). We know that r ’s version shifts
from v to (v + 1), and hence T1 ≺ T2. Thus, the snapshot
obtained is conflict-equivalent to a point-in-time snapshot
where all v and none of (v + 1) transactions have executed.

B PSEUDO-CODE FOR CPR ON FASTER

Alg. 4 depicts the pseudo-code for executing incoming re-
quests during prepare phase on Faster, while all other
phases are handled in Alg. 5.

C COARSE VS. FINE-GRAINED SHIFT

Threads demarcate their CPR points when they shift prepare
to in-progress and start processing incoming requests as
version (v + 1). An in-progress thread performs a copy-
on-write of a v-record only when it is in the immutable
region, or by acquiring an exclusive-latch on the bucket if in
the mutable region. Alg. 4 uses a fine-grained bucket-level
latch to ensure CPR-consistency of updates. prepare threads
acquire a shared-latch even for in-place updates to records
in the mutable region, which may be expensive.

0 20 40 60
Threads

0

20

40

60

80

T
hr

ou
gh

pu
t(

M
tx

ns
/s

ec
)

CPR
CALC
WAL

(a) Scalability; Size:1

0 20 40 60
Threads

2

4

T
hr

ou
gh

pu
t(

M
tx

ns
/s

ec
)

CPR
CALC
WAL

(b) Scalability; Size:10

0 20 40 60
Threads

0

2

4

6

L
at

en
cy

(µ
s)

CPR
CALC
WAL

(c) Latency; Size:1

0 20 40 60
Threads

5

7

10

12

L
at

en
cy

(µ
s)

CPR
CALC
WAL

(d) Latency; Size:10

C
PR

C
A

L
C

W
A

L

C
PR

C
A

L
C

W
A

L

C
PR

C
A

L
C

W
A

L

C
PR

C
A

L
C

W
A

L

0

50

100

Pe
rc

en
ta

ge
(%

)

Size: 1 Size: 10
1 64 1 64

Abort
Exec

Tail Contention
Log Write

(e) Analysis; Mix: 50:50

Figure 16: Scalability and Latency on High Contention (θ = 0.99) YCSB Workload

An alternate approach is to acquire a shared-latch only
when a request is added to pending list. However, this may
cause an inconsistency since in-progress threads might
copy over a v record when a prepare thread is updating
it in place, similar to the lost-update anomaly in Sec. 5. To
prevent this, an in-progress thread performs a copy-on-
write only when the v record is in safe read-only region.
The safe read-only offset, in this context, is used as a coarse-
grained marker for records that are eligible for a version shift.
For v records that are in the mutable region, the request is
added to the thread-local pending list. This approach trades-
off making a request pending in in-progress (which incurs
higher operation latency) against the overhead of bucket-
level latching for in-place updates in prepare.

D FOLD-OVER VS. SNAPSHOT

Another design choice deals with how we capture the v
records. Since the organization of data in Faster is log-
structured, we can fold-over the log by shifting the read-only
offset to tail during CPR commit and by design all records
in that portion of HybridLog are written to disk. We call
this the fold-over commit and is described earlier in Sec. 6.
However, with this approach, even after the commit, a re-
quest upon encountering a v record does a copy-on-write,
since it is immutable. Moreover, folding-over HybridLog un-
necessarily forces some records to the disk further delaying
performance recovery. The key advantage of fold-over is the
amount of data written to disk during the commit — it is fully
incremental, i.e., only data that changed since the previous
commit is written out.
An alternate design is to capture all volatile v records

into a separate snapshot file on disk without modifying the
HybridLog offsets. Once captured, we can then move to the
rest phase, where a v record in mutable region can be up-
dated in-place, avoiding copy-on-write for such records. In
effect, the period during which the system performs copy-
on-write heavily is limited to the time it takes to write the
volatile portion of HybridLog to disk. The downside of this
technique is that every commit writes all records in the
volatile region to secondary storage, which may include
records that were not updated since the previous commit.
This can be wasteful if CPR commits are frequent.

E ADDITIONAL EXPERIMENTS

E.1 High Contention YCSB Benchmark

Weevaluate CPR, CALC andWAL on a YCSB high-contention
(θ = 0.99) read-write (50 : 50) workload; we report average
throughput (Figs. 16a, 16b) and latency (Figs. 16c, 16d) as we
vary number of threads for 1- and 10- key transactions along
with a breakdown analysis (Fig. 16e).

The high contention 1-key case is similar to its low con-
tention counterpart: CPR yields a throughput of 95M txn-
s/sec, an order of magnitude better than CALC and WAL,
with a maximum of 10M txns/sec and 30M txns/sec respec-
tively. The marginal improvement in throughput relative
to the low contention scenario (refer Sec. 7.2) is due to bet-
ter caching of hot records since unique, frequently-accessed
records are fewer. Tail contention serves as a significant bot-
tleneck in CALC and WAL, while CPR scales linearly; this is
evident from the linearly increasing trend for average latency
in CALC and ’Tail Contention’ overhead in the breakdown.
WAL performs better since 50% read-only transactions do
not generate a WAL record.

For 10-key high contention workload, on the other hand,
aborts due to conflicting accesses are a significant overhead.
CPR, while still better (by 15%), performs almost similar
to CALC as the overheads are elsewhere. WAL is twice as
expensive as CPR or CALC due to the additional log write
overhead; WAL’s increasing latency trend reveals that this
is significant. There is not much difference between low and
high-contention for 10-key workloads in WAL as the logging
overhead outweighs that of aborts.

E.2 TPC-C Benchmark

We also compared the three systems on two workloads de-
rived from the TPC-C [28] benchmark: a mixed (50 : 50) and
payments-only (100 : 0)mixture of Payment and New-Order
transactions. Transaction inputs were generated as per the
standard specifications. Payment is a short transaction writ-
ing to 3 records, while New-Order is longer accessing 23
records on average. We use 256 warehouses in our experi-
ments to reduce the impact of contention (covered in Sec. E.1).
We plot throughput on 64 threads during the lifetime of a

0 50 100
Time (secs)

0

1

2

3

4

T
hr

ou
gh

pu
t(

M
tx

ns
/s

ec
)

CPR
CALC
WAL

(a) Throughput; 50:50

0 20 40 60
Threads

0

2

4

T
hr

ou
gh

pu
t(

M
tx

ns
/s

ec
) CPR

CALC
WAL

(b) Scalability; 50:50

0 20 40 60
Threads

0

5

10

T
hr

ou
gh

pu
t(

M
tx

ns
/s

ec
) CPR

CALC
WAL

(c) Scalability; 100:0

0 20 40 60
Threads

0

50

100

150

200

L
at

en
cy

(µ
s)

CPR
CALC
WAL

(d) Latency; 50:50

C
PR

C
A

L
C

W
A

L

C
PR

C
A

L
C

W
A

L

C
PR

C
A

L
C

W
A

L

C
PR

C
A

L
C

W
A

L

0

50

100

Pe
rc

en
ta

ge
(%

)

Both Payments
1 64 1 64

Abort
Exec

Tail Contention
Log Write

(e) Analysis

Figure 17: Throughput during Checkpoint, Scalability and Latency on TPC-C Benchmark

Fold-Over (Zipf) Fold-Over (Uniform) Snapshot (Zipf) Snapshot (Uniform)

0 20 40 60
Time (secs)

100

125

150

175

T
hr

ou
gh

pu
t(

M
op

s/
se

c)

(a) Throughput; YCSB 90:10

0 20 40 60
Time (secs)

50

100

150

T
hr

ou
gh

pu
t(

M
op

s/
se

c)

(b) Throughput; YCSB 50:50

0 20 40 60
Time (secs)

50

100

150

T
hr

ou
gh

pu
t(

M
op

s/
se

c)
(c) Throughput; YCSB 0:100

0 20 40 60
Time (secs)

10

20

30

L
og

Si
ze

(i
n

G
B

)

(d) Log growth; YCSB 0:100

Figure 18: Faster Throughput and Log Growth vs. Time; Log-only Fold-over and Snapshot Commits

run for the mixed workload with checkpoints at 30, 60 and 90
secs in Fig. 17a. We observe a marginal drop in performance
for CPR and CALC due to the extra overhead of copying over
the live to stable value during checkpoint; the value sizes
are considerably larger compared to 8 bytes in YCSB. We
now present the average throughput (Figs. 17b and 17c) and
latency (Fig. 17d: note the log-scale) as we vary number of
threads along with a breakdown analysis (Fig. 17e). CPR is
better than CALC while the difference is smaller since cost of
transaction execution compared to tail contention is higher.
Latency of CPR and CALC remains constant further validat-
ing this. Writing WAL records is an important overhead in
WAL since value sizes are larger, leading to much poorer per-
formance. For the payment-only workload, CPR outperforms
CALC by almost 50% since payment transactions are smaller
making tail contention a significant bottleneck again.

E.3 Frequent CPR Commits

The Faster hash index can be recovered independently from
HybridLog and hence frequent commits of Faster does not
require the index checkpoint. We plot throughput vs. wall-
clock time as in Sec. 7.3, but take a checkpoint every 15

secs, starting at the 10 sec mark. Further, since the index is
typically checkpointed less frequently, we checkpoint only
HybridLog in these experiments. We plot the results for Uni-
form and Zipf distributions, for the fold-over and snapshot
techniques, as we vary the workload mix.

Fig. 18a shows the result for a read-dominated 90:10 work-
load. We see that throughput is affected very slightly due
to commits, with Zipf recovering the working set quickly.
While all checkpoints take the same time with snapshot (hav-
ing to dump the in-memory snapshot to disk every time),
subsequent fold-over commits (being incremental) have little
effect on throughput. The performance with Uniform is simi-
lar. Fold-over takes longer to recover performance compared
to snapshot, since the working set takes longer to migrate
to the mutable region. With the 50:50 and 0:100 workloads
(Figs. 18b and 18c), the Zipf distribution with fold-over is able
to ramp up post-commit performance quicker than Uniform,
as it captures the working set quickly. As before, system re-
covers full performance quickly after the snapshot is written
out. We depict the size of HybridLog vs. time for frequent
log-only checkpoints over a 0:100 workload in Fig. 18d. The
log growth is more rapid with fold-over checkpoints and
with Uniform distributions, as expected.

	Abstract
	1 Introduction
	1.1 New Bottleneck and Today's Solutions
	1.2 Our Solution

	2 Concurrent Prefix Recovery
	3 Epoch Framework Background
	4 CPR Commit in an In-Memory Transactional Database
	4.1 Commit Algorithm
	4.2 CPR By Example
	4.3 Correctness
	4.4 Recovery

	5 Background on Faster
	5.1 Hybrid Log
	5.2 Towards Adding Durability

	6 Adding Durability to Faster
	6.1 Challenges
	6.2 HybridLog Checkpoint
	6.3 Faster Hash Index Checkpoint
	6.4 Recovery
	6.5 Solution Variants

	7 Evaluation
	7.1 Implementation, Setup, Workloads
	7.2 Transactional Database Comparisons
	7.3 Evaluation of Faster with CPR

	8 Related Work
	9 Conclusion
	References
	A Proof of Theorem 1
	B Pseudo-Code for CPR on FASTER
	C Coarse vs. Fine-Grained Shift
	D Fold-Over vs. Snapshot
	E Additional Experiments
	E.1 High Contention YCSB Benchmark
	E.2 TPC-C Benchmark
	E.3 Frequent CPR Commits

