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ABSTRACT
We study the problem of representing and recommending products
for grocery shopping. We carefully investigate grocery transaction
data and observe three important patterns: products within the
same basket complement each other in terms of functionality (com-
plementarity); users tend to purchase products that match their
preferences (compatibility); and a significant fraction of users re-
peatedly purchase the same products over time (loyalty). Unlike
conventional e-commerce settings, complementarity and loyalty are
particularly predominant in the grocery shopping domain. This
motivates a new representation learning approach to leverage com-
plementarity and compatibility holistically, as well as a new rec-
ommendation approach to explicitly account for users’ ‘must-buy’
purchases in addition to their overall preferences and needs. Doing
so not only improves product classification and recommendation
performance on both public and proprietary transaction data cover-
ing various grocery store types, but also reveals interesting findings
about the relationships between preferences, necessity, and loyalty
in consumer purchases.
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1 INTRODUCTION
From online grocery shopping platforms (e.g. Amazon Fresh, In-
stacart) to automated checkout-free brick-and-mortar grocery stores
(e.g. Amazon Go), recent technological innovations have enabled
dramatic changes in people’s grocery shopping experiences. As
one of the most frequent shopping activities, vast amounts of gro-
cery transaction data can be collected from multiple sources. On
account of such innovations and volumes of data in this domain,
various predictive tasks including personalized product recommen-
dation, retail sales prediction, retail inventory optimization, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3271786

• Prefer organic food
• Like hosting parties
• Loyal to tortilla chips – brand A

Ø Tortilla Chips
Brand A

Ø Plastic Cutlery
Brand B

Ø Plastic Cups
Brand B

Ø Beer
Brand C

…

Ø Tortilla Chips
Brand A

Ø Breakfast Cereal
Brand E

Ø Organic Milk
Brand D

Ø Organic Eggs
Brand D

…

Ø Tortilla Chips
Brand A

Ø Organic Milk
Brand F

Ø Breakfast Cereal
Brand G

…

Complementarity Compatibility Loyalty

Trip 1 Trip 2 Trip 3

Consumer Retailer Manufacturer

• Personalized product recommendation
• Retail sales prediction & inventory management

• Self-checkout augmentation
• Targeted product promotion

Figure 1: Three significant patterns observed in users’ gro-
cery baskets (item-to-item complementarity, user-to-item
compatibility, and product loyalty) and their applications in
the grocery industry.

personalized promotion strategies are worthy of interest. In order to
facilitate these tasks, we seek to understand the semantics in users’
grocery baskets, and to develop effective product representation
and purchase prediction techniques.

Many modern and traditional recommendation techniques de-
pend on learning latent representations of items from interaction
data. A traditional example is a latent factor model [16], where
a user-item interaction matrix is factorized by low-dimensional
user and item terms. These methods in general attempt to recover
the original interaction information globally, but may fail to cap-
ture subtle and fine-grained semantics of items. Inspired by word
embedding techniques proposed for Natural Language Processing
(NLP) tasks [21, 22, 24], recent item representation techniques have
been developed for e-commerce [4, 12, 28, 29, 31]. In general these
approaches are designed to learn representations which can effec-
tively recover product co-occurrences either within a basket or
across baskets from the same user. Foregoing handcrafted feature
design, these methods automatically uncover useful (in terms of
recommendation) representations of products. Both modern and
traditional techniques have seen wide adoption in real-world e-
commerce applications.

We hope to examine and adapt the above techniques to grocery
transaction data. We notice that grocery shopping differs from
conventional e-commerce applications, largely due to issues of reg-
ularity and necessity [23, 33]. Such nuances require us to carefully
investigate grocery shopping behavior and build domain-specific



representations and recommendation algorithms. In particular, we
consider the following patterns in users’ grocery baskets:
• Complementarity. Users purchase multiple related products in
the same basket to fulfill specific needs. These products comple-
ment each other in terms of functionality. For example, shoppers
may buy plastic cups/forks/knives/plates and beer together for a
party (Figure 1). Such item-to-item complementarity is critical as
it not only captures products’ latent functions but also reveals a
user’s intent in each basket.

• Compatibility. As with most e-commerce categories, compat-
ibility between users’ preferences and products’ properties is
paramount in grocery shopping. In addition, we notice that the
above latent functions for complementarity may need to match
users’ preferences as well (e.g. plastic cups and cutlery are more
likely to appear in a party lover’s basket). This kind of cohesion
inspires us to consider item-to-item complementarity and user-
to-item compatibility holistically in our representation learning
model for grocery shopping.

• Loyalty. A pronounced pattern in grocery transactions is that
users tend to exhibit ‘loyalty’ towards certain products, i.e., re-
peatedly purchasing the same product while rarely switching
brands among alternatives. Such behavior is often contrary to the
assumptions implicit in conventional recommendation models:
typically if two products have similar representations and match
a user’s preferences (or needs), either could be recommended.
However, if a user is loyal to one product, then its alternatives
have systematically low probability of being purchased. In fact,
simple user-wise product purchase frequency becomes a com-
petitive baseline for recommending grocery products, as users’
most loyal products can be ‘memorized’ based on these statistics.
Of course, such a baseline lacks generalization power since it is
unable to capture product semantics. Thus an appropriate algo-
rithm for grocery recommendation should balance item-to-item
complementarity, user-to-item compatibility, and users’ product
loyalty.
Our primary goal in this study is to leverage the above properties

in the grocery shopping domain, and to develop a framework to
understand the semantics of users’ purchases. The representations
we learn are generalizable and support tasks like automatic prod-
uct categorization and personalized recommendation for grocery
shopping at scale.
Contributions. In summary, our contributions are as follows:
• Inspired by the confluence of complementarity and compatibility,
we focus on the core component in grocery transaction data—
(item, item, user) triples linked by the same basket, i.e., two items
purchased in the same basket from a user, and propose a repre-
sentation learning model triple2vec to recover the above com-
plementarity and compatibility holistically.

• On the basis of these product and user representations, we pro-
pose a novel algorithm adaLoyal for personalized grocery rec-
ommendation. Our method is capable of adaptively balancing
users’ “must-buy” products with preferences inferred from the
low-dimensional representations.

• We conduct extensive experiments on two public and two propri-
etary datasets, which cover various grocery store types including

conventional physical supermarkets, a convenience store, and an
online grocery shopping platform.

• Based on the quantitative results from experiments, we demon-
strate that the proposed triple2vec model is able to generate
meaningful (in terms of product classification tasks) and use-
ful (in terms of recommendation tasks) product representations.
Particularly, by applying adaLoyal, performance of a variety of
embedding learning methods can be dramatically improved. The
effectiveness of product loyalty estimated from adaLoyal can be
validated in our qualitative analysis as well.

• By conducting quantitative and qualitative analysis of our pro-
posed methods, we reveal important and interesting insights
about users’ grocery shopping behaviors. The major insights
include: 1) compared with cross-basket relationships, within-
basket item-to-item complementarity is more useful in order to
learn meaningful fine-grained product representations; 2) model-
ing users’ product loyalty and repeated purchases is critical in
grocery product recommendation tasks, and such loyalty varies
across different users, store types and product categories.

2 RELATEDWORK
Traditional model-based item recommendation methods typically
rely on Matrix Factorization (MF) techniques, e.g. via a latent factor
model [16]. Of most relevance to grocery shopping are variants of
MF for implicit feedback data where only positive signals (e.g. pur-
chases) can be observed [13, 26]. MF-based methods have been
extended to sequential recommendation (i.e., predicting items in a
shopper’s next basket, based on the context of their previous basket)
by appropriately unifying MF and Markov Chains [27, 32]. More
recently, by considering both user-to-item interactions and multi-
ple associations among items simultaneously, such factorization
techniques have been extended to within-basket recommendation
(i.e., recommending products to be added to the current basket) [18].
In general, these models are optimized to directly favor global rec-
ommendation metrics which, while effective for recommendation,
may fail to capture detailed semantics of products.

Recently, ‘neural’ representation learning methods including
word2vec [21, 22] and GloVe [24] have achieved success on vari-
ous NLP tasks. Particularly, the skip-gram technique [21, 22] has
been widely extended to other domains including e-commerce [4,
12, 28, 29]. For example, item2vec was proposed by directly apply-
ing the skip-gram framework on itemsets, so that it can represent
associations among products within the same itemset [4].prod2vec
and bagged-prod2vec were proposed to learn distributed product
representations to support ad recommendations in Yahoo! Mail [12],
where skip-grams are applied to recover product co-occurrence in-
formation across the same user’s transactions. In order to overcome
cold-start problems, several representation learning architectures
have been developed to learn product embeddings by incorporat-
ing rich meta-data from different sources (e.g. product categories,
images, description text) [28, 29, 34]. Moreover, a random-walk
based network embedding method metapath2vec [10] was pro-
posed to learn node representations from heterogeneous networks;
as the relationships among users, baskets, and products can be
easily represented as a heterogeneous graph, we consider this as
a potential technique which can be applied on grocery shopping
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Figure 2: An illustrative example of different representation learningmodels. Here {u· }, {i· }, {b· } are used to represent different users, items,
and baskets. In each model, the given node is highlighted in red and the nodes for prediction are highlighted in blue.

Notation Description

U, Bu, Ib user set, basket set for user u , item set of basket b
fi , дi , hu two different embedding vectors for item i , and the embedding

vector for user u
si,u , si, j,u user u ’s preference score on item i , the cohesion score of the

(item, item, user) triple (i, j, u)
pi,u , pi,uj item purchase prob. given a user u , item purchase prob. given

a user u and an item j ; both are calculated from the original
representation learning model

p̃(t )i,u , p̃
(t )
i,uj item purchase prob. given a user u for transaction t , item

purchase prob. given a user u and an item j for transaction t ;
both are generated from algorithm 1.

q(t )i,u , l
(t )
i,u user u ’s empirical purchase frequency and estimated product

loyalty of item i up to and including transaction t
C (t )
i,u whether product i is purchased by user u in the transaction t

Table 1: Notation.

transaction data. Details of some representative product embedding
learning methods will be provided in Section 3.1. Note that these
existing methods are designed for conventional e-commerce (or
general graphs), which may fail to account for the strong cohe-
sion of within-basket complementarity and compatibility exhibited
in grocery purchases, nor do such methods explicitly account for
repeated purchases.

On the other hand, brand loyalty and repeat purchasing behavior
in grocery shopping have been theoretically and empirically stud-
ied in the areas of economics and psychology [9, 14, 25]. Although
conceptually different, loyalty and repeat consumption correlate
to each other [14], and such loyalty varies across products and
categories [9, 25]. These studies also motivate us to extend the
concept of ‘loyalty’ to large-scale product recommender systems.
Recently, a ‘Wide&Deep’ approach was proposed to address both
memorization and generalization issues in Google Play applica-
tion recommendations [8]. Rather than modeling user-to-product
loyalty, however, they seek to memorize frequently co-occurring
products or features. Another line of relevant work includes model-
ing repeat consumption in online activities including video/music
streaming [3, 5–7, 15, 17] and e-commerce [19]. The lifetime of an
item in this context is relatively short and users’ interest highly
depends on recency, which is different from empirical findings from
grocery shopping where the decline in loyalty is relatively small
over time [9]. Therefore, new techniques need to be developed to
handle the dynamics of this specific domain.

3 METHODS
We first briefly introduce the basic skip-gram-based embedding
learning framework and several representative instantiations. Then
we present the proposed representation learningmethod triple2vec,
and show how to build downstream product classification and rec-
ommendation systems on these embeddings. Afterwards, we in-
troduce adaLoyal, a recommendation algorithm which adaptively
balances users’ purchase frequency statistics and the generalization
power from embedding learning methods. Important notation is
included in Table 1.

3.1 Background
Several product representation learning methods are based on the
skip-gram framework [22]. Essentially, they seek to find item repre-
sentations which are useful for predicting contextual (related) items
or users, by defining different ‘context windows.’ In this section, we
introduce them as different instantiations of a unified skip-gram
framework on a heterogeneous graph (Figure 2), whose nodes are
composed of different products, users, and baskets. Here we have
two different types of links: 1) item-to-basket, indicating that an
item is included in a basket, and 2) user-to-basket, indicating that
a basket is purchased by a user. On this graph, several existing
representation learning objectives can be cast as learning node rep-
resentations which maximize the (log) likelihood of using a target
node v to predict the contextual nodes Cv , i.e.,

Lsдn =
∑
v

∑
v ′ ∈Cv

log P(v ′ |v). (1)

P(v ′ |v) is commonly defined as P(v ′ |v) = exp(f Tv дv′ )∑
v′′ exp(f Tv дv′′ )

, where
fv and дv are K dimensional ‘input’ and ‘output’ vector represen-
tations of a node.

We briefly introduce three representative methods of this type
as follows:
• item2vec. Basket-level skip-grams can be directly applied on
this graph, where we treat a particular item as a target node,
and the rest of the products in the same basket as contextual
nodes [4]. This definition relies on the assumption that products
purchased in the same basket share similar semantics, which
intuitively supports within-basket/“bundle” product recommen-
dations. However, such co-purchase relationships may not be
sufficient to capture personalized preferences toward products.



• prod2vec. Rather than directly applying Eq. (1) on baskets, in
prod2vec, given a target product, the contextual nodes are de-
fined as the products in recent baskets purchased by the same
user [12].1 Unlike the previous method which focuses on within-
basket co-purchase relationships regardless of users, this ap-
proach emphasizes cross-basket item-to-item relationships for
each user.

• metapath2vec. As mentioned, transaction logs can be trans-
formed into a heterogeneous network. Therefore, a state-of-the-
art network embedding learning method such asmetapath2vec
[10] can be applied here. In this scenario, we need to define a sym-
metric meta-path scheme: item → basket → user → basket →
item, and generate different random walkers based on this pre-
defined scheme. Specifically, we start with a random product,
and sample a series of nodes to compose a random walker where
each of the nodes consecutively links to the previous one on
this meta-path. Then we select a given node, and define its sur-
rounding nodes along the walk as ‘contexts’ Cv in Eq. (1). A
concrete example is included in Figure 2c; here we sample a
random walker (i2,b11,u1,b12, i4,b21,u2,b21, i5, ...), highlight a
randomly selected target node i4 in red and its surrounding nodes
in blue.2 Note that this item → basket → user → basket → item
meta-path in general captures the semantics of products pur-
chased by the same user but does not reflect product co-purchase
relationships explicitly.

3.2 triple2vec: Representations from Triples
Unlike existing skip-gram-based product representations, we fo-
cus on the cohesion of each (item, item, user) reflecting two items
purchased by the same user in the same basket. Specifically, the
transaction logs for training consist of a series of such triples:

T = {(i, j, u) |i ∈ Ib ∧ j ∈ Ib ∧ i ! j ∧ b ∈ Bu ∧ u ∈ U}. (2)

Then we define the cohesion score of each (i, j,u) triple as

si, j,u =

item-to-item complementarity︷︸︸︷
fTi дj + fTi hu + д

T
j hu︸!!!!!!!!!!!︷︷!!!!!!!!!!!︸

user-to-item compatibility

, (3)

where fi ,дj are two sets of representations for products and hu
represents the embedding vector of a user. The first term in Eq. (3)
models the complementarity between two products within the same
basket, i.e., whether two products exhibit similar semantics in terms
of co-occurrence; the second and third terms are used to capture the
compatibility between the product and the user, i.e., how well the
product’s (latent) properties match the user’s preferences. A higher
cohesion score indicates closer connections among the nodes in
the triple. Finally, we aim to learn embeddings which optimize the
occurrence likelihood of the training triples T:

L =
∑

(i, j,u)∈T

(
log P(i |j,u) + log P(j |i,u) + log P(u |i, j)

)
, (4)

1We consider the bagged version of prod2vec here, where all products purchased in
the same contextual basket need to be included together in the objective function.
2The neighborhood size is set to 8 in this figure.

where P(i |j,u) = exp(si, j,u )∑
i′ exp(si′, j,u )

3 and P(u |i, j) = exp(si, j,u )∑
u′ exp(si, j,u′ )

. Es-
sentially for each triple in T, we iteratively ‘knock out’ a node
and use the other two nodes to predict it. Figure 2 shows an illus-
trative example highlighting the difference between the proposed
triple2vec and skip-gram-based models.
Negative Sampling. As with skip-gram-based models, a variation
of Noise Contrastive Estimation (NCE) can be applied to approxi-
mate the softmax function in Eq. (4) and accelerate training [22].
For example, log P(i |j,u) in Eq. (4) can be replaced by

logσ (si, j,u ) +
∑
Ei′∼P(i ) logσ (−si′, j,u ), (5)

where we sample N negative items from a pre-defined distribution
P(i), and σ (x) = 1

1+exp(−x ) . We achieve this through the NCE
loss API provided in TensorFlow [2], where P(i) is defined as a
log-uniform (Zipf) distribution. Specifically items are sorted in
order of decreasing popularity and the probability of each item i
being sampled is defined as P(i) = log ri+2

ri+1 , where ri denotes the
rank of item i . This negative sampling technique is used in all the
representation learning methods implemented in our experiments,
which empirically accelerates model convergence and improves
quantitative performance compared to a uniform sampling strategy.
Representing and Recommending Products. Note that two
sets of product embeddings fi and дi are learned from triple2vec.
These embeddings describe the functions and properties of products
from different angles, but the inner product between these two cap-
tures the cross product relationship—item-to-item complementarity.
Therefore, for tasks to evaluate the semantics of products indepen-
dently (e.g. product classification, competitor search), we follow
the protocol in [24] and use the additive composition fi +дi as the
ultimate representation of each product i , which empirically gives a
slight boost in most tasks. However, for predictive tasks where the
cross-item relationship needs to be considered (e.g. item-to-item
recommendation, complementary product search), we consider the
inner product score fTi дj for two items i, j instead.

In particular, we consider two different recommendation sce-
narios: personalized next-basket product recommendation, and
within-basket product recommendation:
• Given a user, when recommending products for the next basket,
we replace the product embedding of the given product дj by
the average embedding of all the products in the user’s previous
baskets. Then we obtain a new preference score si,u and the
purchase probability is estimated as pi,u = exp(si,u )∑

i′ exp(si′,u )
.

• If products in the current basket are given, when recommending
products to be added in the same basket, we replace дj by the
average embedding of all the products in the given item set.

Note that another set of preference scores could be obtained by
exchanging fi and дi . We also take the average of preference scores
generated from these two methods and consider it as a third option.
In our experiments, we report results from the method which yields
the best validation performance.4

3Because of symmetry, by exchanging i and j , P (j |i, u) can be obtained.
4In our experiments, this protocol is applied for all representation learning methods
in which two heterogeneous embeddings are involved.



3.3 adaLoyal: Adaptively Updating and
Estimating Product Loyalty

We find that in grocery baskets, a number of shoppers have their
own ‘must-buy’ products. A preliminary analysis of ‘must-buy’
products is provided in Section 4.1 and Figure 3. Such repeat pur-
chases could easily be measured based on user-wise item purchase
frequency but may not be captured by low-dimensional product
and user representations. Therefore, we introduce an algorithm
adaLoyal to adaptively combine these two components and esti-
mate users’ product loyalty over time.

We start with a Bayesian view and then gradually build adaLoyal
based on this principle. Specifically, for a user u, a product i and a
transaction t , we have two predictive models for this basket: the
prior purchase probability pi,u , and the empirical item purchase
frequency q(t−1)i,u up to the given transaction t .5 We introduce a
latent loyalty indicator Li,u , which acts as a ‘switch’ such that Li,u
(u is loyal to i) causes predictions to be generated from frequency
only, while ¬Li,u (u is not loyal to i) causes the probability to be
estimated from representations. Then the ultimate item purchase
probability can be generated from the following probabilistic mix-
ture:

P(C(t )
i,u = 1) = P(Li,u ) P (C (t )

i,u = 1 |Li,u )︸!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!︸
frequency model: q(t−1)i,u

+P(¬Li,u ) P (C (t )
i,u = 1 |¬Li,u )︸!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!︸

representation model: pi,u

,

whereC(t )
i,u = 1 indicates that i is purchased by useru in transaction

t . On the other hand, given C(t )
i,u , the posterior distribution of this

loyalty indicator is:

P (Li,u |C (t )
i,u ) =

P (Li,u ) P (C (t )
i,u |Li,u )

P (Li,u ) P (C (t )
i,u |Li,u ) + P (¬Li,u ) P (C

(t )
i,u |¬Li,u )

. (6)

Inspired by this posterior distribution, we seek to estimate a weight
(i.e., the product ‘loyalty’) l (t )i,u ∈ [0, 1] which results in an ultimate
product purchase probability for the next basket:

p̃(t+1)i,u = l (t )i,uq
(t )
i,u + (1 − l (t )i,u )pi,u . (7)

i.e., l (t )i,u is used to approximate P(Li,u ) adaptively. Finally we pro-
pose the adaLoyal algorithm as follows. We scan a user’s trans-
action logs chronologically: 1) if a new product is observed, we
activate its corresponding loyalty l (t )i,u and set it to be a given initial
value l0; 2) if a product has been purchased before, l (t )i,u is updated
based on the posterior distribution of the loyalty indicator.

The pseudo-code of adaLoyal is given in algorithm 1 and the
specific update rules for l (t )i,u are provided in Eq. (8) and Eq. (9). In
general, if a user starts repeatedly consuming a particular product
beyond our expectation (i.e., it diverges from the representation
model), the corresponding product loyalty will increase and its
purchase frequency will be emphasized in the final prediction.

Note that the same algorithm can also be applied towithin-basket
recommendation, where the ultimate product purchase probability

5q(t−1)
i,u is defined as the number of purchases of product i divided by the total number

of products purchased up to the given transaction t .

Algorithm 1 Pseudo-code of adaLoyal

Input: pi,u , q(t )i,u , C
(t )
i,u , l0.

Output: p̃(t )i,u , l
(t )
i,u .

for each user u , each item i , each transaction t do
if q(t−1)i,u = 0 then

// current item has not been purchased before

assign p̃(t )i,u = pi,u
assign l (t )i,u = l0, if C

(t )
i,u = 1; l (t )i,u = NA, otherwise.

else
// loyalty of current item has been activated

assign p̃(t )i,u = l
(t−1)
i,u q(t−1)i,u + (1 − l (t−1)i,u )pi,u

if C (t )
i,u = 1 then

assign l (t )i,u =
l (t−1)i,u q(t−1)i,u

l (t−1)i,u q(t−1)i,u +(1−l (t−1)i,u )pi,u
(8)

else

assign l (t )i,u =
l (t−1)i,u (1−q(t−1)i,u )

l (t−1)i,u (1−q(t−1)i,u )+(1−l (t−1)i,u )(1−pi,u )
(9)

end if
end if

end for

for user u given product j in the basket can be estimated as p̃(t+1)i,uj =

l (t )i,uq
(t )
i,u + (1 − l (t )i,u )pi,uj .

4 EXPERIMENTS
We evaluate representations learned from triple2vec and the rec-
ommendation algorithm adaLoyal on two public and two propri-
etary grocery shopping transaction datasets. Code for the public
datasets will be made available at publication time. In order to
demonstrate that product embeddings are meaningful and useful,
we evaluate 1) the item classification performance obtained with
these representations; and 2) the accuracy of product recommen-
dations obtained by leveraging these representations. Finally we
evaluate 3) the boost in recommendation performance when using
adaLoyal on top of these representations.

In addition to triple2vec, we consider the three methods de-
scribed in Section 3.1: item2vec [4], prod2vec [12] and metap-
ath2vec [10]. For all representation learning methods, we apply the
same negative sampling approach, where the number of negative
samples in Eq. (5) is set to 5.6 AdaGrad [11], a stochastic gradient-
based optimization method, is applied to learn all embeddings.

4.1 Datasets
We consider four real-world grocery transaction datasets, where
MSR-Grocery (WA) and MSR-Grocery (UT) are two proprietary
datasets collected from the Seattle and Salt Lake City areas (re-
spectively). In order to ensure the reproducibility of our results, we
also evaluate the performance of triple2vec and adaLoyal on two
public datasets—Dunnhumby and Instacart.
• Dunnhumby. The Complete Journey dataset from Dunnhumby.7
Transactions over two years collected from around two thou-
sand households are included in this dataset. Users are frequent
shoppers with an average shopping frequency of once per week.

6In practice, product bias terms are also added in Eq. (1) and Eq. (3) for all of these
methods to capture overall item popularity.
7https://www.dunnhumby.com/sourcefiles



Dataset #item #user #transaction #trans./#user basket size #department #dept. ≥ 5 #category #cat. ≥ 5
Dunnhumby 26,780 2,500 269,974 107.99 9.02 31 24 310 255
Instacart 42,987 206,209 3,345,786 16.23 10.10 21 21 134 134
Grocery(WA) 16,497 47,939 360,222 7.51 4.81 34 26 306 177
Grocery(UT) 26,821 60,421 634,733 10.51 9.80 24 22 288 247

Table 2: Basic dataset statistics.

• Instacart. This dataset was published by instacart.com [1], a
web service that provides same-day grocery delivery in the US.
It contains over 3 million grocery orders from more than 200
thousand users. The specific date of each order is missing but the
sequence order of transactions by each user is provided.

• MSR-Grocery (WA). This dataset is collected from a single con-
venience store in the Seattle area and was first used in [30]. We
extend this dataset to include 12 months of transactions from
around 360 thousand users. Because of the type of this store,
users tend to have fewer transactions and smaller basket sizes
compared with other datasets.

• MSR-Grocery (UT). Finally we collected 8 months of transac-
tions from two mid-size grocery stores in the Salt Lake City area.
These two stores are from the same grocery chain and include
relatively diverse consumers including households and college
students.
After removing rare products (fewer than 10 purchases) from

these datasets, the basic statistics of these preprocessed datasets are
listed in Table 2. The following rules are applied to split transaction
data into train/validation/test sets: 1) for users who have more than
one transaction, their most recent transaction is used for testing; 2)
for users who have more than two transactions, their second-to-last
transactions is used for validation; 3) all the other transactions are
used for training. All embedding learning and recommendation
models are learned on the training data, and all hyper-parameters
are selected based on validation performance. All recommendation
results are reported on the held-out test data.

As a preliminary analysis of users’ product loyalty in grocery
shopping, we explore the distribution of the item purchase fre-
quency of each user’s most favored product, qmax.8 In Figure 3 we
split users into three groups: qmax ∈ (0, 0.1], (0.1, 0.5], (0.5, 1] to
show the distribution. We notice that the fraction of users where
qmax ≤ 0.1 is limited, which means most users exhibit some repeat
consumptions. Moreover, different from other datasets, around 70%
of users in Instacart have products which are repeatedly purchased
in more than half of their transactions. A possible explanation could
be that Instacart is collected from regular shoppers on an online
grocery shopping platform, where users may repeatedly seek the
same products for efficiency rather than browsing and exploring as
in physical stores.

4.2 Product Classification
Hierarchical product categories are provided in all four datasets.
We treat the top-level hierarchy as the ‘department’ and the second-
level as the ‘category,’ and remove small departments and categories

8For users who have at least 10 transactions in each dataset, we calculate the user-wise
item purchase frequency and find the maximum qmax for each user (i.e., the purchase
frequency of the user’s most favored product).
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Figure 3: Distribution of the purchase frequency of each
user’s most favorite product.

Dunnhumby Instacart Grocery(WA) Grocery(UT)

Method micro macro micro macro micro macro micro macro

item2vec 0.665 0.108 0.377 0.283 0.608 0.345 0.620 0.239
prod2vec 0.617 0.066 0.330 0.218 0.480 0.212 0.491 0.093
m.2vec 0.627 0.071 0.331 0.221 0.441 0.144 0.484 0.067
triple2vec 0.669 0.114 0.382 0.294 0.581 0.361 0.623 0.293

(a) F1 metrics on coarse-grained (department) classification

Dunnhumby Instacart Grocery(WA) Grocery(UT)

Method micro macro micro macro micro macro micro macro

item2vec 0.160 0.046 0.187 0.075 0.518 0.010 0.275 0.094
prod2vec 0.087 0.015 0.106 0.030 0.518 0.009 0.119 0.023
m.2vec 0.078 0.007 0.155 0.036 0.518 0.007 0.091 0.008
triple2vec 0.175 0.049 0.189 0.082 0.519 0.010 0.291 0.097

(b) F1 metrics on fine-grained (category) classification

Table 3: Detailed results on product classification tasks (K =
32, r = 50%, the best performance is underlined). All reported
improvements are significant at 1%.

with fewer than 5 products (see Table 2). We evaluate the quality
of the product embeddings learned by different methods over both
coarse-grained (department) and fine-grained (category) classifica-
tion. In particular, we apply a one-vs-all linear logistic regression
classifier on the product embeddings, where the hyper-parameter
for the l2 regularizer is selected based on a 5-fold cross-validation.
Results. We fix the embedding dimensionality to K = 32 and
use half of the products for training and the other half for testing
(i.e., label fraction r = 0.5). Then we repeat each experiment 10
times, and report the average micro-F1 and macro-F1 scores in
Table 3.9 We also vary the embedding dimension K , label fraction
r , and report the classification results in Figures 5a and 5b on the
Dunnhumby dataset to address the sensitivities of these hyper-
parameters 10.
9All differences are significant at 5% level.
10K ∈ {8, 16, 32, 64, 128}, r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}



We find that triple2vec substantially and consistently outper-
forms all baselines on both department and category classification.
The improvement is increased with larger embedding dimension K .
The non-personalized method item2vec in general yields better
classification results compared with the other two baselines. This
may indicate that in order to learn meaningful grocery product
representations, within-basket item-to-item complementarity is rel-
atively more significant compared with cross-basket item-to-item
relationships or item-to-user relationships. Note that in Table 3, the
performance of item2vec is particularly strong on the convenience
store dataset (MSR-Grocery (WA)), which may reveal the particular
significance of such item-to-item complementarity in this type of
stores.

4.3 Personalized Recommendation
In addition to product classification tasks, we evaluate the prod-
uct/user representations and the performance of the proposed
adaLoyal algorithm on two recommendation tasks: next-basket
recommendation and within-basket recommendation. Particularly,
we consider the original purchase probability estimated based
on embeddings learned from item2vec, prod2vec and metap-
ath2vec as baselines; adaLoyal can be applied on top of any of
these. For both recommendation tasks, as in [26, 27], we rank prod-
ucts based on the predicted purchase probability, and consider the
Area Under the ROC Curve (AUC) as an overall ranking metric, and
Normalized Discounted Cumulative Gain (NDCG) as a top-biased
evaluation metric. In this section, we report detailed results with a
fixed dimension of item/user embeddings K = 32 (Table 4) and vary
it on the Dunnhumby dataset for sensitivity analysis (Figure 5c).
The initial loyalty value l0 is selected based on the performance on
the validation set.11

Next-Basket Recommendation. We first consider recommend-
ing products for users’ next baskets. The same prediction method
in Section 3.2 is applied for all representation learning baselines. If
a user embedding is not available, we use the average embedding of
items in a user’s training baskets instead. We further consider two
additional baselines: overall item purchase frequency (itemPop)
and user-wise item purchase frequency (user-wise itemPop).

As next-basket recommendation is a classic recommendation
task, we consider two state-of-the-art supervised implicit-feedback
recommendation baselines as well: 1) BPR-MF [26], an item recom-
mendation model which factorizes the user-item compatibility by
approximately optimizing the AUC ranking metric, and 2) FPMC
[27], where sequential information (via a first-order Markov Chain)
is considered in addition to user-to-item compatibility. To make
a fair comparison, we extract item and user embeddings from all
representation learning methods and learn a weighted inner prod-
uct between these two kinds of embeddings as a ranking score.
The associated weights are learned by applying the same pairwise
ranking loss (i.e., the BPR loss [26]). Note we adopt the same super-
vised learning protocol here but only need to learn K parameters,12
where K is the dimensionality of latent embeddings.

Detailed results on this task are reported in Table 4a. In general
triple2vec+adaLoyal andmetapath2vec+adaLoyal outperform
11l0 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
12In practice, we may need to learn item bias terms as well.

Dunnhumby Instacart Grocery(WA) Grocery(UT)

Method AUC NDCG AUC NDCG AUC NDCG AUC NDCG

itemPop 0.799 0.129 0.918 0.145 0.809 0.130 0.854 0.137
+userwise 0.732 0.175 0.773 0.273 0.591 0.150 0.607 0.141
BPR-MF 0.861 0.136 0.964 0.161 0.831 0.136 0.862 0.139
FPMC 0.853 0.137 0.963 0.163 0.821 0.139 0.865 0.139
item2vec 0.801 0.132 0.945 0.111 0.794 0.138 0.822 0.108
+BPR 0.851 0.145 0.964 0.188 0.804 0.141 0.846 0.138
+adaLoyal 0.853 0.181 0.963 0.270 0.805 0.174 0.858 0.133
prod2vec 0.796 0.119 0.945 0.115 0.790 0.137 0.826 0.119
+BPR 0.850 0.144 0.964 0.183 0.807 0.144 0.852 0.140
+adaLoyal 0.848 0.154 0.964 0.273 0.803 0.175 0.853 0.138
m.2vec 0.838 0.144 0.954 0.125 0.810 0.126 0.846 0.113
+BPR 0.854 0.153 0.959 0.189 0.809 0.145 0.856 0.147
+adaLoyal 0.862 0.182 0.967 0.269 0.820 0.174 0.874 0.149
triple2vec 0.852 0.129 0.959 0.128 0.817 0.137 0.848 0.124
+BPR 0.861 0.142 0.962 0.186 0.819 0.149 0.854 0.144
+adaLoyal 0.870 0.166 0.968 0.277 0.830 0.176 0.875 0.152

(a) AUC and NDCG on next-basket recommendation.

Dunnhumby Instacart Grocery(WA) Grocery(UT)

Method AUC NDCG AUC NDCG AUC NDCG AUC NDCG

itemPop 0.795 0.129 0.918 0.145 0.809 0.131 0.854 0.137
+userwise 0.730 0.174 0.773 0.272 0.590 0.149 0.606 0.141
item2vec 0.831 0.145 0.941 0.116 0.835 0.159 0.868 0.117
+adaLoyal 0.878 0.183 0.965 0.273 0.849 0.190 0.883 0.140
prod2vec 0.803 0.121 0.941 0.125 0.820 0.148 0.850 0.125
+adaLoyal 0.856 0.173 0.965 0.273 0.836 0.184 0.866 0.142
m.2vec 0.834 0.144 0.944 0.125 0.810 0.126 0.846 0.113
+adaLoyal 0.858 0.182 0.960 0.269 0.820 0.173 0.874 0.146
triple2vec 0.864 0.145 0.960 0.127 0.830 0.153 0.869 0.132
+adaLoyal 0.879 0.185 0.970 0.279 0.843 0.191 0.885 0.157

(b) AUC and NDCG on within-basket recommendation.

Table 4: Detailed results on recommendation tasks (K = 32).

other embedding learning methods, as both explicitly model user-
item compatibility during the representation learning process. We
notice that although BPR-MF and FPMC outperform most repre-
sentation learning methods without incorporating product loyalty,
by applying the same supervised learning loss function and learn-
ing minimal parameters, these representation learning methods
can achieve comparable results on some datasets in terms of AUC
and better top-biased ranking performance on all the datasets in
terms of NDCG (see the difference between ‘BPR-MF’ and ‘+BPR’
in Table 4a). Note that user-wise itemPop yields strong perfor-
mance based on NDCG but poor performance based on the overall
ranking metric AUC, as such a frequency-based method is not ca-
pable of capturing basket semantics and lacks generalization power
for future purchases. Nevertheless, its top-biased performance is



Figure 4: Results for repurchased products and newly pur-
chased products in next-basket recommendation tasks on
the Dunnhumby and Instacart datasets (in terms of AUC).

stronger than BPR-MF and FPMC which directly optimize a rank-
ing metric. A possible reason could be that users’ favoritism to
some products is difficult to model using latent low-dimensional
representations but easy to memorize based on purchase frequency.
For the same reason, the performance of all embedding learning
methods is significantly boosted in terms of both AUC and NDCG
by applying adaLoyal to effectively combine these two models (see
the difference between the first row and ‘+adaLoyal’ in each group
of Table 4a).

We further explore the improvement from adaLoyal on users’
repurchases (i.e., products that have be purchased in the given
user’s training transactions) and new purchases (i.e., products that
have not been purchased by the user before the test transaction).
Results on the Dunnhumby and Instacart datasets are provided
in Figure 4. We find that by applying adaLoyal, recommendations
on repurchases will be boosted to the upper bound provided by user-
wise itemPop. Doing so only sacrifices limited performance when
generalizing to new purchases. This implies that the algorithm
benefits from both the frequency model and universal embeddings
by successfully distinguishing ‘must-buy’ and ‘on-demand’ prod-
ucts. The effectiveness of estimated product loyalties will be further
validated in the subsequent case studies.
Within-Basket Recommendation. Next we consider a setting
where we assume some products in the basket are given and we
recommend ‘complimentary’ products to be added to the basket.
Specifically, for a transaction which contains more than one item,
we assume half of the products are given and predict the remaining
half. For metapath2vec, itemPop and user-wise itemPop, we
directly apply next-basket predictions as they do not explicitly ac-
count for item-to-item relationships. For item2vec and prod2vec,
we use the item-to-item complementarity score for preference pre-
diction (i.e., pi,uj ∝ exp(fTi дj )).

Detailed results are included in Table 4b and triple2vec still
dominates other methods in most cases. Besides, we notice that
item2vec becomes a competitive method in this scenario and out-
performs other baselines. This pattern can be observed when exper-
imenting with different numbers of embedding dimensions as well
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25 50 75 100 125
dim.

0.60

0.65

0.70
0iFro-)1 (DepDrtment)

25 50 75 100 125
dim.

0.05

0.10

0.15

0.20
0DFro-)1 (DepDrtment)

25 50 75 100 125
dim.

0.1

0.2

0.3

0iFro-)1 (CDtegory)

item2veF prod2veF metDpDth2veF triple2veF

25 50 75 100 125
dim.

0.00

0.05

0.10

0DFro-)1 (CDtegory)

(b) Label Fraction r (Department and Category Classification, K =
128)

0.2 0.4 0.6 0.8
frDFtion of trDining dDtD

0.625

0.650

0.675

0.700

0iFro-)1 (DepDrtment)

0.2 0.4 0.6 0.8
frDFtion of trDining dDtD

0.10

0.15

0.20

0DFro-)1 (DepDrtment)

0.2 0.4 0.6 0.8
frDFtion of trDining dDtD

0.1

0.2

0.3

0iFro-)1 (CDtegory)

item2veF prod2veF metDpDth2veF triple2veF

0.2 0.4 0.6 0.8
frDFtion of trDining dDtD

0.00

0.05

0.10

0.15

0DFro-)1 (CDtegory)
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Figure 5: Sensitivity analysis in product classification and
recommendation tasks on the Dunnhumby dataset.
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Figure 6: Histograms of user’s product loyalty across differ-
ent datasets, where lu represents the average product loyalty
of each user with the same initialization l0 = 0.5.

(see Figure 5c). This suggests that by explicitly including within-
basket item-to-item interactions in the preference score, item-to-
item complementarity can be captured and thus improve within-
basket recommendations.

4.4 Case Studies
In addition to our quantitative results from product classification
and recommendation, we conduct three case studies on our largest
public dataset, Instacart, to demonstrate the effectiveness of the
product embeddings, and to explore the variety of product loyalty
across different users and categories.
LoyaltyAnalysis.Here we explore product loyalty estimated from
adaLoyal+triple2vec in detail. We fix the initial loyalty l0 = 0.5,
and collect the estimated loyalties l (t )i,u for each user at the final
timestamp in the training set. Then we calculate the average value
of product loyalties for each user and provide its distribution across
different datasets in Figure 6. In this figure, we find that Instacart is
more “loyalty”-dominated compared with physical grocery stores.

We also provide concrete transaction examples in Table 5 to
illustrate how users behave differently from each other in terms



User A (lu = 1.00)
Sparkling Water, Bottles
Sparkling Water, Bottles
Sparkling Water, Bottles
Sparkling Water, Bottles
Sparkling Water, Bottles
Sparkling Water, Bottles

User B (lu = 0.57)
Spinach Artichoke Dip, Taboule Salad, ...
Packaged Grape Tomatoes
Bag of Organic Bananas, Taboule Salad
Fuji Apples, Seedless Cucumbers, ...
Bag of Organic Bananas, Sweet Kale Salad Mix
Spinach Artichoke Dip, Seedless Red Grapes, ...

User C (lu = 0.37)
Olive Oil Soap, Citrus Castile Soap, Peppermint Castile Soap ...
Coconut Chips – Sea Salt, Coconut Chips – Original ...
Compostable Forks
Grunge Buster Grout And Tile Brush
Pumpkin Seed Cheddar Crispbreads, Seedlander Crispbreads
Zinc Target Mins 50 Mg Gluten Free Tablets

Table 5: Baskets from users with the same number of transactions, but different average product loyalties in the Instacart
dataset.

loyal dept. loyalty unloyal dept. loyalty loyal cat. loyalty unloyal cat. loyalty

pets 0.64 pantry 0.52 milk 0.68 kitchen supp. 0.45
dairy/eggs 0.63 personal care 0.52 eggs 0.68 baking decor. 0.45
beverages 0.61 other 0.52 water/seltzer 0.66 spices 0.46
bakery 0.61 household 0.53 energy drinks 0.65 first aid 0.46
breakfast 0.61 international 0.54 lactose free 0.65 beauty 0.48

(a) Department/category ranking based on the raw loyalty score lu .

loyal dept. zl zf zl − zf unloyal dept. zl zf zl − zf
pets 1.638 -0.826 2.464 meat/seafood 0.326 2.353 -2.027

dairy/eggs 1.314 -0.734 2.048 international -1.117 0.857 -1.973
bulk -0.395 -1.606 1.210 pantry -1.768 -0.223 -1.544
babies 0.509 -0.606 1.115 beverages 0.951 1.499 -0.547
alcohol 0.100 -0.717 0.817 dry goods/pasta -0.349 0.165 -0.514
loyal cat. zl zf zl − zf unloyal cat. zl zf zl − zf
mint gum 0.933 -0.356 1.289 fresh fruit 0.408 4.817 -4.408

dog food care 1.215 0.067 1.148 fresh vegetables 0.255 4.234 -3.980
granola 0.986 -0.158 1.144 pack. veg./fruits 0.525 3.006 -2.481

energy drinks 1.709 0.656 1.053 spices -2.377 -0.618 -1.759
eggs 2.264 1.213 1.051 fresh herbs -0.932 0.464 -1.396

(b) Department/category ranking based on the relative score zl − zf
(i.e., difference between z-scores of loyalty and frequency).

Table 6: The five most loyal/unloyal departments and cate-
gories in the Instacart dataset.

of product loyalty. We find a few users who exhibit strong prod-
uct loyalty similar to User A in Table 5, i.e., they order certain
products in every transaction. However, most users’ shopping pat-
terns are better reflected by User B’s transactions, where they have
strong preferences on some products but occasionally switch brands
(e.g. Taboule Salad and Sweet Kale Salad Mix). Different from these
two kinds of users, product-unloyal consumers prefer to explore the
store rather than sticking to particular products. For example, User
C in Table 5 has hardly any repeated product consumptions, rather
they buy different products with the same function (e.g. various
soaps, coconut chips, crispbreads) in the same basket.

Next we calculate the average product loyalties for each depart-
ment and each category. Based on these statistics, the five most
loyal and unloyal departments/categories are listed in Table 6a.
Note that the distribution of this absolute loyalty estimation poten-
tially correlates to the demand/necessity of a category. For example,
we observe users are loyal to products such as “milk” and “eggs”
(i.e., they repeatedly purchase a specific product in these categories)
while these categories are highly in-demand and need to be pur-
chased frequently in our daily life. To further investigate the loy-
alty/necessity relationship we normalize both product loyalties and
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Figure 7: 2d t-SNE projections of the 32-dimensional prod-
uct embeddings learned from triple2vec on the Instacart
dataset.

department/category purchase frequencies into z-scores.13 Thenwe
calculate the difference between their z-scores to investigate how
surprisingly loyal or unloyal is a particular department/category.
Based on this difference, we provide the five most relatively loyal
and unloyal departments/categories in Table 6b, where we observe
that users are relatively unloyal to fresh fruits, vegetables, meat,
and spices but loyal to mint gums, granola, baby products, alcohol,
and pet products.
Similarity Search. Next we demonstrate the effectiveness of our
product embeddings by showing how they can be used to search
for ‘complementary’ and ‘substitutable’ products. We calculate the
complementarity score (i.e., fTi дj ) between all products and the
given query product, in order to retrieve the top five complements.
For substitutable products, we use the additive composition fi +дi ,
and retrieve the top five products (essentially i’s competitors) based
on cosine similarity. In Table 7 we query the two most popular
products “Banana” and “Organic Banana.” We observe that milk,
yogurt, and granola are likely to be complements for bananas while
other fresh fruits can be regarded as similar products/competitors.
Another interesting pattern is that most retrieved products for
“Organic Banana” are organic products while none are for the (non-
organic) “Banana.” This indicates that our representation learning
method triple2vec can capture latent properties (e.g. “organic”) of
products, which might be particularly useful when recommending
products to match users’ fine-grained preferences.
Product Visualization. For each department in Instacart, we se-
lect the 30 most popular products and visualize the low-dimensional
product representations learned from triple2vec in Figure 7 via
t-SNE [20]. In this figure, we notice that triple2vec automatically

13The z-score is defined as: (x −mean(x ))/sd(x )



Product Query: “Banana”
Complements Score Competitors Score

Whole Milk With Vitamin D 3.46 Fuji Apple 0.97
Plain Yogurt 3.11 Honeycrisp Apple 0.96
Apple Blueberry Granola 3.06 Cucumber Kirby 0.93
Orange Navel 3.01 Large Lemon 0.92
Milk Chocolate Nutrition Shake 2.99 Large Grapefruit 0.92

Product Query: “Organic Banana”
Complements Score Competitors Score

Organic Papaya 3.72 Organic Strawberries 0.96
Organic 2% Milk 3.69 Organic Raspberries 0.94
Carbonated Water 3.66 Organic Blueberries 0.94
Organic Bosc Pears 3.61 Organic Hass Avocado 0.93
Organic Applesauce 3.55 Organic Large Extra Fuji Apple 0.92

Table 7: Complement and competitor search for “Banana”
and “Organic Banana” in the Instacart dataset. Note the z-
normalized complementarity score and the cosine similar-
ity score are shown in the second and last columns.

organizes these products around different functions. For exam-
ple, products in the personal care, household and pets depart-
ments are separated from food products (e.g. produce, meat/seafood,
dairy/eggs). In addition, two relatively isolated departments – ba-
bies and alcohol can be observed in this dataset. Note these two
are relatively loyal but infrequently purchased departments (see
Table 6b), which may reflect users’ unique shopping patterns. Pur-
chases of baby products are normally necessities, which results in
relatively tight connections. Similarly, alcohol products are differ-
ent from other daily food consumptions in nature. Also, purchasing
such products usually incurs additional ‘costs’ to users (e.g. provid-
ing valid identification). Therefore, users’ shopping patterns in this
department are dramatically different from others.

5 CONCLUSIONS
We investigated grocery shopping behavior and observed three
important patterns in users’ baskets—complementarity between
products, compatibility between users and products, and users’
product loyalty.We proposed a new representation learningmethod,
triple2vec, to holistically leverage complementarity and compati-
bility, and designed a novel algorithm adaLoyal for product recom-
mendation by adaptively balancing universal product embeddings
and users’ product loyalty over time. We demonstrated their effec-
tiveness through quantitative and qualitative results on two public
and two proprietary grocery datasets.

The idea of complementarity, compatibility, and loyalty is not
limited to grocery shopping but can be widely applied on other
domains, especially those with repeated consumptions (e.g. music
streaming). It would also be interesting to extend adaLoyal to be a
Bayesian reinforcement learning framework, which could learn the
product loyalty and update the recommendations in an interactive
environment.
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