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Figure 1: Expectation setting design techniques used prior to interaction with the Scheduling Assistant - an AI system for
meeting request detection from free-text of emails. A) Accuracy Indicator - directly communicating to the user the expected
accuracy of the AI component, B) Example-based Explanation - helping the user understand the basic principles of how the
systems detects meeting requests, C) Control - giving the user control over AI decision making process through detection
threshold adjustment.

ABSTRACT
AI technologies have been incorporated into many end-user
applications. However, expectations of the capabilities of
such systems vary among people. Furthermore, bloated ex-
pectations have been identified as negatively affecting per-
ception and acceptance of such systems. Although the intel-
ligibility of ML algorithms has been well studied, there has
been little work on methods for setting appropriate expec-
tations before the initial use of an AI-based system. In this
work, we use a Scheduling Assistant - an AI system for auto-
mated meeting request detection in free-text email - to study
the impact of several methods of expectation setting. We
explore two versions of this system with the same 50% level
of accuracy of the AI component but each designed with a
different focus on the types of errors to avoid (avoiding False
Positives vs. False Negatives). We show that such different
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focus can lead to vastly different subjective perceptions of
accuracy and acceptance. Further, we design expectation ad-
justment techniques that prepare users for AI imperfections
and result in a significant increase in acceptance.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in
HCI; Empirical studies in visualization; Laboratory experi-
ments;

KEYWORDS
AI infused systems, AI system on-boarding, Shaping AI ex-
pectations, Perception and Acceptance of AI
ACM Reference Format:
Rafal Kocielnik, Saleema Amershi, and Paul N. Bennett. 2019. Will
You Accept an Imperfect AI? Exploring Designs for Adjusting End-
user Expectations of AI Systems. In CHI Conference on Human
Factors in Computing Systems Proceedings (CHI 2019), May 4–9, 2019,
Glasgow, Scotland Uk. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3290605.3300641

1 INTRODUCTION
Expectations impact how accepting end-users are of the tech-
nologies they use. For example, inflated expectations about
usability and ease of use have been shown to decrease user
satisfaction and willingness to use products when those ex-
pectations are not met [20, 36]. Artificial intelligence (AI)
introduces additional factors impacting user expectations
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and acceptance of modern AI-powered technologies. Specifi-
cally, the underlying algorithms driving AI functionalities,
such as natural language understanding [12, 14, 30], sensor-
based inferences [28, 29], web behavior prediction [27], or
object recognition in video or images [25], are probabilistic
and almost always operate at less than perfect accuracy. How-
ever, most users do not expect their applications to behave
inconsistently and imperfectly [15] which can lead to disap-
pointment and potential abandonment of these technologies
[41, 51]
Previous work has shown that end-user expectations of

technology are impacted by a variety of factors including
external information, knowledge and understanding, and
first hand experience. For example, Olshavsky & Miller [38]
showed that giving a description of a product that empha-
sizes lack of care in its design can lead to negative expecta-
tions, while a description that communicates the opposite
can lead to more positive expectations. However, outside
of work in marketing and advertising [11, 32, 38], few have
explored how end-user expectations can be directly and ex-
plicitly shaped.

In this work, we explore techniques for shaping end-user
expectations of AI-powered technologies prior to use and
study how that shaping impacts user acceptance of those
technologies. Each of the proposed techniques is designed
to affect different aspects of expectation forming: external
information, understanding, first-hand experience through
a sense of control. We test these techniques within the con-
text of an email application that includes an AI-powered
Scheduling Assistant that automatically detects meeting re-
quests and helps users schedule calendar appointments. We
also investigate how these techniques are impacted by dif-
ferent types of AI imperfections (False Positives vs. False
Negatives). Testing the impact of different types of errors
is important because people may perceive these differently
and as noted in prior work [13], there is a lack of work in the
literature which investigates the impact of False Positives
and False Negatives on the UX – a critical question for expe-
riences which depend on machine learning. In two studies
with 150 and 400 participants respectively carried out on
an internal crowd-sourcing platform similar to Mechanical
Turk, we show that our proposed techniques successfully im-
pact key aspects of user expectations. Further, we show that
False Positive errors are more accepted by participants in the
context of using the Scheduling Assistant, which we hypoth-
esize is due to lower cost of recovery from this type of error
in our application. Finally, we show that our expectation
shaping techniques significantly increase user satisfaction
and acceptance when the AI is tuned to avoid False Positive
errors.

Our contributions are as follows:
(1) We propose three techniques for setting expectations:

1) Accuracy Indicator - that explicitly states the accu-
racy of the system, 2) Examples based Explanation -
that seeks to increase user understanding, and 3) Per-
formance Control - that allows the user to directly
adjust the performance of the system.

(2) We demonstrate the effectiveness of our three tech-
niques and show their ability to preserve user satis-
faction and acceptance of an imperfect AI-powered
Scheduling Assistant we implemented.

(3) We show that an AI-powered system tuned to avoid
False Positive errors can lead to lower average per-
ception of accuracy and lower user acceptance than
one tuned to avoid False Negatives (even when both
versions perform at the same overall accuracy). We
discuss the likely role of the cost of error recovery in
this scenario in determining the best balance between
False Positives and False Negatives.

2 RELATEDWORK
Expectations Research in HCI and Marketing
The topic of expectations, albeit not specifically in relation
to AI, has been explored in areas of product marketing [3, 8],
information systems [49], and recently also HCI [36].
Marketing and psychology studies have focused on ex-

pectations related to purchase of physical products [3, 8].
That work focused mostly on immediate pre- and post- pur-
chase behaviors of customers. It explored the impact of initial
customer expectations about the product on post-purchase
satisfaction andwillingness to use the product [11]. Themain
conclusion is that too high of expectations lead to dissatisfac-
tion, while very low expectations followed by positive prod-
uct use experience can boost satisfaction. While those works
contributed to formulation of various theories related to the
impact of expectations, they explored relatively little about
feasible mechanisms for explicitly shaping expectations. As
the focus was on establishing a link between expectations
and customer satisfaction, expectations were set by means
of deception (selecting only negative or positive reviews of
a product [39], distorting product descriptions using nega-
tive or positive keywords [11], or deliberate under or over
statements of product features [3]). While effective for one
time purchasing decisions, deception can have ethical impli-
cations. Moreover, we posited that deception would be less
effective in our scenario when ongoing use would eventually
reveal the true performance of a system.
Relatively recent and still limited HCI work adapted and

extended some of the findings from these early marketing
studies into use of digital systems, such as games [36], web-
sites [20], and mobile payment services [31]. This work has



shown that the link between expectations, user satisfaction,
and user acceptance can be extended to modern digital ser-
vices. It has also shown that expectations of different aspects
of user experience (i.e., usability and usefulness) can be exam-
ined separately and further extended the knowledge about
the impact of expectations to long-term use of digital sys-
tems [31]. At the same time, these works mainly adopted
deception based approaches of setting user expectations,
resorting to two classes of manipulations - priming - selec-
tively emphasizing negative or positive aspects of a system
or - framing - distorting the information presented to the
users. Furthermore, they did not explore expectation of prop-
erties crucial and unique to the AI-powered systems, such
as the accuracy with which it can operate, the successes and
mistakes it can make, the likely reasons for those, and the
impact of user actions (e.g., the contents user generates) on
AI-powered systems behavior.

Intelligibility and Transparency of AI Algorithms
A significant body of research exists on the topic of intel-
ligibility of AI systems in particular [1, 35, 40, 46]. Lim et
al. explored 7 intelligibility types aimed at communicating
detailed mechanisms of how a simulated decision tree based
machine learning (ML) algorithm in a hypothetical activ-
ity recognition system makes its decisions [33–35]. Parallel
work explored the topic of comprehensibility of ML algo-
rithms to domain experts (e.g., expert biologists not knowl-
edgeable about ML) [46]. A number of these proposed ap-
proaches have been shown to positively impact transparency
and trust. In most cases, however, transparency techniques
are intended for post fact explanations about the decisions
of an AI or ML system [19, 22], rather than for adjusting
user expectations of an AI-powered system prior to its use. A
few recent works have endeavored to extend the explanation
approach to pre-use expectation adjustment. These works
automatically select informative examples prior to actual
system use [2, 23, 40] to give the user an intuition about the
system behavior or attempt to summarize internal system
decision rules [21]. They, however, do not directly investi-
gate impact on acceptance and explore only one strategy of
shaping expectations, which is by educating the user about
system behavior via examples. Most proposed approaches
also require significant end-user interest and effort in under-
standing system behavior, which can be inefficient in many
scenarios [7].
Furthermore, the strategies proposed in many of these

works, with notable exceptions of [18, 40], rely on a technical
ability to generate end-user explanations from the algorithms
themselves (i.e., in Lim et al. [35] decision tree path traversal
was used to generate free-text description presented to the
user). However, the shift to deep learning models in many

end-user applications makes it practically infeasible to ap-
ply many intelligibility types proposed in earlier work [51].
The techniques we proposed in this work are in principle
algorithm agnostic.

Theories Related to Expectations
A number of theories related to expectations have been pro-
posed [6, 37, 39]. One prominent theory that has been tested
in various studies, and used in marketing and HCI work de-
scribed earlier, is the Expectation Confirmation Model (ECM)
[6]. This model postulates that user satisfaction and accep-
tance of a system is directly related to the difference between
initial expectations and their actual experience. Specifically
a negative dis-confirmation of initial expectations (i.e., when
a user expects more than the system can deliver) leads to
lower satisfaction and decreased acceptance. Hence we de-
signed our proposed techniques to achieve more accurate
expectations of system capabilities.

While the ECM describes a relationship between a change
in expectations and user satisfaction/acceptance of a product
or system, it provides little guidance as to how user expec-
tations can be shaped. ECM posits only that “expectations
are influenced by many sources - advertisements, brands, word
of mouth, product reviews, discussion forums, and exposure to
related products” [39]. It has, however, linked expectations to
the general theory of attitudes and beliefs [17] and defined
expectations as a sum of beliefs about the level of product
or service [6]. In the context of AI-powered systems, these
could be beliefs about how well such a system can work.
According to this prior work there are three major mecha-
nisms in which user beliefs contributing to expectations are
formed: 1) through information from external sources (e.g.,
being directly told about the specific properties of a system
by a third party), 2) reasoning and understanding (e.g., form-
ing expectations as an extension of understanding of how
the system works), 3) first hand experience (e.g., forming an
action-effect association that comes from direct interaction
and experience with a system). These mechanisms inspired
the design of our expectation adjustment techniques.

3 RESEARCH QUESTIONS AND HYPOTHESES
An AI system can operate at the same level of overall accu-
racy (total number of correct predictions over all possible
predictions), yet produce different proportions of two types
of errors: False Positives or False Negatives [13]. These are
typically quantified as precision vs. recall. In many cases, ex-
isting systems are optimized for high precision and therefore
avoid False Positives (e.g., avoid recommending a movie user
may not like). Anecdotal reports from practitioners indicate
a general belief that avoiding False Positives is considered
better for user experience, and previous work [13] notes that



the impact of False Positives vs False Negatives on UX is gen-
erally uninvestigated. We therefore explore the following
research question and associated hypothesis: RQ1. What
is the impact of an AI system’s focus on avoidance of
different types of errors on user perception?

• H1.1 An AI system focused on High Precision (low
False Positives) will result in higher perceptions of
accuracy and higher acceptance.

Prior work has shown three major contributors to user
expectations: information from external sources, reasoning
and understanding, and first hand experience. Hence, our
next research question explores design techniques for achiev-
ing these mechanisms: RQ2. What are the design tech-
niques for setting appropriate end-user expectations
of AI systems?

• H2.1 Directly communicating AI system accuracy will
lead to lower discrepancy between system accuracy
and user perception of it.

• H2.2 Providing explanations will lead to higher per-
ceptions of understanding how the AI system works.

• H2.3 First-hand experience, through direct impact on
the system, will lead to higher perceived level of con-
trol over system’s behavior.

Finally, we expect that more accurate expectations of an
AI system’s capabilities should result in users being better
prepared for AI system imperfections and therefore result in
higher satisfaction and acceptance. We therefore explore
the following research question and associated hypothe-
sis: RQ3. What is the impact of expectation-setting in-
tervention techniques on user satisfaction and accep-
tance of an AI system?

• H3.1. Presence of an intervention prior to use of an
imperfect AI system will lead to higher acceptance and
satisfaction compared to lack of such intervention.

4 AI POWERED SCHEDULING ASSISTANT
The Scheduling Assistant is an AI-powered application that
mimics the Inbox of a web version of a popular email client -
MS Outlook. We chose to recreate this environment in order
to freely control elements of the interface and the underlying
free-text meeting detection and highlighting AI functionality.
The Scheduling Assistant operates as a website that can be
accessed via web browser.

User Interface
The user interface of the Scheduling Assistant mimics the
MS Outlook’s web client interface as can be seen in Figure 2.
Users can see a list of emails in the Inbox (see A in Fig-

ure 2). As in MS Outlook, unread emails are marked with
a left side blue bar indicator (e.g., third email from the top).
Once the user clicks and views the email, it will no longer

Figure 2: Screenshot of the Scheduling Assistant interface
mimicking the inbox part of a web interface of a popular
email client - Microsoft (MS) Outlook. A) list of emails in
the inbox, B) content of the selected emails, C) the AI func-
tionality - detection andhighlighting of email requests from
free-text, D) reply button allowing user to either reply with
text or schedule a meeting manually

be highlighted with a blue bar (e.g., first email from the top).
When an email is clicked, its contents along with the subject,
name of the sender, the time it was sent, and the contents can
be viewed (see B in Figure 2). The AI functionality offers au-
tomated highlighting of meeting request sentences in email
contents. When a user clicks a highlight, a pop-up dialog
offers a shortcut to placing the meeting in the user’s calendar
(see C in Figure 2). For emails that do not request a meeting
or when the AI functionality did not detect a genuine meet-
ing request, a user can use the "Reply" button to either reply
with text or manually schedule a meeting (see D in Figure 2).
Manually scheduling meetings requires inputting their time
and date manually, while these are determined automatically
if the AI functionality identifies a meeting request.

Implementation
The Scheduling Assistant system has been implemented as
a web application using Node.JS 1 framework with use of
Express for managing the server part as well as ReactJS 2

and FabricUI 3 for handling GUI interactions and look & feel
respectively. Using aWebKit 4 package the whole application
can be rendered into a single web page that can be opened in
a local browser. For the purpose of the subsequent Study, the
application has also been augmented with instrumentation
tracking user activities with emails, such as email selection
and handling actions.

Email Dataset and Meeting Request Classification
In order to control the information users interact with in
the subsequent Study, the Scheduling Assistant was fixed
1https://nodejs.org/en/ - a JavaScript based framework for implementation
of back-end
2https://reactjs.org/ - a JavaScript library for building library
3https://developer.microsoft.com/en-us/fabric - the official front-end frame-
work for building Office and Office 365 web interface.
4https://webkit.org/ - an open source web browser engine



to operate on a pre-determined subset of 28 email messages
from the Enron email corpus available online. 5 As the Enron
corpus contains 0.5M messages from 150 users, we selected
a subset of messages using a meeting request detection ML
model trained using an interactive concept learning tool for
training machine learning models similar to [44]. To label
each sampled email as either containing or not containing a
meeting request, we referred to the following definition of
a meeting request: "Implies the sender has a meeting intent
(e.g., proposing to meet at a specific time, setting up a meeting,
updating an existing meeting time)". Following this definition
we labeled a total of 85 emails with 37 of them labeled as
containing meeting request. The model features included
keywords related to meeting terms, availability terms, time
related terms and group reference terms. The model achieved
an accuracy of 93.83% on this training set. In order to select
a set of emails to be used in the Study with Scheduling Assis-
tant, we used a built-in functionality of our ML tool to select
predicted positive detections, predicted negative detections
and borderline detections. We further coded these messages
among two independent coders and selected only the emails
for which both coders agreed on the label.

Determining AI component’s Accuracy
Given our RQ2 and RQ3, we wanted an AI component that
will perform below expectations of most end-users. AI per-
forming at a level disappointing for most users enables test-
ing the effectiveness of the expectation adjustment tech-
niques. To arrive at the most appropriate accuracy for the
system, we ran pretests on the internal quality-controlled
crowd-sourcing platformwe used which helped us determine
that users come in with a nominal expectation of accuracy
at a level of 75% (SD= 10%). This is in response to a question:
"How well do you feel the Scheduling Assistant works?" with
answers provided on a scale from "0% (Never correctly detects
meetings)" to "100% (Always correctly detects meeting)" with
10% increments. We therefore decided to set the accuracy of
the Scheduling Assistant to 50%.

Preparing the High Recall and High Precision
Versions
A system at the same level of accuracy can still vary in the
types of errors it makes. Given an email contains a meeting
request, the Scheduling Assistant can correctly determine
that it indeed contains a meeting request (True Positive - TP)
or it can incorrectly determine that it does not contain a
meeting request (False Negative - FN ). Similarly, given an
email that does not contain a meeting request, the system can
correctly determine that indeed it does not (True Negative -
TN ) or incorrectly determine that the email does contain a
5https://www.cs.cmu.edu/ ./enron/

Table 1: A summary of possible correct and erroneous
classifications that the Scheduling Assistant’s AI com-
ponent can make

Type Predicted label Example

(TP) Request Let’s meet 3:30pm on Friday
(TN) No request We appreciate all the help
(FP) Request Yesterday’s meeting was good
(FN) No request How about lunch? Maybe 1:30?

meeting request (False Positive - FP). A summary of these pos-
sible classifications outcomes along with concrete examples
can be found in Table 1.
In order to test our RQ1 related to user perceptions of

an AI-powered system of the same accuracy, but focused on
avoidance of different types of errors, we manipulated the
composition of correct classifications and the types of errors
the system makes to arrive at two versions. The High Preci-
sion system minimizes FP types of errors. The High Recall
system, on the other hand, minimizes FN types of errors. To
achieve these versions, we manipulated the classification of
20 email messages obtained from the Enron corpus. Both
High Recall and High Precision versions of the system had 5
TP classifications as well as 5 TN classifications. The High
Recall system, however, made 8 FP detection errors and only
2 FN errors. This system achieved an accuracy6 of 50%, a
recall score7 of 71.4% and a precision score 8 score of 38.5%.
The High Precision system on the other hand made only 2 FP
types of errors, but 8 FN ones. This system as well achieved
an accuracy of 50%, but a recall score of 38.5% and a precision
score of 71.4%.

5 DESIGNS FOR ADJUSTING END-USER
EXPECTATIONS

Priorwork [17] has identified that expectations can be formed
in three principle ways: 1) through information from external
sources (e.g., being directly told about the specific properties
of a system ), 2) reasoning and understanding (e.g., form-
ing expectations as an extension of understanding of how
the system works), 3) first hand experience (e.g., forming
an action-effect association that comes from direct inter-
action and experience with a system). These mechanisms
inspired our three design techniques for adjusting expecta-
tions, respectively: 1) Accuracy Indicator, 2) Example-based
Explanation, and 3) Control Slider.
6accuracy - the proportion of true results (both TP and TN) among the total
number of cases examined (TP+TN+FP+FN)
7recall - the proportion of correctly identified positives, TP, to the total
number of all positives (TP+FN)
8precision - the proportion of correctly identified positives TP to the total
number of predicted positives (TP+FP)



Figure 3: The Accuracy Indicator design. A) a solid gauge
chart to visually communicate accuracy, B) the accuracy ex-
pressed as number to compliment the chart, C) An associ-
ated textual description

In this section we discuss the general principles we fol-
lowed in each of our techniques as well as the designs of the
techniques themselves.

General Design Principles
Combining visualization and text. Prior work has compared
the use of text vs. visualizations for communicating various
statistical aspects of algorithms [4, 16, 43, 50]. Recent work
by Fernandez et al. [16] indicated that visualization can of-
fer better support for user decisions. Visionalizations have
also been found to be generally more effective at grabbing
user attention. At the same time, different users have been
found to process either text or visual content with more ease.
Therefore, in our designs we decided to combine limited text
with simple visualization elements.

Striving for simplicity. While presence of visualization has
been found beneficial, past work has also indicated that too
complex visualizations (e.g., probability distributions) are too
difficult for the everyday user to interpret [24, 26]. Also, too
lengthy or technical textual descriptions have been shown
to discourage end-users from wanting to invest time in them
[45]. Given these indications, we strove for simplicity and
clarity in our designs and for use of visualization elements
that can be easily understood by general public.

Design Process
Our design process involved a number of iterations tested
among our research team. We further performed two infor-
mal qualitative feedback session with 4 external users. These
helped drive decisions regarding competing designs choices
and offered early and richer insight into users’ perceptions.
Finally, we also performed a number of limited deployments
on our internal quality-controlled crowd-sourcing platform
to check the general understandability of the designs.

Designing the Accuracy Indicator
Goals. The main goal of this design is to improve user’s
ability to correctly estimate the percentage accuracy with
which the AI-powered system performs.

Figure 4: The Example-based Explanation design. A) exam-
ples of email sentences ordered from most unambiguous
meeting request to not a meeting request, B) the decision
the system made about each sentence as being or not being
a meeting request, C) an associated textual description

Design. The design of our Accuracy Indicator is composed
of three basic elements as shown in Figure 3. The visualiza-
tion element indicated in Figure 3 A is a solid gauge chart
visually depicting the 50% accuracy of the system (half-way
filled with green). This visual encoding is reinforced with an
explicit number expressing accuracy along with clarification
that this number relates to the percentage of correct meeting
request detections (see Figure 3 B). We further included a
purely textual description of accuracy (see Figure 3 C).

Designing the Example-based Explanation
Goals. This design is meant to increase user understanding
of how the AI component operates. Specifically, it commu-
nicates that: 1) the system examines email contents on a
sentence level, 2) the presence of specific meeting related
terms increases the chance the system will consider the sen-
tence to be a meeting request. The design is also meant to
implicitly communicate that the system can make mistakes.
By increasing understanding of how the AI works, users can
update their expectation of how well and in which situations
the system is likely to work.

Design. The design is composed of two elements: a textual
description (Figure 4 C) and a table with four examples (Fig-
ure 4 A and B). The textual description communicates that
each sentence is examined separately and that the meeting
related phrases help the system make a decision. The table
shows a variety of example sentences the Scheduling Assis-
tant may encounter and the Scheduling Assistant’s decisions
about whether those sentences are likely a meeting request
or not. Example sentences are ordered such that the top
sentence represents the most complete and unambiguous
meeting request, while the bottom example is likely not a
meeting request. In each example, the key phrases that are
commonly associated with meeting requests, such as time,
duration, location, date, and an invitation phrase are high-
lighted in blue. The "Scheduling Assistant’s decision" column
shows the decision along with the system’s confidence in its



Figure 5: The Control Slider design. A) text information
about the functionality offered by the slider, B) an interac-
tive control slider that allows the user to control False Pos-
itive vs False Negative rate, C) highest precision extreme of
the slider setting, D) highest recall extreme setting

decision indicating that the system relies on some probabilis-
tic reasoning, e.g., "Very likely meeting request or "Unlikely
a meeting request". In the example shown in Figure 4, the
system arguably makes a mistake classifying the third sen-
tence: "Can we discuss in the morning?" as not representing a
meeting, likely because meeting request related keywords
are sparse or lacking.

Designing the Control Slider
Goals. This design aims at two goals. First, it allows the user
to experiment with controlling the rate of False Positive and
False Negative mistakes. Second, it allows the user to set
the system’s decision threshold. Prior work has shown that
letting users contribute to a system’s behavior may make
them more accepting of the system’s mistakes [47].

Design. The Control Slider design is composed of two main
elements: a textual description (see Figure 5 A) and a user
controllable interactive slider (see Figure 5 B,C,D). The tex-
tual description offers instruction to the use of the slider,
letting the user know that the slider controls the system’s
threshold for detecting meeting requests. By controlling the
slider users can adjust the system’s behavior to balance two
extremes. The extreme left, sets the system to work in a
High Precision mode, this is communicated to the user as
"Fewer detection - some requests might be missed". Setting the
slider to the extreme right sets the system in a High Recall
mode, this is labeled for the user as "More detections - more
non-requests might be suggested". Both ends of the slider also
feature images meant to visually reinforce the nature of high
and low precision. In these images, dots indicate detections
with green dots representing correct detections while red
dots represent errors.

6 STUDY 1 - IMPACT ON EXPECTATIONS
The purpose of our first Study was to verify if our proposed
designs impact user expectations as intended, specifically as
outlined by our three hypotheses for RQ2. We designed the

Study as an incomplete factorial setup with 6 separate con-
ditions. Two pure conditions were Accuracy Indicator and
example based Explanation design elements by themselves.
The other four conditions were a combination of these with
addition of the Control Slider element. The Control Slider
element was not present by itself as a separate condition as
it was deemed not useful without a feedback mechanism pro-
vided by the Accuracy Indicator or Explanation elements. We
deployed the Study on an internal crowd-sourcing platform
similar to Mechanical Turk. A total number of 150 partici-
pants from US only aged 18+ was recruited (25 per condition).
We used a standard recruitment supported by our crowd-
sourcing platform posting short information about the task,
the expected time required, and the payment. Each partici-
pant was allowed to complete the Study only once. The Study
has been approved by internal IRB and took on average 5:21
min (SD : 3.45 min). Participants were compensated $1.35
per task.

Procedure
The Study procedure involved participants completing 6
steps, each on a separate page. First they were shown infor-
mation about the Study along with consent. After expressing
their consent, on the second page they were shown a short
description of the Scheduling Assistant. This introduction
informed them that the system operates by automatically an-
alyzing text in emails to detect meeting requests. Once such
a request is detected it is highlighted. This was accompanied
by a screenshot showing an example email with a meeting
request sentence highlighted similar to Figure 2. The next
page involved a short interactive demo of the Scheduling As-
sistant in which participants were required to appropriately
respond to 4 example emails before moving forward. While
short, we believe such an introduction represents a realistic
amount of information users may be willing to attend to
in a real-life setting (users are notorious for skipping long
tutorials).
After the demo, participants filled in a survey indicating

their initial expectations of the Scheduling Assistant’s accu-
racy and answering questions about their tech-savviness, as
well as their familiarity and frequency of use of AI-powered
systems as detailed in the Measures section. On the next
page they viewed 1 one the 6 conditions they were randomly
assigned to. There was no minimal time requirement for
viewing the condition. After experiencing their assigned
condition, participants were asked an attention check ques-
tion: "What did you see on the previous page? (Check all that
apply)". The 4 multiple answers described each possible ex-
pectation adjustment design elements. On the final page,
participants were again asked questions about their accu-
racy expectations, as well as their understanding and feeling
of control as detailed in the Measures section.



Measures
Perceptions of system accuracy were measured through
two questions adopted from the Expectations Confirmation
Model [39]: pre-intervention “How well do you expect the
Scheduling Assistant to work” and post-intervention “How
well do you feel the Scheduling Assistant works”. Both were
answerable on an 11-point scale from "0% (Never correctly
detects meetings)" to "100% (Always correctly detects meet-
ing)" with 10% increments. Understanding of the AI compo-
nent was measured through two subjective report questions
adapted from [42]. One question asked about understand-
ing how the system makes positive detections: “I feel like I
have a good understanding of how the Scheduling Assistant
decides whether an email contains a meeting request”, while
the other asked about understanding what kind of mistakes
the system can make: “I feel like I understand what kind of
mistakes the Scheduling Assistant is likely to make”. Hence the
questions aimed at covering detections of true positives and
true negatives (the two items were moderately correlated
rs = .55). Subjective perception of control over the system’s
behavior was measured by a question adapted from [47]: “I
feel like I have some control over the Scheduling Assistant’s
behavior”. Answers were given on a 7-point Likert scale from
"Strongly disagree" to "Strongly agree". Additionally we asked
questions to determine tech-savviness, familiarity and fre-
quency of use of AI and prior experience with the particular
AI functionality offered by the Scheduling Assistant. These
were used as an additional level of control for the analysis.

Analysis
We removed 34 (23%) of participants that failed the attention
check, which resulted in a final participant count of 116.
To test each hypothesis we used an independent t-test to
compare individual conditions separated into two groups,
with and without a particular design element (e.g., with and
without Accuracy Indicator). We additionally checked pre-
intervention balance in participant reported measures.

Results
Testing H2.1. Comparing conditions with (N = 70) and
without (N = 46), the Accuracy Indicator revealed a signifi-
cant difference (p < 0.01) in expectations of accuracy (see
H2.1 in Figure 6), with lower expectations for participants
who saw the Accuracy Indicator (M = 6.77, SD = 1.912)
than for those who did not (M = 7.92, SD = 1.978). A
check on pre-intervention expectations of accuracy revealed
a balanced sample (M = 7.66, SD = 1.832) vs. (M = 7.38,
SD = 1.947). We therefore consider H2.1 supported as the
Accuracy Indicator brought participants’ expectations of ac-
curacy significantly closer to the system’s true accuracy of
50%.

Figure 6: Impact of different design techniques on key as-
pects of expectations. From the left: 1) impact of Accuracy
Indicator on expectations of accuracy, 2) impact of Explana-
tion on average understanding, 3) impact of Control Slider
on feeling of control

Testing H2.2. Comparing conditions with (N = 85) and
without (N = 35) Explanation revealed a significant (p <
0.05) positive impact (see H2.2 in Figure 6), with higher av-
erage level of perceived understanding (mean of both under-
standing questions) for participants who saw the Explanation
(M = 5.90, SD = 0.99) than for those who did not (M = 5.44,
SD = 1.06). A check on pre-intervention differences in tech-
savviness revealed a balanced sample (M = 6.33, SD = 0.95)
vs. (M = 6.32, SD = 1.10). Similarly no significant imbal-
ance was present in prior frequency of use of AI systems
(M = 3.80, SD = 1.62) vs. (M = 3.52, SD = 1.66). We there-
fore consider H2.2 supported as Explanation intervention
significantly increased participants’ perceived level of un-
derstanding of how the Scheduling Assistant system works.

Testing H2.3. Comparing conditions with (N = 58) and
without (N = 62) Control Slider revealed a significant (p <
0.001) positive impact (see H2.3 in Figure 6), with higher
feeling of control for participants that saw the Control Slider
(M = 5.62, SD = 1.40) than for those that did not (M =
4.67, SD = 1.54). We also note that 87% of the participants
moved the slider from its default position. A check on pre-
intervention differences in tech-savviness revealed balanced
sample (M = 6.31, SD = 0.93) vs. (M = 6.38, SD = 1.03). Sim-
ilarly no significant imbalance was present in prior frequency
of use of AI systems (M = 3.59, SD = 1.59) vs. (M = 3.84,
SD = 1.67). We therefore consider H2.3 supported as the
Control Slider intervention significantly increased partici-
pants’ perceived level of control over the Scheduling Assis-
tant’s behavior.
Additionally we found a significant (p = 0.048) negative

effect of Accuracy Indicator on feeling of control: (M = 4.96,
SD = 1.54) for conditions with Indicator and (M = 5.49,
SD = 1.47) for conditions without it.

Summary of results
The results from this Study indicate that our expectation
adjustment designs significantly affected the desired aspects



of expectations in the hypothesized directions. All three
hypotheses have been supported.

7 STUDY 2 - TASK-BASED EVALUATION
The purpose of the second Study was two-fold: (1) explore
possible differences in perception of accuracy and the ac-
ceptance of two versions (High Recall and High Precision)
of the Scheduling Assistant system with the same nominal
50% level of accuracy - H1.1; (2) evaluate the effectiveness
of the expectation adjustment techniques in increasing user
acceptance and satisfaction with the system after using the
Scheduling Assistant for completing an actual task - H3.1.
The Study was designed as a full factorial setup with 16

separate conditions. The same 8 conditions were tested in
High Recall and High Precision versions of the system. For
each of these versions we tested a baseline condition (going
directly to the task without being exposed to any expectation
adjustment technique). The 3 pure conditions involved the
Accuracy Indicator, the examples-based Explanation, and
the Control Slider design elements by themselves (we added
Control Slider by itself as a separate condition, a change com-
pared to Study 1). An additional 4 conditions were combina-
tions of these base design elements (e.g., Accuracy Indicator
and Control Slider together).

The Study was approved by internal IRB and deployed on
our internal crowd-sourcing platform. A total number of 400
participants (25 per condition) were recruited. Recruitment
procedures were the same as in Study 1. Each participant
could complete the Study only once and participants from
Study 1 were not reused. Each task took on average 10:35
min (SD : 6.22 min). Participants were compensated $2.45
per task.

Procedure
The steps were similar to Study 1 with a few modifications.
First, in addition to asking questions about expected accuracy,
we asked questions about initial acceptance as detailed in the
Measures section. Second, questions about understanding
and control were dropped and no questions were asked di-
rectly after the interventions (except for one attention check
question). The questions matching those before interven-
tion were asked after participants completed the task with
the system. Third, after seeing the intervention (or without
seeing one as in the baseline condition), participants were
directed to complete a task involving correct handling of 20
email messages with support from the Scheduling Assistant
performing according to the AI system accuracy rate the
participant was randomly assigned to (i.e., High Recall or
High Precision as detailed in Section 4).

Measures
Questions about accuracy expectations aswell as tech-savviness,
familiarity and frequency of use of AI and prior experience
with the particular AI functionality offered by the Scheduling
Assistant were the same as in Study 1. Post task questions
evaluating satisfaction were adapted from [6]: "I am satisfied
with how well the Scheduling Assistant worked". We also in-
cluded 5 questions related to various aspects of acceptance
adapted from TAM [48] and from [39]. Specifically we asked
about future use: "I would use the Scheduling Assistant if it
was available", recommendation to others: "I would recom-
mend the Scheduling Assistant to my friends and colleagues",
helpfulness: "I found the Scheduling Assistant to be helpful",
productivity: "I found the Scheduling Assistant to be able to
improve my productivity", and annoyance: "I found the Sched-
uling Assistant to be annoying or distracting".

Analysis
For this analysis we removed 75 participants (19%) that failed
the attention checks, which resulted in a final participant
count of 325. As this could have resulted in imbalance of
initial measures, we check for it and in case such imbalance
has been detected we perform and report additional analyses
using change in measure rather than post measure directly.
Also as acceptance items showed high correlation (Cron-
bach’s Alpha: 0.81), meaning they can be treated as aspects
of the same constructs, unless otherwise stated, we report ac-
ceptance as a combined measure formed by averaging these
5 items (with inversion of annoyance scale).

Participant Characteristics
Participants reported frequently interacting with AI based
applications (47% multiple times a day and only 18% once a
month of less frequently) and having relatively high general
perception of their performance (M = 71.5%, SD = 16.6).
Their self reported tech-savviness was also high (M = 6.37,
SD = 0.90), however, familiarity with particular AI func-
tionality offered by the Scheduling Assistant (i.e., automatic
highlighting in text) was moderate (M = 4.32, SD = 1.73).

Results
Testing H1.1. The first part of this hypothesis relates to the
impact of AI versions on perceptions of accuracy. Compar-
ison of the AI component versions focused on High Recall
(low False Negative rate) (N = 158) and on High Precision
(low False Positive rate) (N = 167)) revealed a significant
impact on accuracy perceptions (p < 0.001) with High Recall
version leading to higher post-use perceptions of system
accuracy (M = 7.09, SD = 1.92), than the High Precision
version (M = 5.75, SD = 2.41) as can also be seen in Figure
7. As the evaluation was made using percentage scale with



Figure 7: Impact of different focus of AI component on error
avoidance on accuracy perceptions. High Recall - low False
Negatives rate, High Precision - low False Positives rate

10% increments, this represents a mean difference of 13.4%
in terms of how the system’s accuracy in correctly detecting
meeting requests in emails is perceived by the user. The un-
derlying system in both cases was operating at 50% accuracy.
A check on pre-exposure balance of accuracy expectation
revealed no significant difference: High Recall (M = 7.61,
SD = 1.85), High Precision (M = 7.50, SD = 1.88).

The second part of this hypothesis relates to the impact
on acceptance. This analysis also revealed a significantly
(p < 0.001) higher post-use acceptance of the High Recall
version of the systems (M = 5.65, SD = 1.21) as compared to
the High Precision version (M = 5.12, SD = 1.37) as can also
be seen in Figure 7. The mean difference is half a point on a
seven point Likert scale. A check on pre-exposure balance
in acceptance again showed no significant differences: High
Recall (M = 5.81, SD = 0.97) vs. High Precision (M = 5.68,
SD = 1.16).

Given the significant result in the opposite direction to the
one initially hypothesized, we consider H1.1 rejected with
High Recall version of the system, at least in the context
of the Scheduling Assistant and the task given, resulting
in higher subjective perceptions of accuracy and triggering
higher level of acceptance.

Testing H3.1. Initial explorations of the data revealed
significant differences in pre-study acceptance for Mixed-
techniques (e.g., Accuracy Indicator and Explanation to-
gether) as compared to Baseline (t151 = −1.829,p = 0.07)
and Pure-techniques (t279 = 2.179,p < 0.05) (e.g., Accuracy
Indicator by itself). We were therefore not able to drawmean-
ingful conclusions on the impact of these Mixed-techniques
and decided to exclude them from further analysis.

Aswe hypothesizedmainly about impact of Pure-techniques,
we continue with the analysis focused around these. Compar-
ison of post-use acceptance scores for Baseline (N = 44) and
Pure-techniques (N = 119) revealed a non-significant differ-
ence: Baseline (M = 5.25, SD = 0.907) vs. Pure-techniques

Figure 8: Comparison of impact of Baseline vs Pure-
techniques conditions for High Recall (left) and High Pre-
cision (right) systems separately

(M = 5.40, SD = 1.108). As we have earlier observed sig-
nificant differences in perceptions of High Recall and High
Precision versions of the system, we further examined the
impact of techniques in both versions separately.

Looking at the High Recall version of the system revealed
a non significant difference in post-use acceptance (p = 0.16)
between the Baseline (N = 21, M = 6.02, SD = 1.52) and
Pure-techniques (N = 61, M = 5.57, SD = 1.28). As the
check on pre-use acceptance rating revealed a slight initial
difference between Baseline (M = 6.07, SD = 1.43) and
the Pure-techniques (M = 5.66, SD = 1.12), albeit still not
significant (p = 0.13), we examined change in acceptance,
which revealed a difference far from significance (p = 0.90)
as shown on the left in Figure 8.
Looking, on the other hand, only at the High Precision

version of the system revealed a significant (p < 0.05) differ-
ence in post-use acceptance between the Baseline (N = 23,
M = 4.56,SD = 1.59) and Pure-techniques (N = 58, M =
5.23, SD = 1.15). A check on pre-use acceptance revealed
no significant differences - Baseline: (M = 5.38, SD = 1.21),
Pure-techniques: (M = 5.52, SD = 1.10). For consistency
with the analysis for High Recall condition, we also checked
the delta change in acceptance, which was also significant
(p < 0.05) as shown on the right in Figure 8.

Similar results have been foundwith respect to satisfaction.
Participants in the High Recall version of the system reported
no significant difference in satisfaction between the Base-
line (M = 5.85, SD = 1.24) and Pure-techniques (M = 5.52,
SD = 1.58). At the same time, in the High Precision version,
participants exposed to Pure-techniques reported signifi-
cantly (t163 = −1.93,p = 0.05) higher satisfaction (M = 4.43,
SD = 1.70) than those in the Baseline (M = 3.86, SD = 1.91).

Given that our preparation techniques were effective only
when the system was perceived as significantly below user
expectations - High Precision, but not when the system was
perceived as being on pair with user expectations - High
Recall, we consider H3.1 partially supported.



Figure 9: Comparison of impact of baseline and individual
techniques on change in acceptance for both High Recall
(left) and High Precision (right) versions of the Scheduling
Assistant. Base - denotes baseline condition, Ind - Accuracy
Indicator, Exp - Explanation, and Ctr - Control Slider

Additional analysis. We performed additional tests to
compare completion time and accuracy on the task for Base-
line and Pure-techniques. We found no significant differ-
ences for task accuracy (M = 0.91, SD = 1.00) for Baseline
and (M = 0.88, SD = 0.95) for the Pure-techniques; task
completion time for Baseline (M = 5.38, SD = 3.22) and
Pure-techniques (M = 4.85, SD = 2.52). this indicates that
differences in expectations had no strong impact on objective
user performance, which is consistent with prior work [5].
Although we did not hypothesize specific differences be-

tween individual techniques, we looked into these as well.
Figure 9 shows the impact on change in acceptance of Base-
line and individual techniques separately for High Recall
(left) and High Precision (right) version of the system. None
of the techniques in the High Recall version had a significant
impact on acceptance as compared to Baseline. In the High
Precision version, compared to change in acceptance in the
Baseline (N = 23, M = −0.809, SD = 0.973), we found a
significant (t39 = −2.54,p < 0.05) positive impact of Control
Slider (N = 18, M = −0.167, SD = 0.637) and a weakly sig-
nificant (t39 = −1.80,p < 0.1) positive impact of Accuracy
Indicator (N = 16, M = −.287, SD = 0.826). The impact
of Explanation was not significant compared to the Base-
line. Comparisons between the techniques did not reveal any
significant differences either.

Summary of results
Results from this Study indicate that the High Recall version
of the Scheduling Assistant results in significantly higher
perceptions of accuracy and significantly higher acceptance
as compared to the High Precision version. This is surprising
as we had originally hypothesized an opposite direction of
change. Furthermore the expectation adjustment techniques
have been shown effective in significantly increasing user
satisfaction and acceptance, however only in the High Preci-
sion version of the system. This is the version of the system
that had been perceived as performing worse by our users
and our techniques appear to mitigate this effect.

8 LIMITATIONS
Unfortunately due to the imbalance in initial user accep-
tance after the necessary data cleaning we were unable to
investigate the impact of mixed-techniques. Furthermore,
the Scheduling Assistant represents a type of system that is
passive/assistive and casual, where the impact of AI imper-
fections is arguably less critical than in e.g., critical support
medical systems. Our findings, should therefore, be consid-
ered with this in mind.

9 DISCUSSION
Hypotheses H2.1, H2.2, and H2.3 have been supported in
our results showing that our expectation adjustment tech-
niques successfully impacted the intended aspects of expec-
tations. Furthermore,H3.1 has also been partially supported
showing that the techniques are successful in increasing user
satisfaction and acceptance with an imperfect AI system -
Scheduling Assistant. Finally, the rejection of H1.1 shows,
contrary to expectations from anecdotal reports from prac-
titioners, that user satisfaction and acceptance of a system
optimized for High Recall (i.e., system that make more False
Positive mistakes) can be significantly higher than for a sys-
tem optimized for High Precision. We hypothesize that since
users can easily recover from a False Positive in our interface
(highlighting can be ignored) than from a False Negative (no
highlighting and therefore more careful reading as well as
manual scheduling of the meeting required) that the optimal
balance of precision and recall is likely in part a function of
the cost of recovery from each of these error types. This also
informs the call by [13] to understand how precision-recall
impacts UX in systems with machine learning.

Our work provides insights into feasible preparation tech-
niques for end-users interacting with imperfect AI-powered
systems. This is especially valuable as our techniques are
very simple and light-weight to process. In the Study users
spent just 15.45 seconds (SD=34.3) on average looking at the
interventions, compared to the time of 5.54 minutes (SD=6.4)
spent on the task and overall Study time of 10.5 minutes
(SD=7.7). Despite such short exposure, the techniques man-
aged to significantly improve user satisfaction and accep-
tance.

We believe our techniques can offer a substantial contribu-
tion. We show that user satisfaction and acceptance can be
improved not only through deception as used in marketing
[8] or in-depth involved understanding shaping user mental
models as used in intelligible AI works [51], but also through
fairly simple expectation adjustment techniques. This ad-
dresses an important gap in existing research on preparing
end-users for imperfect AI-powered systems. Being light-
weight, they also address the issue of end-users not willing to



engage in complex understanding of underlying algorithms
to be able to accept an AI-powered system [51].

Different Impact of Interventions in High Recall and
High Precision System Versions
We found that our expectation adjustment techniques did not
offer significant improvement in acceptance or satisfaction
in the High Recall version of the system, in which user satis-
faction and acceptance dropped only slightly in the Baseline.
However, they proved effective in the High Precision version,
in which users experienced much higher “disappointment”.
We believe this shows that expectation adjustment works
as intended. We designed the Study to expose users to the
imperfections of AI in order to check if preparation through
expectation adjustment can be an effective approach. The
fact that one version of our system was perceived as on par
with user expectations, rendered the expectation adjustment
unnecessary to mitigate any negative effects, (i.e., preparing
users for AI imperfections when the user expectations are
met in actual use will not result in any difference). Another
explanation could be that users randomly assigned to inter-
act with the High Recall version of the system simply came
with lower expectations and acceptance in the first place.
We, however, verified this was not the case as reported in
section 7.

Differences in Perception of the Two System Versions
Current practitioner belief assumes that focus on High Pre-
cision, hence avoidance of False Positives is the most appro-
priate choice for AI-powered systems while [13] points out
the impact on UX is unstudied. Practitioner rationale is that
if mistakes are hidden from the user, the imperfections will
be less distracting and annoying. At the same time, missed
opportunities to support the user are less visible. This can
certainly be the case in e.g., a movie recommender, where
failing to recommend a good movie (False Negative) may
remain unnoticed, while recommending a movie a user does
not like (False Positive) will make system imperfections very
visible. In our Study, we show, however, that the task in
which the AI functionality is supposed to assist the user
should be carefully analyzed as well, especially in relation
to the impact of different types of AI mistakes. In particular
a number of aspects should be considered, such as workload,
both mental (e.g., ignoring incorrect suggestions, scanning
multiple suggestions) and physical (e.g., having to execute
a task manually or reverse an incorrect system action), as
well as criticality of consequences of following an incorrect
AI suggestion (e.g., not scheduling meeting, making an un-
solicited purchase). In the case of the Scheduling Assistant,
the task of meeting scheduling, without system assistance
requires the user to perform more manual and mental work
(hence a High Precision system might be perceived by the

user as not offering much support). At the same time, if the
system highlights a sentence incorrectly (High Recall focus),
the effort for the user to recover from such mistake is fairly
minimal as the user can just examine the sentence and ig-
nore it (the cost is mostly additional perceptual load, but not
manual effort). Such systems may be perceived as offering
more assistance, even if they make more mistakes.

Generalizability of Findings
Scheduling Assistant represents a type of system that is pas-
sive/assistive and casual (similar to “passive context-awareness”
from [9]). While this is only one class of AI-powered sys-
tems, we believe this class represents many current efforts
of integrating AI into end-user applications (e.g., chat/email
response suggestion, sharing past memory in social network,
assistance in content analysis [10], etc.). Furthermore we
believe our findings should generalize to other systems and
tasks on a number of levels: 1) Our expectation adjustment
techniques are task agnostic as they are informed by the
high-level theory of attitudes and the general mechanisms in
which people learn new information. 2) We provide concrete
empirical evidence for the need of careful analysis of costs
associated with different types of AI errors. This finding gen-
eralizes to a number of systems and tasks. 3) The specific
suggestion to optimize for High Recall, hence avoid False
Negatives, is much more specific. The importance of avoid-
ing different types of errors depends on domain and system
design. This is indeed a complex issue andwe are not suggest-
ing that avoiding False Negatives should always be preferred.
Having said so we believe that this finding generalizes to a
class of passive systems (i.e., user makes final decision) in
which the relative ratio of workload for False Positives and
False Negatives is low (e.g., meeting scheduling highlight,
email/chat reply suggestion, autocorrect, autocomplete in
search). In high-cost critical systems, it is more important to
analyze severity of consequences of different errors rather
than workload (e.g., cancer screening, suspicious behavior
detection).

10 CONCLUSION
In this work, we designed three expectation adjustment tech-
niques and experimentally showed their effectiveness in im-
proving user satisfaction and acceptance of an imperfect
AI-powered system, an email Scheduling Assistant. We also
showed that focus on High Precision rather than High Recall
of a system performing at the same level of accuracy can
lead to much lower perceptions of accuracy and decreased
acceptance. Our findings open the way to shaping expecta-
tions as an effective way of improving user acceptance of AI
technologies.
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