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ABSTRACT
People often make commitments to perform future actions. Detect-
ing commitments made in email (e.g., “I’ll send the report by end of
day”) enables digital assistants to help their users recall promises
theyhavemade and assist them inmeeting those promises in a timely
manner. In this paper, we show that commitments can be reliably
extracted from emails whenmodels are trained and evaluated on the
same domain (corpus). However, their performance degrades when
the evaluation domain differs. This illustrates the domain bias associ-
atedwith email datasets andaneed formore robust andgeneralizable
models for commitment detection. To learn a domain-independent
commitment model, we first characterize the differences between
domains (email corpora) and then use this characterization to trans-
fer knowledge between them. We investigate the performance of
domain adaptation, namely transfer learning, at different granu-
larities: feature-level adaptation and sample-level adaptation. We
extend this further using a neural autoencoder trained to learn a
domain-independent representation for training samples. We show
that transfer learning can help remove domain bias to obtain mod-
els with less domain dependence. Overall, our results show that
domain differences can have a significant negative impact on the
quality of commitment detection models and that transfer learning
has enormous potential to address this issue.
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1 INTRODUCTION
Email is an important communication medium for individuals and
organizations. People use email not only as a communication tool,
but also as a means to create and manage tasks [6, 13, 36, 44]. When
the number of ongoing tasks created via emails increases, people
can struggle tomanage their tasks andmonitor their progress [3, 45].
Automatic task management systems can overcome this problem
and help people manage their tasks more efficiently [3, 20]. Commit-
ments such as “I’ll send the report by end of day” are one type of task
that involve promises made between individuals to complete future
actions [12]. Figure 1 shows an example commitment in an email.
Such tasks are often hidden in email, and users can struggle to recall
and complete them in a timely manner. Detecting commitments

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5940-5/19/02. . . $15.00
https://doi.org/10.1145/3289600.3290984

From: sender
To: recipient
Subject: Opportunity for Enron

Chad, thank
you for your email. I will forward on to Dan Reck
who is responsible for our new Enron Freight Markets
business. I am sure you will be hearing from him.

Thanks,
m

Figure 1: A sample email from the Enron email corpuswith a
commitment sentence highlighted. The commitment detec-
tion task is to automatically detect such sentences in email.

automatically enables task management tools and digital assistants
to generate reminders and notifications to help users meet their
obligations. Despite the potential benefits of automatic commitment
detection, work in this important area has been limited to only a
handful of studies [12, 15, 26, 27, 31].
Commitment detection is challenging for at least two reasons.

First, the commitment detection task itself is inherently difficult,
even for humans [26], and particularly difficultwhen the text is short,
with limited context. Second, emailmodels are trainedand shipped to
users based on potentially biased datasets. For both privacy and prac-
tical reasons, email-basedmodels are often trainedonpublic datasets,
which are skewed in a variety of ways. For example, Enron [24] and
Avocado [37], two commonly-used email datasets for learning email
models, belong to two organizations with different focus areas and
from different time periods. Terminology, including named entities
and technical jargon, can vary greatly across domains and over time.
As such, models learned on one dataset may be biased andmight not
performwell on adifferent target dataset. Biaseswill affect allmodels
trained on email corpora. This issue can happen even for general
email providers asdifferent email usersusedifferent terminologyand
training a general model that can detect commitments for all users
is very challenging. On one hand, it is not realistic to train a separate
model for each user as collecting training samples is very costly. On
theother, amodel trainedonemails of a set of userswill still be biased.
Transfer learning [38] is a domain adaptation method that enables
transferringknowledge learned inonedomain (sourcedomain) to an-
other domain (target domain). It has been shown that this approach is
successful for addressingdomaindifferences inmany tasks including
text and image classification [40, 46], sentiment analysis [7], and col-
laborative filtering [30]. Using this approach for transferring knowl-
edge learned from one email collection to another may help achieve
more robust and generalizable models for commitment detection.
In this paper, we evaluate the efficacy of transfer learning for

commitment detection. To learn commitment detection models, we
first collect two datasets with commitments for emails sourced from
the Enron and Avocado collections. To do this, we extract sentences
fromemails and ask trained annotators to assign binary commitment
labels to the sentences. We argue that commitment vocabulary is
mostly domain independent and that a transfer learning approach
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can help remove domain-specific information from commitment
models and capture the core language of commitments.
To learn a domain-independent commitment model, we first try

to characterize the differences between domains (email corpora)
and then use this characterization to transfer knowledge between
them.We investigate the performance of domain adaptation meth-
ods working at different granularities: feature-level adaptation and
sample-level adaptation. For feature level adaptation, we first learn
a mapping between features (n-grams) of source and target domains
and use the mapping to transfer the features of the source domain to
the target domain and train the classifier using the transferred data.
For sample-level adaptation, we use importance sampling (IS) [42] to
weight training samples in the source domain based on their similar-
ity to the samples of the target domain.We use theweighted samples
in the source domain to train the classifier and apply it to the samples
in the target domain. We further combine sample-level and feature-
level domain adaptation using a neural autoencoder [5]. The autoen-
coder is trained tomaximize the commitment classification accuracy
while minimizing the reconstruction loss. Moreover, to remove do-
main specific information from representations of samples, a domain
classifier is added to the autoencoder. Given a training sample from
source/target domain, the domain classifier attempts to predict the
domain towhich thesamplebelongs.During training, theaccuracyof
the domain classifier is minimized. By minimizing domain classifier
accuracy, domain-specific information is removed from the samples.

Our main research contributions are as follows:
• Study the impact of domain transfer on commitment detection.We
show that the quality of commitment detection degrades signifi-
cantly as we apply commitment detection models across domains.
• Propose different approaches for characterizing differences be-
tween email corpora and show that domain adaptation (specif-
ically, transfer learning) can remove domain-specific bias from
commitment detection models.
• Demonstrate through extensive analysis that domain adaptation
methods lead to significant gains in the precision and recall of
commitment detection models.
The remainder of this paper is organized as follows: we expand

on related research in Section 2, and continue with describing the
datasets in Section 3. Then we explain the domain adaptation ap-
proaches used in this paper in Section 4. The experimental setup
and the evaluation approach are described in Section 5. Section 6
describes the results of each of the methods used, and proceeds with
a detailed discussion of the validation.We conclude in Section 7with
a brief discussion of implications and possible future directions.

2 RELATEDWORK
Prior research in a number of areas applies to the study presented
in this paper. This includes work on automatic email management
[3, 6, 12, 31, 45] and task progress monitoring [3, 13, 20]. Prior re-
search on commitment detection and domain adaptation is partic-
ularly relevant, and we describe it in detail in this section.

2.1 Commitment Detection
The detection of commitments in email has been the subject of sev-
eral prior studies. Lampert et al. [26, 28] show that the annotation
of commitments and requests in email is challenging, even for hu-
mans. They devise guidelines for collecting judgments and building
datasets for commitment/request classification. Themost interesting
insight is that when statements are given in context (full email) the
annotation task is easier andmore accurate. Although the findings of
these studies can help design commitment detectors, no automatic
commitment classifiers are trained in these studies. De Felice [15]

proposes a fine-grained classification of commitments in emails. She
further studies which phrases are associated with commitments. As
with [26, 28], no automatic commitment detector is created. Auto-
matic commitment classifiers have been developed in prior work.
Cohen et al. [12] train classifiers to classify sentences in email into
one of the following speech acts: deliver, commit, request, amend,
propose, meeting. They represent sentences by TF-IDF weighted
vectors over word n-grams. Kalia et al. [23] use more sophisticated
features for detecting commitments in email such as named entities,
part-of-speech (POS) tags, dependencies, and co-reference resolu-
tion.Theyconsider both requests andcommitments as commitments.
They run experiments on Enron and an instant messaging dataset
(Hewlett-Packard’s IT incident management chat logs). Corston-
Oliver et al. [13] use different kinds of features for detecting tasks in
email. They consider commitments as one of the tasks they attempt
to extract from email. Lampert et al. [27] also consider both requests
and commitments. They use a set of features including message
length, the presence of modal verbs, and question words, and train
a classifier on a set of manually-labeled emails. Their main conclu-
sion is that only some regions of emails are relevant to commitment
detection, and other regions often introduce noise.

All these studies use a single dataset for training models and per-
forming analysis. The datasets used in these studies are also small.
The studies do not consider the important challenge of domain bias
or domain adaptation. Although [12] perform a limited analysis on
the transferability of commitment models, they use datasets from
the same domain.

2.2 Domain Adaptation
Domainadaptation is theability to learnamodel fromdata ina source
domain and adapt it to have a good performance on a different target
domain [4].Domain adaptationmethods canbegrouped into twocat-
egories: sample-level adaptation and feature-level adaptation meth-
ods [38, 47]. Sample level adaptation methods attempt to remove
domain bias by weighting the samples in a way that the difference
between the distribution of the weighted samples in source domain
and the distribution of samples in target domain is reduced. The
most common sample weighting approach is importance sampling,
in which source samples are re-weighted based on their similarity
to samples on the target side [42]. TrAdaBoost [14] exploits a similar
idea, but the re-weighting is performed iteratively in a boosting fash-
ion. However, unlike the importance sampling method, TrAdaBoost
needs labeled samples in the target domain. Similar ideas have been
used in other studies for sample-level domain adaptation [22, 48].

Feature-level adaptation techniques try to remove the domain bias
from features by removing domain specific features or transforming
them from source to target domain [25, 38, 47]. Learning a mapping
between features of different domains have been studied in machine
translation [29, 33]. Here the domains are two different languages.
With the success of deep autoencoders for learning unsupervised
feature representations, these models have been used for domain
adaptation [9, 19, 47]. The main intuition behind these methods is
using a set of combined samples from source and target domains to
learn a representation that is domain independent. After creating the
representation, a classifier can be trained on the de-biased represen-
tations. Zhuang et al. [47] integrate the representation learning step
of the autoencoders with the classifier learning step. They use an
autoencoderwhich tries to learn a representation that is bothdomain
independent and leads to a good performance in classification of
samples in the target domain. In this study, we apply a similar idea,
however, we try to further remove the domain bias by introducing a
domain classifier. Moreover, Zhuang et al. [47] adapts the model for
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image classification and it is not straightforward to use this model
for detecting commitments.
Recently, adversarial training has been applied to domain adap-

tation [8, 10, 17, 18, 32]. The main intuition behind these methods
is adding a domain classification loss to the task’s loss and trying
to maximize the domain loss. Maximizing the domain loss ensures
that the learned representations do not contain any domain informa-
tion. We also use a similar approach to adversarial training [18] for
learning representations of sentences. We further extend this work
by using a sequence-to-sequence autoencoder [43] to the model for
learning representations. The main reason for having a sequence-
to-sequence autoencoder is that this model is a powerful means
for encoding text. Having this autoencoder in the pipeline means
that we can learn accurate sentence representations that capture the
information present in word sequences.

3 TASKANDDATA
In this section, we introduce the commitment detection task and the
dataset we collected for training commitment models.

3.1 Detecting Commitments in Email
As in [13], we define a commitment as any sentence in an email
where the sender is promising to do an action which can potentially
be added to his/her TODO list or be worthy of a reminder (e.g., send-
ing a document, finishing a report, meeting a colleague). We model
commitment detection as a binary classification task.
More precisely, the input in the commitment detection task is

a sentence in an email and the output is a binary label indicating
whether that sentence constitutes a commitment between the email
sender and the recipient.Weassume that there is a set of commitment
sentencesX = {(xi ,yi )}Ni=1, wherexi is a sentence andyi is the binary
commitment label for xi assigned by annotators. We useX to train a
model and thenuse it topredict commitment labels fornewsentences.
We use three different representations to represent sentences inX :
1) bag of word n-grams: for feature-based models (such as logistic
regression (LR))we extractwordn-grams (we setn=3) and represent
the sentences by the frequency of word n-grams in them. 2) bag of
part-of-speech (POS) n-grams: similar to the previous representation
but with bag of POS-taggedword n-grams (we setn=3) in sentences
instead of bag of word n-grams. We use SPLAT [39] to extract POS
tags. 3) sequence of words: for sequence-based models (such as au-
toencoders), we represent sentences as sequences of words.

3.2 Collected Dataset
We use Enron [24] and Avocado [37] email data to construct com-
mitment datasets. In this section, we briefly describe these datasets,
the crowd-sourcing task where third-party annotators labeled sen-
tences for whether they constituted commitments, and the collected
commitment datasets.

3.2.1 Crowd-sourcing. The Enron dataset contains emails from
158 users who were mostly senior management of Enron, a natu-
ral gas transmission corporation. There are about 200K emails in
this dataset. The Avocado dataset contains about 940K emails from
employees of a defunct information technology company.

To construct crowd-sourcing tasks,wefirst extract sentences from
emails. From the Enron dataset, we randomly select 61,398 sentences
and ask annotators to assign commitment labels to them. A random
sample of sentences does not contain a high number of positive
samples. Therefore, to collect more positive samples, we train an LR
classifier on the collected dataset and use it to extract sentences that
aremore likely positive.Weuse bag ofwordn-grams representations
to train the LR model. We first use the trained classifier to assign to

each sentence the probability of belonging to the positive class. Then,
weperformaweighted randomsamplingbasedon theseprobabilities
and select an additional 4,000 sentences to annotate. For extracting
sentences from Avocado dataset we use the trained LR model to
weight sentences and thenwe select 13,021 sentences for annotation.

After extracting sentences from Enron and Avocado datasets, we
ask crowd-workers to assign commitment labels to the sentences.
Each annotation task contains a sentence highlighted in an email
and the following question: "Does the highlighted sentence contain a
specific action that the sendermust complete or is obliged to do? (The
action must be on the sender and must not already be complete)."
If the answer for this question is yes, we consider it a commitment.
Each sentence is labeled by two annotators. If there is a disagree-
ment between two annotators, then the sentence is annotated by
a third annotator. A sentence is considered positive if at least two
annotators annotate it as positive. The inter-annotator agreement
between the annotators based on Krippendorff’sα is 0.73, indicating
a substantial agreement [1].

3.2.2 Commitment datasets. Table 1 shows the statistics of the
created datasets. We only use the annotated sentences as samples
and ignore the rest of the email. Enron is a much larger dataset than
Avocado. Since most of the samples are picked randomly from the
dataset, it contains many more negative samples than positive ones.
Conversely, since Avocado samples are picked based on the outputs
of a machine-learned classifier, it contains more positive samples.
Therefore, this dataset is biased toward the classifier and the dis-
tribution of positive and negative samples in this dataset does not
reflect the true base rate.

Table 1: The statistics of the commitment datasets.

Enron Avocado
# samples 65,398 13,021
# positive samples 3,337 4,484
avg. sentence length 12.1 14.5
median sentence length 10 13

Table 2 shows top 10 most informative Enron n-grams for the
positive class extracted based on pointwise mutual information. The
Jaccard similarity of this set with the top 10 positive class Avocado
features is 43%. (Due to licensing restrictions, the Avocado features
may not be published.)

Table 2: The most informative Enron features associated
with the positive class.

“i will”, “i”, “will”, “i’ll”, “let you know”, “let you”,
“call you”, “i shall”, “we will”, “will call”

4 TRANSFER LEARNING
FORDETECTINGCOMMITMENTS

In this section, we describe themethods used for transferring knowl-
edge between email datasets for commitment detection. Given a set
of labeledsamples in thesourcedomainS , ourgoal is tocreateamodel
that has a high commitment detection accuracy when it is applied in
the target domainT . We use three different approaches for transfer-
ring classification knowledge between email domains: feature-level
adaptation, sample-level adaptation, and an autoencoder that at-
tempts to leverage both feature- and sample-level adaptation.
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4.1 Feature-level adaptation
In this section, we introduce our approaches for adapting feature-
level domain information. We use two feature-level adaptation tech-
niques: feature selection and feature mapping.

4.1.1 Feature Selection. The main intuition of feature selection
approach for domain adaptation is detecting domain-specific fea-
tures in source and target domains and removing them from the train
and test samples.We assume that we have a set of unlabeled samples,
DS , in the source domain and a set of unlabeled samples,DT , in the
target domain(s). To remove domain specific features fromS , we first
train adomainclassifierusing samples inDS aspositives and samples
inDT asnegatives. The classifier is trained todiscriminate samples of
DS from samples ofDT . Therefore, themost discriminative (informa-
tive) featuresof the classifier are considereddomain-specific features.
We use logistic regression (LR) for training the classifier and select
topK features from the classification model (we setK =1000) and
finally replace the selected featureswithaunique symbol (’DOMAIN-
WORD’) in training samples from the source domain. We follow a
similar procedure to remove domain-specific words from samples
of the target domain. After removing domain-specific information
from the source and target domain samples, we train a commitment
classifier on samples from the source domain and directly use that
to predict the commitment labels in the target domain.

4.1.2 FeatureMapping. The featuremapping approach attempts
to find equivalent features between source and target domains and
transform the features from the source domain to their equivalents
in the target domain before training the commitment classifier. Fea-
tures are considered to be word n-grams (1 ≤ n ≤ 3). The main
assumption of the feature mapping method is that for each feature
in source domain, there is an equivalent feature in the target domain.
Therefore, for each domain specific feature in S , there is a domain
specific equivalent inT and our goal is to find these equivalences.

We assume thatwe have a set of emails in each domain.We extract
sentences from the emails and, for each domain, we learn a semantic
space in which each feature is represented as a low dimensional neu-
ral embedded vector. We useWord2Vec (the Skipgram architecture)
[35] to generate the embeddings of features. Finally, we learn a linear
transformation between the embedding spaces of source and target
domains and use it for transforming features between domains.
Linear mapping-based transformations of embeddings between

spaces were previously used for translation [34] and detecting se-
mantic shifts [2]. In this approach, we first pick a set of words as
anchors between domains as training samples for learning the map-
ping. We use stopwords as anchors because they should have the
same meaning in both domains and they can serve as fixed points
around which features with varying meanings (usages) are located.
Using the training samples, the goal is to learn a transformation
matrixW ST from domain S to domainT that minimizes the distance
between the words and their mapped vectors.

The objective function to minimize is:

argmin
W ST

∑
w





W STV S
w −V

T
w





2, (1)

The sum is taken over the training features.
We use a standard stopword list with a few additional words

added (very frequent words in the corpus) to learn the transforma-
tion matrix. We use gradient descent algorithm [41] to optimize the
objective function.V S

w andVT
w are the embeddings ofw in the em-

bedding spaces created for source and target domains, respectively.
Using the learned transformation, the mapping of a featurewS from
source domain in target domain is determined as follows:

M(w)=argmax
wT ∈FT

cos(W STV S
w ,V

T
wT
),

where cos is the cosine similarity and FT is the set of all features
(n-grams) in domainT .

4.2 Sample-level adaptation
As a sample-level adaptation method, we use the importance sam-
pling approach. Importance sampling is a technique in statistics to
estimate the parameters of a distribution (target distribution) given
samples generated from a different distribution (source distribution)
[42]. This technique has been applied for domain adaptation for
classification [38]. Assume there are two distributions: PS (x ,y) from
which samples in the source domain are generated, andPT (x ,y) from
which samples in the target domain are generated. In our setting for
thecommitmentdetection task,x is a sentenceandy is its correspond-
ing commitment label. The goal is to create a model using labeled
samples from S while optimizing the objective (e.g., the classifier
loss) for samples inT . The importance sampling approach for classifi-
cationworks as follows. Asmentioned, the goal is to find parameters
of the classifier that minimize the loss for the samples inT :

θ∗=argmin
θ
EPT l(X ,Y ,θ )

where θ is parameters of the classifier and l(X ,Y ,θ ) is the loss of the
classification. We can rewrite the above equation as follows:

θ∗≈argmin
θ

N∑
i=1

PT (xi ,yi )l(xi ,yi ,θ )

=argmin
θ

N∑
i=1

PT (xi ,yi )

PS (xi ,yi )
PS (xi ,yi )l(xi ,yi ,θ )

≈argmin
θ

N∑
i=1

PT (xi )PT (yi |xi )

PS (xi )PS (yi |xi )
PS (xi ,yi )l(xi ,yi ,θ )

≈argmin
θ

N∑
i=1

PT (xi )

PS (xi )
PS (xi ,yi )l(xi ,yi ,θ )

Note that the assumption in the above derivation is that PS (yi |xi )=
PY (yi |xi ), which implies that the conditional probability of classes
given the samples is independent of the domain. PT (xi )PS (xi )

is often re-
ferred to as the importance weight. Given the above derivation, we
can still train a classifier using the samples from the source domain,
however we need to weight the loss on samples by their importance
weight.PS (xi )andPT (xi )are themarginaldistributionsof samples in
the source and target domains respectively. To find θ∗, we need sam-
ples in the source side and also an estimation of PS (xi ) and PT (xi ).
To estimate PS (xi ) and PT (xi ), we use sets of samples from the

source and target domains. We consider the target side as positive
class and source side as negative class. Thenwe train a domain classi-
fier topredict for each samplehow likely it is to begenerated from tar-
get domain.We use a simple LRmodel to train the classifier. For each
samplexi ,PT (xi )=p andPS (xi )=1−p,wherep is theprobability that
xi is generated fromT assigned by the trained domain classifier toxi .

4.3 Deep Autoencoder
Deep autoencoders have been been successful in unsupervised fea-
ture extraction and representation learning [5]. Since these models
are unsupervised, they attempt to model the underlying distribu-
tion fromwhich the data is generated. In a transfer learning setting,
autoencoders are used to learn a representation for a combined set
of samples from source and target domains, thereby aiming to si-
multaneously represent samples from both domains, and yielding
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Figure2:General schemaoftheproposedneuralautoencoder
model used for commitment detection.

a model that should be domain independent [9]. After learning the
representations model, encodings of samples in the source domain,
with their labels, are used for training a classifier.

We first formulate the problem and then describe our proposed
model by introducing its general architecture. We then explain the
details of various parts of the architecture including input module,
sample representation, output module, and loss functions.
The setting is as follows. We are given a set of commitment sen-

tences from the source domainXS = {(x
S
i ,y

S
i )}

N
i=1 and a set of com-

mitment sentences from the target domainXT = {(xTi ,y
T
i )}

M
i=1. We

train the autoencoder embeddings using unlabeled examples from
the source and target domain, and subsequently we apply a set of la-
beled target examples in addition to the source examples for training
thesample representationsandoutputmodule.Ourgoal is touseboth
XS andXT to create a domain-independent classifier that has good
performance in both domains. Our proposedmodel takes a candidate
sentence from an email and predicts how likely that sentence consti-
tutes a commitment between the email sender and the recipient. To
do this, we introduce three different loss functions: reconstruction
loss LR , commitment loss LC , and domain loss LD . Reconstruction
loss corresponds to howwell the learned representations represent
the samples. Commitment loss is the main objective which is in-
cluded to minimize the errors of the commitment classifier. Finally,
the domain loss is included to remove the domain bias from samples.
In the training process our goal is tomaximize the loss of the domain
classifier, to avoid capturing domain-specific information during
learning sentence representation. Given the described loss functions,
the final objective function of the proposed model is as follows:

L=αLR+βLC−γLD (2)
where α , β ,andγ control the effect of each loss function on the final
loss and they are set based on some preliminary experiments ex-
plained in Section 6.4. The details of each loss function are explained
in Section 4.3.3. The proposed autoencoder is very similar to a multi-
task model, however the main difference is that we minimize the
introduced loss functions in a unified framework.
The overall structure of the proposed model is shown in Figure

2. The model contains three primary components:

…
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Figure 3: Architecture of the sequence to sequence encoder
function in the input representationmodule.

Inputmodule that provides a set of functions for encoding each
input sentence xi to a sequence of dense vectors {z ji }

n
j=1 where

z
j
i ∈R

d corresponds to embedding of jth word in the sentence and
n is the number of words in the sentence; for simplicity, we assume
that d is the dimension of the representation vector of words.

Sample representation that given the outputs of the inputmod-
ule (the sequence of embeddings of words), learns a representation
for the input sentence. The output of this module is a vector: s ∈Rd1,
whichcanbeconsideredas theaggregatedrepresentationof the input
sentence. We will describe the details of this module in Section 4.3.2.

Outputmodule that captures how likely the input sentence con-
stitutes a commitment based on the representation of the sentence
that is provided by the previous module. The details of this unit are
explained in Section 4.3.3.

In the following, we explain the input representation, outputmod-
ules, and loss functions and how these modules are connected.

4.3.1 Input Module. Input module projects an input sentence
to a sequence of dense vectors with dimension d using a trainable
embedding layer. Each vector in this sequence corresponds to aword
in the sentence.

4.3.2 Sample Representation. To represent samples, we use a se-
quence to sequence recurrent neural network (RNN) as the encoder
in ourmodel. The RNN reads the input sequenceZi = [z1i ,z

2
i ,...,z

n
i ] in

the left-to-right direction in the forward pass. It creates a sequence
of hidden states, [

−→
h 1
i ,
−→
h 2
i , ...,
−→
h n
i ], where

−→
h
j
i = RNN(z

j
i ,
−→
h
j−1
i ) is a

dynamic function for which we can use, for example, an LSTM [21]
or a GRU [11]. In this paper, we use an LSTM for learning the repre-
sentation. The RNN backward pass readsZi in the reverse direction,
i.e.,
←−
h
j
i = RNN(z

j
i ,
←−
h
j+1
i ), resulting in a sequence of hidden states

[
←−
h n
i ,
←−
h k−1
i , ... ,

←−
h 1
i ]. We take the concatenation of the last hidden

state of the forward pass and the first hidden state of the backward
pass of the RNN, i.e.,φ(xi )= [

−→
h k
i ;
←−
h 1
i ], as the final representation for

the given data field (see Figure 3).

4.3.3 Output Module. The proposed architecture has three out-
put modules: decoder output, commitment label, and domain label.
In this section, we describe each output module.

Decoder output and reconstruction loss. The decoder is an
RNNwhich, given the learned representation for the input sequence
(output of the encoder), attempts to generate the input sequence.
The goal of the decoder is to estimate the probability P(oi |xi ) =

P(o1i ,...,o
n′
i |x

1
i ,...,x

n
i ), where o

t
i is the output of the decoder at time

step t . The decoding starts by reading a special symbol (’GO’) at
the first time step. Decoding stops by reading another special sym-
bol (’EOS’) at the end of each input sentence. Given the outputs at
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each time step we can determine the decoder’s output as follows:
P(oi |xi )=

∏n′
t=1P(o

t
i |φ(xi ),o

1
i ,...,o

t−1
i ). We train the decoder, in an

end-to-end training process inwhich, givenmini-batches of samples
B = ⟨xi ,yi ,di ⟩, where yi and di are commitment label and domain
label of a sample xi , we maximize the conditional log-likelihood of
a correct output oi given the input sequence xi :

LR (xi )=−

|B |∑
i=1

loд(oi |xi ) (3)

Commitment label and classification loss. The commitment
classifier is a feed-forward layer with tanh non-linearity, followed
by a sigmoid. It receives the learned representation for the input sen-
tence and predicts the probability of it constituting a commitment:

OC = tanh(WWW (C)φ(xi )+bbb(C)) ∈RdC

ŷi =sigmoid(wwwTOC ) ∈R,

whereWWW (C) ∈ RdC×d1 and bbb(C) ∈ RdC are a trainable projection
matrix and bias respectively, and dC is the size of projection, and
www ∈RdC is a trainable vector. The commitment classifier is trained in
anend-to-end trainingprocess.Givenmini-batchesofdata ⟨xi ,yi ,di ⟩,
we first predict ŷ and calculate the loss using the cross-entropy loss:

LC =−yi logŷi−(1−yi )log(1−ŷi ) (4)
Domain label and domain classification loss. As with the

commitment classifier, we use a feed-forward layer with tanh non-
linearity, followedby a sigmoid, as the output of the domain classifier.
The domain classifier predicts the probability of the sentence being
generated from the target domain:

OD = tanh(WWW (D)φ(xi )+bbb(D)) ∈RdD

ŷi =sigmoid(wwwTOD ) ∈R,

whereWWW (D) ∈ RdD×d1 and bbb(D) ∈ RdD are a trainable projection
matrix and bias, and dD is the size of projection, andwww ∈RdD is a
trainable vector. The domain classifier is also trained in an end-to-
end training process. We again first predict ŷ and calculate the loss
using the cross-entropy loss:

LD =−di logŷi−(1−di )log(1−ŷi ) (5)

5 EXPERIMENTAL SETUP
We aim to understand how domain differences can affect the perfor-
mance of email commitment detection models and howwe can use
a transfer learning approach to overcome any performance degra-
dation due to these differences. To this end, our main research ques-
tions are: (RQ1) Can commitments be reliably detected in emails?
(RQ2) How does the performance of commitment models change
when they are tested on a different domain than they are trained on?
Can we reliably train a model on one domain and use it to detect
commitments on a different domain? (RQ3) How can we character-
ize differences between domains and use this characterization for
transferring knowledge between domains? (RQ4)Does the proposed
autoencoder help to detect commitments more accurately?

RQ1 is concernedwith thequality of automatic commitment detec-
tion models. To answer this research question, we use the collected
datasets and train and test commitment detection models on the
same domain and analyze their performance. RQ2 is concerned with
the effect of domain difference on the performance of commitment
detection models. To answer RQ2, we train and test commitment
models across domains and analyze their performance. To answer
RQ3,we try to characterize differences betweendomains anduse this
characterization to remove domain-specific bias from commitment
models. We evaluate how successful these approaches are in charac-
terizing the differences. RQ4 is concerned with the performance of
the proposed autoencoder model in commitment detection and its

ability to learn domain independent representations for samples.We
report the results of the autoencodermodel and compare them to the
results of the feature-level and sample-level adaptation approaches.

5.1 EvaluationMetrics
Weuse standard evaluationmetrics for classification such as the area
under the receiver operator characteristic curve (AUC), precision,
recall, and F1 measure.

5.2 General Setting andHyperparameters
We set the number of hidden layers of the LSTM (forward and back-
ward) model,d ,d1,dC , anddD to 128.We set the initial learning rate
to 10−3. The batch size is set to 128. Training consists of 250K steps.
Dropout of the LSTMmodel is set to 0.2. In training all commitment
models, we perform five-fold cross validation and report the average
of performance on five folds as the performance of the models.

5.3 Baselines
Since commitment detection is a relatively under-studied task, there
arenotmanybaselines tocompareourproposedapproaches to.Previ-
ouswork in this area [12, 15, 23, 26, 28] either didnot propose amodel
to automatically detect commitments or used very simple word/POS
n-grams based features to train a model. The only differences be-
tween the baselines are the classification model and the representa-
tion of samples. We also use similar representations (word and POS
n-grams) and similar classifiers (such as LR) to create commitment
models for this task. In that sense, the LRmodel is our main baseline.
However, our main goal is to show that the domain difference can
be very problematic in creating commitment models and previously
proposed n-gram based approaches fail to remove domain bias.
For statistical significance testing, we compare our methods to

baselines using paired two-tailed t-tests. We set α (the significance
level) to 0.05. In Section 6, ▲ and ▼ indicate that the corresponding
method performs significantly better or worse than the correspond-
ing baseline, respectively.

6 RESULTS
Following the four research questions described in Section 5, we
report the results of our proposed commitment detection methods.

6.1 Commitment Detection Results
To answer RQ1, we use the datasets described in Section 3.2 and
train and evaluate commitment classifiers using LR. In this set of
experiments,weonly focus on theperformanceof themodels trained
and tested on same domain. Our goal is to evaluate whether or not
commitments can be detected automatically in emails, and whether
the LRmodel can capture the commitment language in emails. Table
3 shows the performance of LR models trained for detecting com-
mitments in Avocado and Enron datasets using word n-gram and
POS n-gram representations. The commitment models achieve a
reasonable performance. This result indicates that commitments can
be reliably detected in emails. There was no significant difference
between the performance of models trained on word n-gram and
models trained on POS n-grams, and in the remainder of the paper
we only report the results based on the word n-gram representation
as this representation is more efficient and has lower dimensionality.

6.2 Cross-Domain Results
To answer RQ2,we evaluate the performance of commitmentmodels
on a different domain than they are trained on. Again, we use LR for
training. Table 4 shows the performance of trainedmodels across do-
mains.The results showthat theperformanceof commitmentmodels
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Table 3: Results for LR commitment detectionmethod using
word or POS n-grams, trained and tested on same domain.

Dataset n-grams Precision Recall F1 AUC

Avocado Word 0.82 0.81 0.81 0.86
POS 0.82 0.84 0.82 0.86

Enron Word 0.80 0.77 0.78 0.88
POS 0.79 0.78 0.78 0.87

degrades when moving across domains in terms of almost all used
evaluation measures, and we cannot reliably train a commitment
model on one domain and use it to detect commitments on a different
domain. For theAvocado→Enron case theprecisiondropsmore than
recall (precision drops from 0.82 to 0.74 and recall drops from 0.81 to
0.78). However, for Enron→Avocado case, the opposite is true. The
primary reason for higher drops in precision in theAvocado→Enron
case is that the Avocado dataset contains more positive samples, so
the trained model is more inclined towards assigning positive labels
to the samples. However, the Enron dataset contains more negative
samples. So, for the Avocado→Enron case, the false positive rate is
high, which leads to lower precision. For Enron→Avocado the false
negative rate is high (as Enron dataset has more negative samples
and the trained classifier ismore inclined towards assigning negative
labels to samples), which leads to lower recall.

Table 4: Performance of LRmethod across domains.

Train Test Precision Recall F1 AUC

Avocado Avocado 0.82 0.81 0.81 0.86
Enron 0.77▼ 0.69▼ 0.73▼ 0.67▼

Enron Enron 0.80 0.77 0.78 0.88
Avocado 0.74▼ 0.78 0.76▼ 0.58▼

6.3 Characterizing Inter-Domain Differences
Next, we answer RQ3 by training models that can detect and charac-
terize the differences between email domains and use this character-
ization for removing domain bias from commitment models before
training them.We first design a binary classifier which attempts to
identify the source domains for samples. The input of the classifier
is a sentence and the output is the domain label for the sentence.
We take 5,000 samples from each of Avocado and Enron datasets
and represent them using a bag-of-words n-gram representation.
Then, we train an LR model to predict domain labels for samples.
Figure 4 shows the precision-recall curve of the domain classifier.
The classifier achieves an F1 score of 0.85. Table 5 illustrates a sample
of features that are strongly associated with the Enron domain. This
result indicates that there is a domain bias in the samples and even
a simple LR classifier can characterize differences between domains.

Table 5: Most informative unigram features indicating the
Enron domain.

“enron”, “gas”, “ena”, “houston”, “ferc”,
“eol”, “energy”, “ees”, “counterparty”

We use this characterization to remove domain bias from source
and target datasets before training commitment models. Table 6
shows the performance ofmodels that use the characterization of the
difference between domains for training domain-independent mod-
els.Threeobservations canbemade fromthe results. First, all transfer
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Figure 4: The precision-recall curve of the domain classifier
(predicting source domain of the samples) (F1 score = 0.85).

learning models improve the performance of the baseline LR model,
indicating that we can remove the domain bias using the transfer
learning approach. The improvements of allmethods are statistically
significant over the LR method for Avocado→Enron. However, on
Enron→Avocado only the importance sampling method achieves
significant improvements over the LRmethod in terms of all metrics.
This result indicates that the transfer learning approach is more suc-
cessful in removing the domain bias from the Avocado dataset. Sec-
ond, the linear mapping approach has a slightly better performance
than the importance sampling method for Avocado→Enron. Based
on our analysis the quality of the mapping created from Avocado to
Enron is higher than the quality of the created mapping from Enron
to Avocado. The average cosine similarity of themapped embedding
of words from Avocado embedding (to Enron embedding) to their
embedding in Enron space is 0.78. This value for Enron→Avocado
mapping is 0.69. The better quality of the mapping leads to better
transformation from Avocado to Enron and better performance for
Avocado→Enron.Whenmapping fromAvocado toEnron, thewords
project to a more meaningful place in the Enron embedding space.
Third, the importance sampling method achieves significant im-
provements for both Avocado→Enron and Enron→Avocado cases.
This indicates that adaptation at the sample level is more effective
for the commitment detection task. We use importance sampling
as a baseline in Section 6.4 and compare its performance to the
performance of the proposed deep autoencoder.

Table 6: Performance of different domain adaptation meth-
ods for detecting commitments. IS: Importance Sampling,
LM: LinearMapping, FS: Feature Selection.

Train Test Method Precision Recall F1 AUC

Avocado Enron

LR 0.77 0.69 0.73 0.67
IS 0.81▲ 0.75▲ 0.77▲ 0.74▲
LM 0.83▲ 0.76▲ 0.79▲ 0.75▲
FS 0.80▲ 0.73▲ 0.76▲ 0.73▲

Enron Avocado

LR 0.74 0.78 0.76 0.58
IS 0.78▲ 0.85▲ 0.81▲ 0.71▲
LM 0.75 0.81▲ 0.77 0.64▲
FS 0.74 0.80▲ 0.76 0.62

6.4 Transfer Learning Results
To answer RQ4, we evaluate the performance of the proposed au-
toencoder model in the commitment detection task and compare
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its performance to that of the importance sampling method. As an
additional baseline, we use an LRmodel trained on a combination of
samples in both the Avocado and Enron datasets. Table 7 shows the
performance of the autoencoder model with different loss functions.
The training of the autoencoder that uses all loss functions is done
on the combination of both Avocado and Enron samples with their
labels. We again perform five-fold cross validation on the test set. At
each step,we use four folds in target side in addition to all samples on
source side for training the model and evaluate the trained model on
the fifth fold. For trainingAER andAER+D we train themodels using
unlabeled samples in the source and target sides. Then, we use the
trained model to represent labeled samples from the source side. Fi-
nally, we train an LRmodel using these representations and evaluate
its performance on the target side.Note that bothAER andAER+D do
not use labeled samples in the target domain. Nevertheless, in many
cases they outperformmodels which use labeled samples in the tar-
get domain.Asexpected, adding labeled samples in the target domain
to the training set (AEAll ) improves the performance of the model.
The results show that each introduced loss function contributes

to the performance of the autoencoder, and using all loss functions
achieves the best performance. Based on some preliminary experi-
ments we setα =0.1, β =0.6, andγ =0.1 in Equation 2. This indicates
that the commitment loss has more effect on the performance of the
model, while other losses have the same contribution. The proposed
model outperforms both IS and the LR model trained on a combina-
tion of the samples from source and target side. This result shows
the ability of the proposed autoencodermodel to remove the domain
bias from data and achieve a robust model.

To observe the effect of the size of training set on the performance
of the proposed autoencoder model, we design an experiment in
which we vary the number of samples in the target side and mea-
sure the performance of the model. Figure 5 shows the results of
this experiment. The results show that adding more samples in the
target side boosts the performance of the model on both datasets.
With about 50% of the samples, the model already achieves a good
performance. For the Enron case, after having 50%of the data, adding
more samples does not affect the performance of the model signif-
icantly. However, for Avocado this is not the case. The main reason
is that Enron is a significantly larger dataset and with only 50% of
the data the model can already generalize, while Avocado is smaller
and adding more samples helps learn a better model.

Table 7: Performance of the proposed autoencoder for
domain adaptation for detecting commitments. IS: Impor-
tance Sampling,AER : Autoencoder with only reconstruction
loss, AER+D : Autoencoder with reconstruction and domain
losses,AEAll : Autoencoderwith reconstruction, domain, and
classification losses.

Train Test Method Precision Recall F1 AUC

Avocado Enron

IS 0.81 0.75 0.77 0.74
LR 0.80 0.79 0.79 0.78
AER 0.80 0.78▲ 0.79 0.76
AER+D 0.81 0.79▲ 0.80▲ 0.77▲
AEAll 0.82 0.81▲ 0.81▲ 0.79▲

Enron Avocado

IS 0.78 0.85 0.81 0.71
LR 0.80 0.82 0.81 0.70
AER 0.77 0.82 0.79 0.68
AER+D 0.77 0.84 0.80 0.69
AEAll 0.79▲ 0.87▲ 0.83▲ 0.72
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Figure 5: The effect of size of training samples in target
domain on the performance of the proposed autoencoder.

7 DISCUSSIONAND IMPLICATIONS
We have shown that there is a significant degradation in the per-
formance of commitment detection models across domains (email
corpora), that the differences can be accurately characterized, and
that domain adaptation, specifically transfer learning, can help ame-
liorate domain biases and yield performance improvements.
We evaluated the performance of the methods on two publicly

available email datasets: Avocado and Enron. The use of public data
sets improves the replicability of our study and is sufficient to demon-
strate the value of domain adaptation for commitment detection. In
internal testing, we conducted further experiments where we evalu-
ated these methods on proprietary email collections sourced within
our organization (training on Avocado+Enron datasets combined)
and found similar results to those reported thus far in this paper.Non-
disclosure and privacy policies do not permit us to discuss the data or
the results indetail, butwebelieve that it is still valuable to report that
the methods do scale to test domains beyond Avocado and Enron.
The created commitment dataset based on Enron collection has

much fewer positive samples. To have more positive samples, we
biased the Avocado dataset. Generating the Avocado dataset in the
same way as the Enron dataset would allow us to better understand
the models and their transferability, however, creating such a large
dataset is costly and beyond the scope of this study.
The designed methods differ a lot in their efficiency. The deep

autoencoder model required about 12 hours to train on average and
about 50 milliseconds to extract a representation for a test sample,
while on a same machine the importance sampling methods take
about 4minutes to train and several microseconds to test on average.
Although in training phase the autoencoder is quite slow, it is more
efficient during testing.
We attempted to explore the effectiveness of models that work

in different granularities and can be applied easily to the task. The
demonstrated viability of transfer learning is promising. The ef-
fectiveness of other domain adaptation methods such as [14], and
alternatives such as multi-task learning models [32], needs to be
explored. Beyond commitments, the value of transfer learning for
other detection tasks in email, e.g., extracting requests and detecting
task completion [16, 23], should be investigated, as should the appli-
cability of these methods to media beyond email (e.g., SMS, instant
messaging,meeting transcripts). In this paper,we applied ourmodels
to transfer knowledge between twodomains.However, the proposed
approaches are easily extensible to consider more than two domains.
The transfer learning methods used in this study (except for im-

portance sampling, feature selection, and linear mapping), require
labeled samples in the target domain aswell as the source domain. In
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applying these methods, additional data collection efforts would be
required to obtain these additional labels and the cost of that should
be factored into decisions regarding their application. For reference,
the autoencoder model, which uses all loss functions, achieves a
good performance with just a few thousand labeled samples in the
target domain.
Future work involves using the domain adaptation methods in

practice to train more domain independent models and deploying
them as skills and add-ins inside digital assistants and task manage-
ment tools, respectively. Deployment would enable the computa-
tion of online performance measures based on implicit and explicit
feedback from users making the commitments (rather than offline
labeling from third-party judges).
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