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Abstract

Recently, path norm was proposed as a new capacity measure
for neural networks with Rectified Linear Unit (ReLU) acti-
vation function, which takes the rescaling-invariant property
of ReLU into account. It has been shown that the general-
ization error bound in terms of the path norm explains the
empirical generalization behaviors of the ReLU neural net-
works better than that of other capacity measures. Moreover,
optimization algorithms which take path norm as the regular-
ization term to the loss function, like Path-SGD, have been
shown to achieve better generalization performance. How-
ever, the path norm counts the values of all paths, and hence
the capacity measure based on path norm could be improperly
influenced by the dependency among different paths. It is also
known that each path of a ReLU network can be represented
by a small group of linearly independent basis paths with
multiplication and division operation, which indicates that the
generalization behavior of the network only depends on only
a few basis paths. Motivated by this, we propose a new norm
Basis-path Norm based on a group of linearly independent
paths to measure the capacity of neural networks more ac-
curately. We establish a generalization error bound based on
this basis path norm, and show it explains the generalization
behaviors of ReLU networks more accurately than previous
capacity measures via extensive experiments. In addition, we
develop optimization algorithms which minimize the empiri-
cal risk regularized by the basis-path norm. Our experiments
on benchmark datasets demonstrate that the proposed regu-
larization method achieves clearly better performance on the
test set than the previous regularization approaches.

Introduction
Deep neural networks have pushed the frontiers of a wide va-
riety of AI tasks in recent years such as speech recognition
(Xiong et al. 2016; Chan et al. 2016), computer vision (Ioffe
and Szegedy 2015; Ren et al. 2015) and neural language pro-
cessing (Bahdanau, Cho, and Bengio 2014; Gehring et al.
2017), etc. More surprisingly, deep neural networks gener-
alize well, even when the number of parameters is signifi-
cantly larger than the amount of training data (Zhang et al.
2017). To explain the generalization ability of neural net-
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works, researchers commonly used different norms of net-
work parameters to measure the capacity (Bartlett, Foster,
and Telgarsky 2017; Neyshabur, Tomioka, and Srebro 2015;
2016).

Among different types of deep neural networks, ReLU
networks (i.e., neural networks with ReLU activations (Glo-
rot, Bordes, and Bengio 2011)) have demonstrated their out-
standing performances in many fields such as image classi-
fication (He et al. 2016; Huang et al. 2017), information sys-
tem (Cheng et al. 2016; He et al. 2017), and text understand-
ing (Vaswani et al. 2017) etc. It is well known that ReLU
neural networks are positively scale invariant (Neyshabur,
Salakhutdinov, and Srebro 2015; Neyshabur et al. 2016).
That is, for a hidden node with ReLU activation, if all of
its incoming weights are multiplied by a positive constant c
and its outgoing weights are divided by the same constant,
the neural network with the new weights will generate ex-
actly the same output as the old one for any arbitrary input.
(Neyshabur, Salakhutdinov, and Srebro 2015) considered the
product of weights along all paths from the input to out-
put units as path norm which is invariant to the rescaling of
weights, and proposed Path-SGD which takes path norm as
the regularization term to the loss function.

In fact, each path in a ReLU network can be represented
by a small group of generalized linearly independent paths
(we call them basis-path in the sequels) with multiplication
and division operation as shown in Figure 1. Thus, there is
dependency among different paths. The smaller the percent-
age of basis paths, the higher the dependency. As the net-
work is determined only by the basis paths, the generaliza-
tion property of the network should depend only on the basis
paths, as well as the relevant regularization methods. In ad-
dition, Path-SGD controls the capacity by solving argmin
of the regularized loss function, the solution of the argmin
problem is approximate because dependency among differ-
ent values of all paths is not considered in the network. This
motivates us to establish a capacity bound based on only
the basis paths instead of all the paths. This is in contrast
to the generalization bound based on the path norm which
counts the values of all the paths and does not consider the
dependency among different paths. To tackle these prob-
lems, we define a new norm based on the values of the basis
paths called Basis-path Norm. In previous work, (Meng et
al. 2018) constructed the basis paths by skeleton method and



proved that the values of all other paths can be calculated us-
ing the values of basis paths by multiplication and division
operations. In this work, we take one step further and cate-
gorize the basis paths into positive and negative basis paths
according to the sign of their coefficients in the calculations
of non-basis paths.

In order to control generalization error, we need to keep
the hypothesis space being small. As we know, loss func-
tion can be computed by paths, hence we keep the values
of all paths being small. To keep small values of non-basis
paths represented by positive and negative basis paths, we
control the positive basis paths not being too large while
the negative basis paths not being too small. In addition,
to keep small values of basis paths, we control the nega-
tive basis paths not being too large as well. With this con-
sideration, we define the new Basis-path norm. We prove a
generalization error bound for ReLU networks in terms of
the basis-path norm. We then study the relationship between
this basis-path norm bound and the empirical generalization
gap the absolute difference between test error and training
error. The experiments included ReLU networks with differ-
ent depths, widths, and levels of randomness to the label. For
comparison purpose, we also compute the generalization er-
ror bounds induced by other capacity measures for neural
networks proposed in the literature. Our experiments show
that the generalization bound based on basis-path norm is
much more consistent with the empirical generalization gap
than those based on other norms. In particular, when the net-
work size is small, the ordinary path norm bound fit empir-
ical generalization gap well. However, when the width and
depth increases, the percentage of non-basis paths increases,
and the dependency among paths increases and we observe
that the path norm bound degenerates in reflecting the em-
pirical generalization gap. In contrast, our basis-path norm
bound fits the empirical generalization gap consistently as
the network size changes. This validates the efficacy of BP
norm as a capacity measure.

Finally, we propose a novel regularization method, called
Basis-path regularization (BP regularization), in which we
penalize the loss function by the BP norm. Empirically,
we first conduct experiments on recommendation system
of MovieLens-1M dataset to compare the multi-layer per-
ceptron (MLP) model’s generalization with BP regulariza-
tion and baseline norm-based regularization, then we verify
the effectiveness of BP regularization on image classifica-
tion task with ResNet and PlainNet on CIFAR-10 dataset.
The results of all experiments show that, with our method,
optimization algorithms (i.e., SGD, Adam, Quotient SGD)
can attain better test accuracy than with other regularization
methods.

Related Work
Generalization of deep neural networks has attracted a great
deal of attention in the community (Zhang et al. 2017;
Neyshabur et al. 2017; Kawaguchi, Kaelbling, and Bengio
2017). Norm and margin-based measures have been widely
studied, and commonly used in neural network optimiza-
tion with capacity control (Bartlett and Mendelson 2002;
Evgeniou, Pontil, and Poggio 2000; Neyshabur, Tomioka,

Figure 1: A toy neural network example. The network has 6
paths pi,j , where i ∈ {1, 2, 3} and j ∈ {1, 2}, the values of
paths vpi,j = w1,iw2,j , We can see the dependency among
the paths, i.e., vp2,2 =

vp1,2 ·vp2,1
vp1,1

and vp3,2 =
vp3,1 ·vp1,2
vp1,1

.
In this group of basis paths, p1,1 is the negative Basis-path,
p1,2,p2,1 and p3,1 are the positive basis paths.

and Srebro 2016). For example, in (Bartlett, Foster, and Tel-
garsky 2017), the authors proposed a margin-based gener-
alization bound for networks that scale with their margin-
normalized spectral complexity. An analysis of generaliza-
tion bounds based on PAC-Bayes was proposed in (Dziu-
gaite and Roy 2017).

Among these measures, the generalization bound based
on path norm is tighter theoretically (Neyshabur, Tomioka,
and Srebro 2016). Empirically, path norm has been showed
to be more accurate to describe the tendency of generaliza-
tion error (Neyshabur et al. 2017). Thus, we are interested
in the capacity measure which is related to the path norm.
In (Neyshabur, Tomioka, and Srebro 2016), the authors first
proposed group norm and path norm. The results show that
the path norm is equivalent to a kind of group norm. In
(Neyshabur, Salakhutdinov, and Srebro 2015; Neyshabur et
al. 2016), the authors proposed to use path norm as a reg-
ularization term for ReLU multi-layers perceptron (MLP)
network and recurrent network and designed Path-SGD al-
gorithm. In (Neyshabur et al. 2017), the authors empiri-
cally compared different kinds of capacity measures includ-
ing path norm for deep neural network generalization. How-
ever, none of those norms considered the dependency among
paths in the networks.

Preliminaries
In this section, we introduce ReLU neural networks and gen-
eralization error. First of all, we briefly introduce the struc-
ture of rectifier neural network models. Suppose fw : X →
Y is a L-layer neural network with weight w ∈ W, where
input space X ⊂ Rd and output space Y = RK . In the l-th
layer (l = 0, , L), there are hl nodes. We denote the nodes
and their values as {Ol, ol}. It is clear that, h0 = d, hL = K.
The layer mapping is given as, ol = σ(wTl o

l−1), where wl
is the adjacency matrix in the l-layer, and the rectifier acti-
vation function σ(·) = max(·, 0) is applied element-wisely.
We can also calculate the k-th output by paths, i.e.,

Nk
w(x) =

∑
(i0,··· ,iL=k)

L∏
l=1

wl(il−1, il) ·
L−1∏
l=1

I(olil(w, x) > 0) · xp0

(1)

where (i0, · · · , iL) is the path starting from input feature
node O0

i0
to output node OLiL via hidden nodes O1

i1 , , O
L−1
iL−1

,



and wl(il−1, il) is the weight of the edge connecting nodes
Ol−1
il−1

and Olil .
1

We denote p(i0,··· ,iL) =
∏L
l=1 wl(il−1, il) and

a(i0,··· ,iL) =
∏L−1
l=1 I(olil(w, x) > 0). The output can

be represented using paths as

Nk
p,a(x) =

∑
(i0,··· ,iL)

p(i0,··· ,iL) · a(i0,··· ,iL) · xi0 .

For ease of reference, we omit the explicit index (i0, · · · , iL)
and use i be the index of path. We use p = (p1, p2, · · · , pM )

where M =
∏L
l=0 hl to denote the path vector. The path

norm used in Path-SGD (Neyshabur, Salakhutdinov, and

Srebro 2015) is defined as Ω(p) =
(∑M

i=1 p
2
i

)1/2
.

Given the training set {(x1, y1), · · · , (xn, yn)} i.i.d sam-
pled from the underlying distribution P, machine learning
algorithms learn a model f from the hypothesis space F by
minimizing the empirical loss function l(f(x), y). The uni-
form generalization error of empirical risk minimization in
hypothesis space F is defined as

εgen(F) = sup
f∈F
| 1
n

n∑
i=1

l(f(xi), yi)− E(x,y)∼Pl(f(x), y)|.

Generalization error εgen measures how well a model f
learned from the training data S can fit an unknown test sam-
ple (x, y) ∼ P.

Empirically, we consider the empirical generalization er-
ror which is defined as the difference of empirical loss be-
tween the training set and test set at the trained model f .

Basis-path Norm
In this section, we define the Basis-path Norm (abbreviated
as BP norm) on the networks. Using the BP norm, we de-
fine a capacity measure which is called BP-measure and we
prove that the generalization error can be upper bounded us-
ing this measure.

The Definition of Basis-path Norm
First, as shown in (Meng et al. 2018), the authors constructed
a group of basis paths by skeleton method2. It means that the
value of non-basis paths can be calculated using the values
of basis paths. In the calculation of non-basis paths’ values,
some basis paths always have positive exponents and hence
appear in the numerator, others have negative exponents and
hence appear in the denominator. We use p̃ to denote a non-
basis path and p1, · · · , pr to denote basis paths. We have the
following proposition.

Proposition 1 For any non-basis path p̃, p̃ =∏m
i=1 p

αi
i

∏r
j=m+1 p

αj

j , where αi ≤ 0, αj ≥ 0.

Limited by the space, we put the detailed proof in the appen-
dices.

1The paths across the bias node can also be described in the
same way. For simplicity, we omit the bias term.

2Please note that different basis vectors in a vector space are
equivalent and can be converted to each other.

The proposition shows that basis paths p1, · · · , pm al-
ways have negative exponent in the calculation, while
pm+1, · · · , pr always have positive exponent. We call the
basis path with negative exponent αi Negative Basis Path
and denote the negative basis path vector as p− =
(p1, · · · , pm). We call the basis path with positive ex-
ponent αj Positive Basis Path and denote it as p+ =
(pm+1, · · · , pr).

In order to control generalization error, we need to keep
the hypothesis space being small. Thus we want all the paths
to have small values. For non-basis path represented by pi
and pj , we control pi not being too small because αi is neg-
ative, and pj not being too large because αj is positive. We
control pi not being too large as well to keep small values of
basis paths. We define the following basis-path norm φ(·) as
follows.

Definition 1 The basis norm on the ReLU networks is

φ(p) = sup {| log |p1||, · · · , | log |pm||, |pm+1|, · · · , |pr|} .
(2)

We next provide the property of φ(p).

Theorem 1 φ(p) is a norm in the vector space where p+ is
a vector in Euclidean space and p− is a vector in a general-
ized linear space under the generalized addition and gener-
alized scalar multiplication operations: p− ⊕ (p′)− = [p1 ·
p′1, · · · , pm·p′m] and c�p− = [sgn(p1)·|p1|c, · · · , sgn(pm)·
|pm|c] for p−, (p′)− ∈ Rm and c ∈ R.

Proof: The definition of φ(p) is equivalent to

φ(p) = sup
{
φ∞(p+), φ∞(p−)

}
. (3)

where φ∞(p−) = supi {| log |pi||, i = 1, · · · ,m} and
φ∞(p+) = supj {|pj |, j = m+ 1, · · · , r}. Obviously,
φ∞(p+) is the `∞ norm in Euclidean space. Thus, it only
needs to prove φ∞(p−) is a kind of norm. Next, we prove
that φ∞(p−) is a norm in the generalized linear space.

In the generalized linear space, the zero vector is I , where
I denotes a vector with all elements being equal to 1. Based
on the generalized linear operators, we verify the properties
including positive definite, absolutely homogeneous and the
triangle inequality of ‖p−‖∞ as follows:

(1) (Positive definite) φ∞(p−) ≥ 0 and φ∞(p−) = 0
when p− = I .

(2) (Absolutely homogeneous) For arbitrary c ∈ R, we
have

φ∞(c · p−) = sup
i

{
| log |p−i |

c|, i = 1, · · · ,m
}

= |c| · φ∞(p−).

(3) (Triangle inequality)

φ∞(p− ⊕ (p′)−) = sup
i

{
| log |pip′i||, i = 1, · · · ,m

}
≤ sup

i
{| log |pi||, i = 1, · · · ,m}

+ sup
i

{
| log |p′i||, i = 1, · · · ,m

}
=φ∞(p−) + φ∞((p′)−).

Considered that φ∞(p+) and φ∞(p−) are both norms, tak-
ing supreme of them is still a norm. Thus φ(p) satisfies the
definition of norm. �



Generalization Error Bound by Basis-path Norm
We want to use the basis-path norm to define a capacity mea-
sure to get the upper bound for the generalization error. Sup-
pose the binary classifier is given as g(x) = vT f(x), where
v represents the linear operator on the output of the deep
network with input vector x ∈ Rd. We consider the follow-
ing hypothesis space which is composed of linear operator
v, andL-layered fully connected neural networks with width
H and input dimension d:

Gd,H,Lγ,v =

{g = v ◦ f : L ≥ 2, h0 = d, h1 = · · · = hL−1 = H,φ(p) ≤ γ}.

Theorem 2 Given the training set {(x1, y1), · · · , (xn, yn)}
with xi ∈ Rd, yi ∈ {0, 1}, and the hypothesis space Gd,H,Lγ,v

which contains MLPs with depth L ≥ 2, width H and φ(p),
for arbitrary z > 0, for every δ > 0, with probability at least
1 − δ, for every hypothesis g ∈ Gd,H,Lγ,v , the generalization
error can be upper bounded as

εgen(Gd,H,Lγ,v ) ≤ 4

√
2 ln(4/δ)

n
+

2

√
2Φ(γ; d,H,L)(4H)L−1 · ‖v‖22 ·maxi ‖xi‖22

n
,

where

Φ(γ; d,H,L)
∆
=

(He2γ + (d− 1)Hγ2)
(
1 + (H − 1)γ2e2γ)L−2

. (4)

We call Φ(γ; d,H,L) Basis-path measure. Therefore, the
generalization error εgen(Gd,H,Lγ,v ) can be upper bounded by
a function of Basis-path measure.

The proof depends on estimating the value of different
types of paths and counting the number of different types of
paths. We give the proof sketch of Theorem 2.

Proof of Theorem 2:
Step 1: If we denote Fγ = {f : L ≥ 2, h0 = d, h1 =

· · · = hL−1 = H,φ(p) ≤ γ}, the generalization error of a
binary classification problem is

εgen(Gd,H,Lγ,v ) ≤ 2‖v‖22RA(Fγ) + 4

√
2 ln(4/δ)

n
,

where RA(·) denotes the Rademacher complexity of a hy-
pothesis space (Wolf 2018). Following the results of Theo-
rem 1 and Theorem 5 in (Neyshabur, Tomioka, and Srebro
2016) under p = 2 and q =∞, we have

RA(Fγ) ≤
√

2Ω2(Fγ)(4H)L−1 maxi ‖xi‖22
n

,

where Ω(Fγ) is the maximal path norm of f, f ∈ Fγ .
Step 2 (estimating path value): We give Ω(Fγ) an upper

bound using Basis-path norm. Using φ(p) ≤ γ, we have
e−γ ≤ |pi| ≤ eγ and |pj | ≤ γ. Then using Proposition 1,
we have

|p̃| ≤
∣∣ m∏
i=1

pαi
i

r∏
j=m+1

p
αj

j

∣∣ (5)

≤ e−γ
∑m

i=1 αi · γ
∑r

i=m+1 αj , (6)

where αi ≤ 0, αj ≥ 0.
As shown in skeleton method in (Meng et al. 2018)

(which can also be referred in appendices), basis paths are
constructed according to skeleton weights. Here, we clarify
the non-basis paths according to the number of non-skeleton
weights it contains. We denote the non-basis path which con-
tains b non-skeleton weights as p̃b. The proofs of Proposition
1 indicates that for p̃b,

∑m
i=1 αi = 1 − b,

∑r
i=m+1 αj = b.

Thus we have
|p̃b| ≤ eγ(b−1) · γb.

Step 3 (counting the number of different type of paths):
Based on the construction of basis paths (refer to the skele-
ton method in appendices), in each hidden layer, there are
H skeleton weights and H(H − 1) non-skeleton weights.
We can get that the number of p̃b in a L-layer MLP with
width H is (d− 1)HCb−1L−2(H − 1)b−1 +HCbL−2(H − 1)b

if 1 ≤ b ≤ L− 2 and (d− 1)H(H − 1)L−2 if b = L− 1.
Step 4: We have:

Ω2(Fγ) =
m∑
i=1

(pi)
2 +

r∑
j=m+1

(pj)
2 +

L−1∑
b=2

∑
k

p̃2
b,k. (7)

The number of negative basis paths is H and e−γ ≤ |pi| ≤
eγ , so we have

∑m
i=1 p

2
i ≤ He2γ , where m = H .

Ω2(Fγ)

≤He2γ +

L−2∑
b=1

(
(d− 1)HCb−1

L−2(H − 1)b−1 +HCbL−2(H − 1)b
)

·
(
γbeγ(b−1)

)2

+ (d− 1)H(H − 1)L−2 ·
(
γL−1eγ(L−2)

)2

≤(He2γ + (d− 1)Hγ2
L−2∑
b=0

CbL−2(H − 1)b
(
γ2e2γ)b

≤(He2γ + (d− 1)Hγ2)
(
1 + (H − 1)γ2e2γ)L−2

=Φ(γ; d,H,L),
(8)

where Ineq. (8) is established by the calculation of (1+x)a.
�

Based on the above theorem, we discuss how
Φ(γ; d,H,L) changes as width H and depth L. (1)
For fixed γ, Φ(γ; d,H,L) increases exponentially as L and
H goes to large. (2) Φ(γ; d,H,L) increases as γ increases.
If γ diminishes to zero, we have Φ(γ; d,H,L) → H . In
this case, the feature directly flow into the output, which
means that fk(x) = xk mod d, for k = 1, · · · , H . (3) If
γ = O

(
1√
HL

)
, we have Φ(γ; d,H,L) ≤ O

(
H + d

L

)
.

It increases linearly as d and H increase and decreases
linearly as L increases.

Empirical Verification
In the previous section, we derived a BP norm induced gen-
eralization error bound for ReLU networks. In this section,
we study the relationship between this bound and the empir-
ical generalization gap the absolute difference between test
error and training error with real-data experiments, in com-
parison with the generalization error bounds given by other
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Figure 2: Left: experiments on different global minima for the objective function on the subset with true labels:(a) the training
and test error, (b) different measures w.r.t. the size of random labels. Middle: experiments on different hidden units: (c) the
training and test error, (d) different measures w.r.t. the size of hidden units for each layer. Right: (e) the test error, (f) different
measure w.r.t. the number of layers of the network. The training errors in (e) are 0s, therefore we omit it.

capacity measures, including weight norm (Evgeniou, Pon-
til, and Poggio 2000), path norm (Neyshabur, Tomioka, and
Srebro 2016) and spectral norm (Bartlett, Foster, and Telgar-
sky 2017). We follow the experiment settings in (Neyshabur
et al. 2017), and extend on our BP norm bound. As shown in
the previous section, the BP norm with capacity is propor-
tional to Eqn. (4) We conduct experiments with multi-layer
perceptrons (MLP) with ReLU of different depths, widths,
and global minima on MNIST classification task which is
optimized by stochastic gradient descent. More details of the
training strategies can be found in the appendices. All exper-
iments are averaged over 5 trials if without explicit note.

First, we train several MLP models and force them to con-
verge to different global minima by intentionally replacing
a different number of training data with random labels, and
then calculate the capacity measures on these models. The
training set consists of 10000 randomly selected samples
with true labels and another at most 5000 intentionally mis-
labeled data which are gradually added into the training set.
The evaluation of error rate is conducted on a fixed 10000
validation set. Figure 2 (a) shows that every network is
enough to fit the entire training set regardless of the amount
of mislabeled data, while the test error of the learned net-
works increases with increasing size of the mislabeled data.
As shown in Figure 2 (b), the measure of BP norm is con-
sistent with the behaviors of generalization on the data and
indeed is a good predictor of the generalization error, as well
as weight norms, path norm, and spectral norm.

We further investigate the relationship between general-
ization error and the network size with different widths.
We train a bunch of MLPs with 2 hidden layers and vary-
ing number of hidden units from 16 to 8192 for each layer.
The experiment is conducted on the whole training set with
60000 images. As shown in Figure 2(c), the networks can fit

the whole training set when the number of hidden units is
greater than or equal to 32, while the minimal test error is
achieved with 512 hidden units, then shows a slightly over
fitting on training set beyond 1024 hidden units. Figure 2(d)
shows that the measure of BP norm behaves similarly to the
trend of generalization errors which decreases at the begin-
ning and then slightly increases, and also achieves minimal
value at 512 hidden units. Weight norm and spectral norm
keep increasing along with the network size growing while
the trend of generalization error behaves differently. Path
norm shows the good explanation of the generalization when
the number of hidden units is small, but keeps decreasing
along with increasing the network size in this experiment.
One possible reason is that the proportion of basis paths in
all paths is decreasing, and the vast majority improperly af-
fects the capacity measure when the dependency in the net-
work becomes large. In contrast, BP norm better explains
the generalization behaviors regardless of the network size.

Similar empirical observation is shown when we train the
network with a different number of hidden layers. Each net-
work has 32 hidden units in each layer and can fit the whole
training set in this experiment. As shown in Figure2(e,f), the
minimal test error is achieved with 3 hidden layers, and then
shows an over fitting along with the increasing of the layers.
The weight norm keeps increasing with the growing of net-
work size as discussed above, and the Πihi in spectral norm
will be quite large when layers L is increasing. Path norm
can partially explain the decreasing generalization error be-
fore 4 hidden layers and it indicates that the networks with 4,
5 and 6 hidden layers have small generalization error, which
doesn’t match our observations. The amount of non-basis
paths is exponentially growing when layers L is increasing,
therefore the path norm couldn’t measure the capacity accu-
rately by counting all paths’ values. In contrast, the BP norm



Algorithm 1 Optimize ReLU Network with SGD and Basis-
path Regularization
Require: learning rate ηt, training set S, initial w0.

for t = 0, · · · , T do
1. Draw mini-batch data xt from S.
2. Compute gradient of the loss function g(wt) =

∇f(wt, xt).
3. Compute gradient of the basis-path regularization

h(wt) = ∇R(w) by Eqn. (10) and (11).
4. Update wt+1 = wt − ηt(g(wt) + h(wt)).

end for

can nearly match the generalization error, these observations
verify that BP norm bound is more tight to generalization er-
ror and can be a better predictor of generalization.

Basis-path Regularization for ReLU Networks
In this section, we propose Basis-path regularization, in
which we penalize the loss function by the BP norm. Ac-
cording to the definition of BP norm in Eqn.(2), to make it
small, we need to restrict the values of negative basis paths
to be moderate (neither too large nor too small) and mini-
mize the value of positive basis paths. To this end, in our
proposed method, we penalize the empirical loss by the l2
distance between the values of negative basis paths and 1, as
well as the sum of the values of all positive basis paths.

The constraint φ(p) ≤ γ equals to ‖p+‖2 ≤ γ2 and
‖ log(p−)2‖2 ≤ (2γ)2, which means that the largest ele-
ment in a vector is smaller than γ iff all of the element is
smaller than γ. We choose to optimize their square because
of the smoothness. So using the Lagrangian dual methods,
we add the constraint λ1

2 ‖p
+‖2 and λ2

4 ‖ log(p−)2‖2 in the
loss function and then optimize the regularized empirical
risk function:

L(w, x) = f(w, x) +R(p)

= f(w, x) +
λ1

2
‖p+‖2 +

λ2

4
‖ log(p−)2‖2.

(9)

We use g(w) to denote the gradient of loss with respect tow,
i.e., g(w) = ∂f(w,x)

∂w . For the non-skeleton weight wj , since
it is contained in only one positive basis path pj , we can
calculate the gradient of the regularization term with respect
to wj as

h(wj) =
λ1

2

∂R(p)

∂pj

∂pj(w)

∂wj
= λ1 ·

p2
j

wj
. (10)

For the skeleton weight wi, it is contained in only one nega-
tive basis path pi (if the neural network has equal number of
hidden nodes) and some of the positive basis paths pj . Thus
its gradient can be calculated as follows

h(wi) =
λ2

4

∂R(p)

∂pi

∂pi(w)

∂wi
+
λ1

2

∑
pj :wi

∂R(p)

∂pj

∂pj(w)

∂wi

=
λ2 log pi
wi

+ λ1

∑
pj :wi

p2
j

wi
,

(11)

where pj : wi denotes all positive basis paths containing
wi.

Combining them together, we get the gradient of the reg-
ularized loss function with respected to the weights. For ex-
ample, if we use stochastic gradient descent to be the opti-
mizer, the update rule is as follows:

wt+1 = wt − ηt(g(wt) + h(wt)). (12)

Please note that the computation overhead of h(wi) is high,
moreover, we observed that the values of the negative basis
paths are relatively stable in the optimization, thus we set
h(wi) to be zero for ease of the computation. Specifically,
basis-path regularization can be easily combined with the
optimization algorithm which is in quotient space.

The flow of SGD with basis-path regularization is shown
in Algorithm 1, it’s trivial to extend basis-path regularization
to other stochastic optimization algorithms. Comparing to
weight decay, basis-path regularization has little additional
computation overhead. All the additional computations re-
garding Eqn.(10) only introduce very lightweight element-
wise matrix operations, which is small compared with the
forward and backward process.

Experimental Results
In this section, we evaluate Basis-path Regularization on
deep ReLU neural networks with the aim of verifying
that does our proposed BP regularization outperforms other
baseline regularization methods and whether it can improve
the generalization on the benchmark datasets. For sake of
fairness, we reported the mean of 5 independent runs with
random initialization.

Recommendation System
We first apply our basis-path regularization method to rec-
ommendation task with MLP networks and conduct experi-
mental studies based on a public dataset, MovieLens3. The
characteristics of the MovieLens dataset are summarized in
Table 1. We use the version containing one million ratings,
where each user has at least 20 ratings. We train an NCF
framework with similar MLP network proposed in (He et al.
2017) and followed their training strategies with Adam op-
timizer but without any pre-training. We test the predictive
factors of [8,16,32,64], and set the number of hidden units
to the embedding size×4 in each hidden layer. We calculate
both metrics for each test user and report the average score.
For each method, we perform a wide range grid search of
hyper-parameter λ from 10−α where α ∈ 5, 6, 7, 8, 9 and re-
port the experimental results based on the best performance
on the validation set. The performance of a ranked list is
judged by Hit Ratio (HR) and Normalized Discounted Cu-
mulative Gain (NDCG) (He et al. 2015).

Table 1: Statistics of the MovieLens datasets.
Dataset Interaction# Item# User# Sparsity

MovieLens 1,000,209 3,706 6,040 95.53%

Figure 3 (a) and (b) show the performance of HR@10 and
NDCG@10 w.r.t. the number of predictive factors. From this

3https://grouplens.org/datasets/movielens/1m/
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Figure 3: Performance of HR and NDCG w.r.t. the number of predictive factors and Top-K items recommendation.

figure, it’s clear to see that basis-path regularization achieve
better generalization performance than all baseline methods.
Figure 3 (c) and (d) show the performance of Top-K recom-
mended lists where the ranking position K ranges from 1
to 10. As can be seen, the basis-path regularization demon-
strates consistent improvement over other methods across
positions, which is consistent with our analysis of general-
ization error bound in the previous section.

Image Classification
In this section, we apply our basis-path regularization to
this task and conduct experimental studies based on CIFAR-
10 (Krizhevsky and Hinton 2009), with 10 classes of im-
ages. We employ a popular deep convolutional ReLU model,
ResNet (He et al. 2016) for image classification since it
achieves huge successes in many image related tasks. In ad-
dition, we conduct our studies on a stacked deep CNN de-
scribed in (He et al. 2016) (refer to PlainNet), which suf-
fers serious dependency among the paths. We train 34 layers
ResNet and PlainNet networks on this dataset, and use SGD
with widely used l2 weight decay regularization (WD) as our
baseline. In addition, we implement Q-SGD, which is pro-
posed in (Meng et al. 2018) and optimize the networks on
basis paths. We investigate the combination of SGD/Q-SGD
and basis-path regularization (BPR). Similar with the pre-
vious task, we perform a wide range grid search of λ from
{0.1, 0.2, 0.5}×10−α, where α ∈ {3, 4, 5, 6}. More training
details can be found in supplementary materials.

Table 2: Classification error rate (%) on image classification
task. Baseline is from (He et al. 2016), and the number of † is
7.51 reported in the original paper. Fig. 4 shows the training
procedures.

Algorithm PlainNet34 ResNet34
Train Test ∆ Train Test ∆

SGD 0.06 7.76 7.70 0.01 7.13 7.12
SGD + WD 0.06 6.34 6.27 0.01 5.71† 5.70
SGD + BPR 0.06 5.99 5.92 0.01 5.62 5.61

Q-SGD 0.03 7.00 6.97 0.01 6.66 6.65
Q-SGD + BPR 0.05 5.73 5.68 0.03 5.36 5.33

Figure 4 and Table 2 shows the training and test results
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Figure 4: Training loss and test accuracy of the PlainNet34
and ResNet34 models w.r.t. number of effective passes on
data.

of each algorithms. From the figure and table, we can see
that our basis-path regularization indeed improves test accu-
racy of PlainNet34 and Resnet34 by nearly 1.8% and 1.5%
respectively. Moreover, the training behaviors of SGD with
weight decay and basis-path regularization are quite simi-
lar, but the basis-path regularization can always find better
generalization points during optimization, which is consis-
tent with our theoretical analysis in the previous section.
We further investigate the combination of Q-SGD and basis-
path regularization. Q-SGD with basis-path regularization
achieves the best test accuracy on both PlainNet and ResNet
model, which indicates that taking BP norm as the regular-
ization term to the loss function is helpful for optimization
algorithms.

Conclusion
In this paper, we define Basis-path norm on the group of ba-
sis paths, and prove that the generalization error of ReLU
neural networks can be upper bounded by a function of
BP norm. We then design Basis-path regularization method,
which shows clearly performance gain on generalization
ability. For future work, we plan to test basis-path regular-
ization on larger networks and datasets. Furthermore, we are
also interested in applying basis-path regularization on net-
works with different architecture.
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