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ABSTRACT

Although advances in close-talk speech recognition have resulted in
relatively low error rates, the recognition performance in far-field
environments is still limited due to low signal-to-noise ratio, rever-
beration, and overlapped speech from simultaneous speakers which
is especially more difficult. To solve these problems, beamforming
and speech separation networks were previously proposed. How-
ever, they tend to suffer from leakage of interfering speech or lim-
ited generalizability. In this work, we propose a simple yet effective
method for multi-channel far-field overlapped speech recognition.
In the proposed system, three different features are formed for each
target speaker, namely, spectral, spatial, and angle features. Then a
neural network is trained using all features with a target of the clean
speech of the required speaker. An iterative update procedure is pro-
posed in which the mask-based beamforming and mask estimation
are performed alternatively. The proposed system were evaluated
with real recorded meetings with different levels of overlapping ra-
tios. The results show that the proposed system achieves more than
24% relative word error rate (WER) reduction than fixed beamform-
ing with oracle selection. Moreover, as overlap ratio rises from 20%
to 70+%, only 3.8% WER increase is observed for the proposed sys-
tem.

Index Terms— speech recognition, multi-speaker overlapped
speech, audio separation, speech extraction, multi-channel process-
ing

1. INTRODUCTION

Advances in deep learning have brought remarkable improvements
to automatic speech recognition in the past decade, especially for
close-talking recordings, where the speaker is usually less than 50-
cm away from the microphone. In this scenario, the state-of-the art
system was claimed to reach the human level performance on certain
datasets [1, 2]. However, when the speech is recorded in a far-field
setup where the speaker-microphone distance can be greater than 1
m as can be seen in smart speaker or public surveillance scenarios,
the task is much more challenging. Even the state-of-the-art recog-
nition systems suffer from insufficient performance.

Compared to the close-talk scenario, there are three additional
acoustic challenges in far-field speech recognition. Firstly, the
far-field speech usually has lower signal-to-noise ratio (SNR) than
close-talk speech. Secondly, lower direct sound-to-reverberation
ratio (DRR) is another factor that contributes to the high recognition
error rate. Lastly, multi-talker overlapped speech occurs frequently
in far-field recording environments, e.g. in meetings where multiple
people are talking at the same time. The overlapped speech breaks
the fundamental assumption in the modern ASR system that there
is only one active speaker at a time, thus making the recognition
especially difficult.

To address these three challenges, speech separation methods
based on neural networks [3, 4, 5, 6, 7, 8] and beamforming [9, 10,
11, 12] are usually applied. Beamforming utilizes the spatial infor-
mation collected from multiple microphones to enhance the target
speech, while the neural networks learn the regularities in speech
magnitude spectra to separate speakers. The separated speech is then
passed to the acoustic model for recognition.

Although both approaches are effective to some extent, they suf-
fer from inherent limitations. As a linear filter, the beamforming has
limited spatial discrimination and cancellation power for the inter-
fering audio source, especially when the number of microphones is
small. And for speech separation networks such as deep clustering
(DC) [5] or permutation invariant training network (PIT) [3], be-
cause they usually maintain multiple speakers in their internal mem-
ory and output simultaneously, their performance and generalization
tends to be limited. A more detailed discussion of the neural network
based speech separation is given in Section 2.

In this work, we propose a simple yet powerful approach for far-
field overlapped speech recognition. Different from the blind separa-
tion networks such as DC or PIT where the label permutation ambi-
guity [4] is mainly handled by specially designed objective function,
in the proposed framework a location based angle feature is extracted
for each speaker in the speech mixture, and then processed to esti-
mate the ratio mask for each target speaker by a uni-directional long
short-term memory (LSTM) recurrent neural network (RNN). The
proposed system removes the dependency between the number of
mixing speakers and network complexity, thus leading to potentially
better reconstruction of the target speaker and the generalization in
complex acoustic environments.

The rest of the paper is organized as follows, in Section 2, a brief
overview of the neural network based speech separation is discussed.
The proposed model is described in detail in Section 3. Section 4
describes the experiment setup. The results are discussed in Section
5, followed by concluding remarks in Section 6

2. OVERVIEW OF MULTI-TALKER SPEECH
SEPARATION

The main challenge in overlapped speech separation lies in the label
permutation problem [4]. When there are multiple speakers talk-
ing simultaneously, the separated output have random orders, which
causes ambiguity in pairing with the reference and prevents the data-
driven method from having correct gradients.

To handle this problem two families of algorithm were proposed
in recent years, namely the blind speech separation [5, 10, 3, 4] and
informed speech extraction [13, 14, 15]. The two families handle
the permutation from different perspective, and both achieved high
quality separation performance.

In blind separation, usually the only observation is the mixture
audio. To address the permutation problem, a specially designed



network objective function is usually applied. The most representa-
tive ones are deep clustering (DC) and permutation invariant training
(PIT). In DC [5], the objective function is designed to focus on the
local affinities between time-frequency bins, with no global assign-
ment of the source, thus avoiding the label ambiguity. The PIT sys-
tems [3] diminish the ambiguity by exhaustively searching all possi-
ble configurations of output-to-reference pairing and find the optimal
one for network optimization. Several updates were proposed based
on those models, including the end-to-end optimization [16] and the
multi-channel extension [10, 17].

As no further information is available to distinguish the indi-
vidual speakers, all speakers in the mixture are handled with equal
emphasis in blind separation systems. In other words, the blind
separation system is usually required to estimate the separation for
each source simultaneously. Therefore, the blind separation can be
viewed as an “unbiased” separation. The main limitation of this fam-
ily is that the separation for each source is usually sub-optimal, due
to the equal consideration for all of them simultaneously. And be-
cause of the same reason, their separation performance drops signif-
icantly when more speakers are involved [7].

In contrast, in the informed speech extraction systems, an addi-
tional source of information was assumed available, which helps to
identify each involving speaker and remove the uncertainty in per-
mutation from the input feature perspective. Several clues have been
shown to be helpful. In [13, 14, 18], speaker identity features ex-
tracted from an additional enrollment utterance has been shown use-
ful for separation. In [15, 19], vision clue has been explored. And in
[20, 21], the location based clue has also been shown to be beneficial.

When an additional clue is provided, during the separation, the
network usually has a clear bias toward certain speakers. Therefore
this type of speech extraction can be viewed as “biased separation”.
The limitation for this family is also obvious: when the bias sig-
nal can not provide sufficient bias, the system will fail to separate
speakers. For example in a visual bias system, the separation system
will entirely fail if the face cannot be detected, or occluded by other
speakers.

3. INFORMED SPEECH EXTRACTION

3.1. Speech extraction network

In this work, following the informed speech extraction approach, we
utilize the location information as the bias signal, and propose a sys-
tem to extract the target speaker out of the speech mixture.

We assume that the location of each speaker in the speech mix-
ture is known. This assumption can be achieved through various
possibilities in real world applications, such as surveillance video,
indoor GPS, or from the sound source localization system as pro-
posed in [22, 23].

A schematic diagram of the proposed system is shown in Fig.
1. The proposed model adopts a similar framework as mask learn-
ing systems [24, 25, 26], where a mask is estimated for the target
speaker through a neural network. And depending on the usage, the
mask is used to mask out the interfering sources, or used for mask
based beamforming. In the proposed system, three different types of
features are calculated from the multi-channel recordings, which are
referred to as spectral, spatial, and angle features.

As with the traditional mask estimation network [24, 25, 26], the
spectral feature aims to extract the spectral structure in speech, such
as harmonics and pitch continuity. To increase the discrimination
between speakers, a set of fixed beamformers as in [20, 7] was ap-
plied to pre-process the multi-channel recordings, and the magnitude

Fig. 1. Proposed informed speech extraction network.

spectrogram of the beam that points to the target speaker was used
to compute the spectral feature.

The spatial feature models the correlation between the multi-
channel signal and carries the spatial location information of the
speech sources. Although [27] shows that such information could
potentially be discovered through large scale training, it is more
useful and efficient to directly extract the spatial information, as
suggested in [28]. Following the same recipe as in [28], an inter-
microphone phase difference (IPD) is calculated as the spatial fea-
ture as follows

IPDi,tf = 6 (
yi,tf
y1,tf

), i = 2...M (1)

where y refers to the observed data in the frequency domain, M
denotes the number of microphones being used, i indexes the micro-
phone, and tf indexes time-frequency bins. yi,tf is the i-th chan-
nel complex spectrum of the mixture signal at time frame t and fre-
quency bin f . 6 (·) outputs the angle of the input argument. The IPD
feature captures the relative phase difference between microphones,
which reflects the time difference of arrival (TDOA), i.e., the spa-
tial sound field information. An utterance-level normalization was
applied to IPD in the same way as in [10]. The IPDs between the
first microphone and all the other microphones are concatenated to
be used as the final IPD feature.

As discussed in the Section 2, the bias signal helps to create the
target specific feature for later extraction. In this work, we utilize the
speaker location to form the bias signal, which we refer to as an angle
feature. To get the angle feature, we first form the steering vector
for the direction-of-arrival (DOA) of each speaker. Then, the cosine
distance between the steering vector and the complex spectrum of
each channel that is normalized with respect to the first microphone
is calculated as follows:

An,tf =

M∑
i=1

ei,fn
yi,tf
y1,tf∣∣∣ei,fn
yi,tf
y1,tf

∣∣∣ (2)



where n is the speaker index, ei,fn is the steering vector coefficient
for speaker n’s DOA at microphone i and frequency bin f . Intu-
itively, the angle feature lets the network to attend the sound coming
from the direction of a certain speaker. The idea of the angle feature
is similar to beamforming while it is different from the traditional
beamforming in that non-linear processing is performed with a neu-
ral network.

An additional pre-masking step was applied to increase the dis-
crimination resolution between different angles. Motivated by the
sparsity property of speech spectrogram where most of the time-
frequency bins are dominated by a single speaker or noise, each bin
is turned on (i.e. set to non-zero value) at most once among all the
speakers. Specifically, for the angle feature of a speaker, we only
keep the bins that has the maximum value among all speakers and
set the rest to 0, as suggested in eqn. 3, where I(·) is the indicator
function that outputs 0 if the input is negative and 1 otherwise.

An,tf = An,tf ∗ I(An,tf −Am,tf ),m = 1...N (3)

Finally, a neural network is trained to recover the voice of the target
speaker through masking using a signal reconstruction loss function:
Loss =

∑
tf ‖xtf −mtf ∗ ytf‖2, where x is the clean spectro-

gram of target speaker and m is the estimated mask and y is the in-
put selected beam. To form the clean reference for target speaker, the
same fixed beamforming is firstly applied on the clean version of the
target speech, and then the beam pointing to that speaker is selected
based on the location information to form the reference spectrogram.

During testing, dereverberation is also performed by using the
weighted prediction error (WPE) method [29, 30], before the speech
extraction, to further improve the robustness against reverberation.

3.2. Multi-pass Mask Update

Although enjoying the advantage of low latency and high robustness,
the fixed beamforming used to extract spectral features as shown
in Fig. 1 usually has less interference-cancelling power than adap-
tive beamforming such as minimum variance distortionless response
(MVDR) beamformer when the signal statistics are abundant. To
fully utilize the benefits of beamforming, we propose a second pass
strategy. The speaker masks estimated by the network are used
to build a mask-based MVDR beamformer for each speaker, and
the beamformed signal are used to replace the beam selected based
on speaker’s location in Fig. 1 to generate the second-pass speaker
masks. This process can be repeated until the estimated masks con-
verge.

To build mask-based MVDR, a target mask and interfering mask
are required for each speaker. We use the mask from the first pass
as the target mask. The average of all other speakers’ masks and
the inverse target mask (mn = 1 − mn) is used as the interfering
mask. Following [12], a threshold of 0.6 was applied on both tar-
get and interfering mask to increase the robustness of the estimated
beamforming filters.

With the masks, the spatial covariance matrices for the target
and interference are estimated as

Φn,f =
1∑

t mn,tf

∑
t

mn,tfYtfY
H
tf (4)

Φn,f =
1∑

t mn,tf

∑
t

mn,tfYtfY
H
tf (5)

where Ytf = [y1,tf , ..., yM,tf ]T is the observed mixture Fourier
coefficients at time frequency bin tf , Φn,f and Φn,f refers to the

Fig. 2. The multi-pass update strategy.

spatial covariance for the target and interfering sources and mn,tf ,
mn,tf represents the target and interfering masks, respectively. The
MVDR weights can be obtained as

wn,f =
Φ−1

n,fΦn,fe
tr(Φ−1

n,fΦn,f )
(6)

where e = [1, 0M−1]T and 0M−1 is a row vector with M − 1 zeros.
wn,f is the MVDR weight vector for speaker n at frequency bin f .
The beamformed signal is obtained as un,tf = wH

n,fYtf .
The MVDR step achieves better spatial discrimination for tar-

get speakers compared to the fixed beamformer. To further improve
the performance, the MVDR beamformed signal is feed back to the
network for second pass processing, with spatial and angle feature
unchanged. The full diagram of the multi-pass procedure is shown
in Fig. 2

The multi-pass update further improves the separation perfor-
mance by utilizing the adaptive beamforming. However, such im-
provement comes with the price of additional computational cost
and potentially longer latency, as the adaptive beamformer usually
requires a long observation window to estimate the spatial covari-
ances robustly, while the masking on fixed beamforming approach
can generate instantaneous result. Although in theory the iterative
updates of MVDR and mask can be carried on for many passes for
the best results, as suggested in [31], its computational complexity
also increases proportionally, which would be problematic in real-
time applications. Therefore in this work, we only use two passes,
i.e. the whole process finishes after the mask estimation on MVDR
beamformed audio as shown in Fig. 2.

3.3. Model analysis

Compared with the multi-channel (MC) blind speech separation net-
work such as MC-PIT and MC-DC, the proposed system has two
advantages, making it appropriate for real-world application.



Firstly, the proposed framework removes the dependency be-
tween network computation and the acoustic complexity, which is
the main limitation for the blind separation network. In blind sepa-
ration systems, the network is trained to maintain the separation of
all participating sources, which usually results in sub-optimum re-
construction for each individual source. Moreover, due to the same
reason, the computational complexity grows exponentially with the
number of speakers. For example, when there are more than 3 speak-
ers in the mixture [7], it is extremely difficult for blind separation to
maintain high quality reconstruction for any participant. In contrast,
the proposed system is trained to only recover the target speaker,
treating all other speakers as one interference. This architecture al-
lows the network to focus on a specific speaker and may achieve
better performance. This design also increases the system robust-
ness and generalization when there are more speakers. In the exper-
iments, we observed that although the network was only trained on
two-speaker mixture, it works robustly for even six-speaker mixture,
when the difference between target speaker and interfering speaker
angles is more than 20 degree. This property makes the proposed
model especially suitable for public recording with large number of
simultaneous speakers, such as those in restaurants or malls.

Another advantage of the proposed model lies in its flexibility
in choosing network architecture thanks to the reference signal. As
shown in [3, 16], the Bi-directional LSTM is important to high qual-
ity performance for blind separation networks. This is because in
blind separation (e.g. permutation invariant training for two speaker
separation), the only clue for separation is from the local continuity
within the speech, and each source can be assigned to either out-
put. Therefore, to maintain the global coherence, a long window
of observation with future data is usually required. In contrast, the
proposed network utilize the angle feature as additional reference,
which helps to maintain both the local and global coherence. Thus it
enables more flexibility in architecture choice.

On the other hand, the proposed system also suffers from two
limitations that need to be improved in further works. Firstly, as
the biased signal is calculated entirely from the spatial information,
when the speakers are close, e.g. less than 20 degree, the location
bias will not be sufficient to distinguish target speaker, and the per-
mutation ambiguity will again hinder the separation process. A pos-
sible solution to this could be combination with additional bias signal
e.g. speaker ID or separation network. Additionally, as the proposed
network only extracts one speaker each time, the total computation
is proportional to the number of participants in the mixture, which
is more expensive than the blind separation system, where the net-
work is evaluated only once to obtain the voice of all speakers. This
problem could be alleviated by using pruning mechanism based on
sound source localization, i.e. only run the extraction when a sound
is detected.

3.4. Comparison with other systems

The idea of using location information for multi-channel speech sep-
aration has been explored in the signal processing community. Most
of the methods investigated are based on independent component
analysis or spatial clustering which requires prior knowledge of the
speakers and assumes that all the speakers do not move (e.g., [32]).
[20, 21] also explore the idea of using spatial features to enhance the
neural network mask estimation, by feeding the concatenated beam
of each speaker. The limitation of this strategy is that the number
of speakers has to be pre-defined before the network training, which
makes it difficult to be used for real world applications. The IPD
features were discussed in [10, 17], and served as the spatial feature

for blind speech separation network. And a similar multi-pass strat-
egy was discussed in [12, 31], in a single speaker denoising task. To
the best of our knowledge, the proposed framework is the first sys-
tem for multi-channel overlapped speech recognition with location
based features that achieves high quality separation on real recorded
data.

4. EXPERIMENT

4.1. Network training

The full evaluation pipeline consists of two parts: the speech extrac-
tion part and speech recognition part. In this work, the two parts
were trained separately and work in a sequential manner. The multi-
channel recording was firstly processed by the proposed speech ex-
traction network. After the extraction step, the masked beam was
converted back to the time domain, and then processed by the acous-
tic model for recognition.

A simulated multi-channel overlapped speech dataset was cre-
ated for the training of the extraction network. The training set con-
sists of 300 hours of mixture speech. The clean utterance was ran-
domly sampled from libri-train-360 set in Libri speech dataset [33].
For each mixture sample, two clean utterances from different speak-
ers were sampled and combined with various overlap ratio and with
random signal to interference ratio between -2.5 and 2.5 dB.

The same array geometry as in [7] was employed for both
recording and simulation The image method was applied to generate
the room impulse response, where the room size was picked from
2m to 20m in length and width, 2∼5m in height with random T60
between 0.1 and 0.9s. The locations of the microphone array and
speaker were randomly selected. We ensured the minimum angle
between two speakers was no less than 20 degree. The directional
and isotropic noise were added to each sample. For directional
noise, the noise data was sampled from MUSAN [34] and Chime-3
[35] noise dataset. We randomly added up to 4 directional noise
to each training sample, with random SNR between 5dB to 30dB
and random location for each noise source. For the isotropic noise,
we use the method in [36] to simulate the spatially correlated white
noise, with random SNR between 20 to 40dB. All the data has sam-
pling rate of 16kHz. All feature for speech extraction was calculated
with 32ms window and 10ms frame shift.

The speech extraction network used in our experiments con-
sisted of 4 LSTM layers, each with 1,024 memory cells. A fully
connected layer with sigmoid activation function was added to gen-
erate the mask.

For ASR, we trained an acoustic model on 7,000 hours of tran-
scribed spontaneous speech, which were collected from various
sources, both public (e.g., Switchboard and Fisher) and private (e.g.,
Microsoft Research lecture talks). The model input was 40-channel
Mel filterbank energies compressed with 10th-root nonlinearity. The
model consisted of four 1,024-unit LSTM layers. It was trained with
a cross entropy criterion, followed by sequence training. Decoding
was performed with a dictionary of 240K words and our internal
trigram language model built for conversational tasks.

4.2. Evaluation process

For evaluation, we collected eight recordings from the regular meet-
ing inside Microsoft.

Among all recordings, two meetings are recorded from the con-
versation between real human speakers, in one Microsoft meeting
room that has a T60 around 0.4s. All speaker are required to wear



System & Meeting MT01 MT02 RP01 RP02 RP03 RP04 RP05 RP06
Close talk 21.2 24.4 21.97 22.3 22.65 22.32 21.44 22.1

Raw recording 43.3 48.2 52.3 58.87 64.32 71.08 77.31 83.96
WPE + fixed beamforming 33.7 36.4 37.86 41.24 42.87 48.21 50.03 55.79

Speech extraction 31.5 34.4 35.38 38.26 38.94 42.09 45.51 49.86
Mask MVDR 32.0 34.0 32.58 34.86 36.46 37.06 39.38 42.71

Multi-pass extraction 30.8 33.3 32.00 32.4 32.63 32.82 34.29 35.81

Table 1. Word error rates (%) on real and replayed meetings.

a close talk microphone, and the microphone array was placed on
the table, surrounded by participants. The speakers were free to dis-
cuss any topic, and the direction of the speakers was labeled by a
moderator. Each meeting has around 30 minutes in length.

Another six recordings were collected from the replaying of the
close talk recording from MT02, through loudspeakers. The replay
was taken place in another meeting room with similar room size,
but with around 0.5s T60. For each speaker, the total number of
words spoken in the meeting remain unchanged across meeting with
different overlap ratio.

Different overlap ratio was applied in the replayed data. We fol-
low the definition of overlapping ratio (OVR) in [37], i.e. OV R =
Loverlap

Ltotal
, where Loverlap is the total length of the overlapped speech

and Ltotal total speech length.
To create the overlapped recording, we firstly edit the close talk

recording from MT02, by random shifting the onset of each utter-
ance from each speaker. Note that the utterance sequence for each
speaker was not changed. We also avoid the overlap from the same
speaker, i.e. a short interval was added to two consecutive utterances
of one speaker, if they overlapped in time. Then the edited close talk
speech was replayed through six loudspeakers, and recorded with the
same microphone array. All six replayed recordings used the same
microphone and speaker locations, i.e. the only difference among
them is the overlap ratio.

Note that in the overlap ratio calculation, we didn’t differentiate
overlap type with different number of mixing speaker. Therefore,
the overlap contains various mixing speakers from 2 to 6. For exam-
ple, in RP06, the ratio from 2 speaker mixture to 5 speaker mixture
is 70.3%, 27.0%, 7.5% and 0.4%. The full configuration of each
meeting is given in Table 2.

The main difference between real meeting and replayed meet-
ing lies in the speaker head movement. In real meeting MT01 and
MT02, we can observed a frequent head movement for around 5
to 10 degree. This phenomenon potentially increases the data varia-
tion and processing difficulty. However, since the movement is not
significant, we believe that the replayed data posed similar realistic
challenge.

The word error rate(WER) was used as the evaluation metric.

ID Words OVR(%) Speaker Average angle
MT01 6096 16.3 4 25,190,270,310
MT02 5158 16.0 6 85,151,170,212,235,311
RP01 5158 20.0 6 0,60,90,157,205,270
RP02 5158 30.1 6 0,60,90,157,205,270
RP03 5158 40.0 6 0,60,90,157,205,270
RP04 5158 50.2 6 0,60,90,157,205,270
RP05 5158 60.6 6 0,60,90,157,205,270
RP06 5158 70.3 6 0,60,90,157,205,270

Table 2. The configuration for recorded meetings.

The data was evaluated per utterance and the average WER was re-
ported. We reported the evaluation with six setups. Firstly, we re-
ported the WER on the close talk and raw recording, which is the
upper limit and the original performance on those data. Then a fixed
beamforming with dereveberation was used as the baseline, as it is
the general setup for current commercial speakers. We use the beam-
former from [7]. The beam to each speaker was selected for that
speaker. Finally, the performance of proposed speech extraction and
two of its variation were reported.

For MVDR and multi-pass experiment, within each meeting, we
firstly process the whole meeting for each speaker with the extrac-
tion network and collect the mask. Note that when the angle between
a speaker pair is less than 30 degree, the pre-masking step was not
performed for that close interfering speaker. Then for each speaker,
the utterances were clustered according to their DOA. Within each
group, we ensure that the maximum DOA difference is less than 20
degree. The the spatial covariance matrix for each group was esti-
mated and used for estimating MVDR weights. Therefore, in the
multi-pass setup, the earlier utterance might benefit from the statis-
tics form later ones, i.e. the system is offline. In contrast, since the
speech extraction network used the LSTM network, the first pass can
be viewed as online processing since no future data was used.

5. RESULT AND DISCUSSION

The evaluation result is shown in Table 1. From the result, we can see
that the proposed model and its variation significantly outperformed
by on average 27.6% than the beamforming baseline in all meet-
ing. This advantage becomes stronger as more overlapped speech
involved, from 15.4% to 35.8%. The improvement is more signifi-
cant when comparing with signal channel data, which is on average
51% relatively.

As the same mask was used in both the speech extraction and the
mask based MVDR, the direct comparison between them is avail-
able here. The mask-based MVDR achieved better performance
in replayed data, while similar performance was observed in real
meeting. This is natural as in real meetings, the small head move-
ment influenced the accumulation of statistics for MVDR, while the
masking step doesn’t require the history accumulation, i.e. no the-
oretical latency. It has been shown in previous work that the mask-
ing step could result in distortion[12], and this can be fixed through
the AM-retraining or joint training. Then the speech extraction net-
work could have better performance, making it more suitable for real
world applications.

For replayed meetings, an obvious trend is that the performance
gap increase as overlap ratio rises. In the multi-pass system, only
3.81% absolute increase (12% relative), is observed between RP01
and RP06. This observation suggests that the speech overlapping
problem can be well addressed with the proposed model. Moreover,
as discussed above, we didn’t specify the mixing type. Thus a large
ratio of more than 3 speaker mixture can be observed in high overlap



ratio meetings. Although trained with only two speaker mixture, we
observed that the estimated mask can robustly handle different types
of overlapping, from single speaker segments to six speaker mixture
across meetings.

When comparing the speech extraction in different passes, the
second pass system has shown a clear benefit in terms of perfor-
mance. This confirmed the benefits of adaptive beamforming. Since
the second pass can be considered as an offline process, it has
more flexibility in more advanced models, such as the bi-directional
LSTM, which can potentially further improve the performance.

Finally, although the proposed system largely improved the
recognition rate, a clear gap can still be observed between the results
of close talking and the multi-pass extraction, which suggests the
room for improvement in far-field speech recognition. Since all
steps involved in the processing are differential, an obvious solution
is the joint training, i.e. a network containing components, namely
first pass, MVDR, second pass and AM. This possibility will be
further explored in the future work.

6. CONCLUSION

In this work, we introduced a multi-channel overlapped speech
recognition system. In the system, three different features were
formed, representing respectively the spectral, spatial and location
feature for each participating speaker. The features were then pro-
cessed through an LSTM neural network, outputting the clean mask
for the target speaker. To further enhance the separation and recog-
nition, a multi-pass update strategy that includes an adaptive MVDR
beamforming and neural network re-evaluation step was introduced.
The proposed system was evaluated with various real recorded
meetings with different overlap ratios. The result showed that the
proposed system significantly outperformed the baseline. Only mi-
nor recognition degradation can be observed when the overlap ratio
for each meeting was increased from 20% to 70%.
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[37] Özgür Çetin and Elizabeth Shriberg, “Analysis of overlaps in
meetings by dialog factors, hot spots, speakers, and collection
site: insights for automatic speech recognition,” in Ninth Inter-
national Conference on Spoken Language Processing, 2006.


