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ABSTRACT

Conversational question answering (CQA) is a novel QA task that requires under-
standing of dialogue context. Different from traditional single-turn machine read-
ing comprehension (MRC) tasks, CQA includes passage comprehension, coref-
erence resolution, and contextual understanding. In this paper, we propose an
innovated contextualized attention-based deep neural network, SDNet, to fuse
context into traditional MRC models. Our model leverages both inter-attention
and self-attention to comprehend conversation context and extract relevant infor-
mation from passage. Furthermore, we demonstrated a novel method to integrate
the latest BERT contextual model. Empirical results show the effectiveness of our
model, which sets the new state of the art result in CoQA leaderboard, outperform-
ing the previous best model by 1.6% F1. Our ensemble model further improves
the result by 2.7% F1.

1 INTRODUCTION

Traditional machine reading comprehension (MRC) tasks share the single-turn setting of answering
a single question related to a passage. There is usually no connection between different questions
and answers to the same passage. However, the most natural way humans seek answers is via
conversation, which carries over context through the dialogue flow.

To incorporate conversation into reading comprehension, recently there are several public datasets
that evaluate QA model’s efficacy in conversational setting, such as CoQA (Reddy et al., 2018),
QuAC (Choi et al., 2018) and QBLink (Elgohary et al., 2018). In these datasets, to generate correct
responses, models are required to fully understand the given passage as well as the context of pre-
vious questions and answers. Thus, traditional neural MRC models are not suitable to be directly
applied to this scenario. Existing approaches to conversational QA tasks include BiDAF++ (Yatskar,
2018), FlowQA (Huang et al., 2018), DrQA+PGNet (Reddy et al., 2018), which all try to find the
optimal answer span given the passage and dialogue history.

In this paper, we propose SDNet, a contextual attention-based deep neural network for the task
of conversational question answering. Our network stems from machine reading comprehension
models, but has several unique characteristics to tackle contextual understanding during conversa-
tion. Firstly, we apply both inter-attention and self-attention on passage and question to obtain a
more effective understanding of the passage and dialogue history. Secondly, SDNet leverages the
latest breakthrough in NLP: BERT contextual embedding (Devlin et al., 2018). Different from the
canonical way of appending a thin layer after BERT structure according to (Devlin et al., 2018),
we innovatively employed a weighted sum of BERT layer outputs, with locked BERT parameters.
Thirdly, we prepend previous rounds of questions and answers to the current question to incorporate
contextual information. Empirical results show that each of these components has substantial gains
in prediction accuracy.

We evaluated SDNet on CoQA dataset, which improves the previous state-of-the-art model’s result
by 1.6% (from 75.0% to 76.6%) overall F1 score. The ensemble model further increase the F1 score
to 79.3%. Moreover, SDNet is the first model ever to pass 80% on CoQA’s in-domain dataset.
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2 APPROACH

In this section, we propose the neural model, SDNet, for the conversational question answering
task, which is formulated as follows. Given a passage C, and history question and answer utterances
Q1, A1, Q2, A2, ..., Qk−1, Ak−1, the task is to generate response Ak given the latest question Qk.
The response is dependent on both the passage and history utterances.

To incorporate conversation history into response generation, we employ the idea from
DrQA+PGNet (Reddy et al., 2018) to prepend the latest N rounds of utterances to the current ques-
tionQk . The problem is then converted into a machine reading comprehension task. In other words,
the reformulate question is Qk = {Qk−N ;Ak−N ; ..., Qk−1;Ak−1;Qk}. To differentiate between
question and answering, we add symbol 〈Q〉 before each question and 〈A〉 before each answer in
the experiment.

2.1 ENCODING LAYER

We use 300-dim GloVe (Pennington et al., 2014) embedding and contextualized embedding for each
word in context and question. We employ BERT (Devlin et al., 2018) as contextualized embedding.
Instead of adding a scoring layer to BERT structure as proposed in (Devlin et al., 2018), we use the
transformer output from BERT as contextualized embedding in our encoding layer. BERT generates
L layers of hidden states for all BPE tokens (Sennrich et al., 2015) in a sentence/passage and we
employ a weighted sum of these hidden states to obtain contextualized embedding. Furthermore, we
lock BERT’s internal weights, setting their gradients to zero. In ablation studies, we will show that
this weighted sum and weight-locking mechanism can significantly boost the model’s performance.

In detail, suppose a word w is tokenized to s BPE tokens w = {b1, b2, ..., bs}, and BERT generates
L hidden states for each BPE token, hl

t, 1 ≤ l ≤ L, 1 ≤ t ≤ s. The contextual embedding BERTw

for word w is then a per-layer weighted sum of average BERT embedding, with weights α1, ..., αL.

BERTw =

L∑
l=1

αl

∑s
t=1 h

l
t

s

2.2 INTEGRATION LAYER

Word-level Inter-Attention. We conduct attention from question to context (passage) based on
GloVe word embeddings. Suppose the context word embeddings are {hC

1 , ...,h
C
m} ⊂ Rd, and the

question word embeddings are {hQ
1 , ...,h

Q
n } ⊂ Rd. Then the attended vectors from question to

context are {ĥC
1 , ..., ĥ

C
m}, defined as,

Sij = ReLU(UhCi )DReLU(UhQj ),

αij ∝ exp(Sij),

ĥC
i =

∑
j

αijh
Q
j ,

where D ∈ Rk×k is a diagonal matrix and U ∈ Rd×k, k is the attention hidden size.

To simplify notation, we define the attention function above as Attn(A,B,C), meaning we
compute the attention score αij based on two sets of vectors A and B, and use that to
linearly combine vector set C. So the word-level attention above can be simplified as
Attn({hC

i }mi=1, {h
Q
i }ni=1}, {h

Q
i }ni=1}).

For each context word in C, we also include a feature vector fw including 12-dim POS embedding,
8-dim NER embedding, a 3-dim exact matching vector emi indicating whether each context word
appears in the question, and a normalized term frequency, following the approach in DrQA (Chen
et al., 2017).

Therefore, the input vector for each context word is w̃C
i = [GloVe(wC

i );BERTwC
i
; ĥC

i ; fwC
i
]; the

input vector for each question word is w̃Q
i = [GloVe(wQ

i );BERTwQ
i
].
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RNN. In this component, we use two separate bidirectional RNNs (BiLSTMs (Hochreiter &
Schmidhuber, 1997)) to form the contextualized understanding for C and Q.

hC,k
1 , ...,hC,k

m = BiLSTM (hC,k−1
1 , ...,hC,k−1

m ),

hQ,k
1 , ...,hQ,k

n = BiLSTM (hQ,k−1
1 , ...,hQ,k−1

n ),

hC,0
i = w̃C

i ,h
Q,0
i = w̃Q

i ,

where 1 ≤ k ≤ K and K is the number of RNN layers. We use variational dropout (Kingma et al.,
2015) for input vector to each layer of RNN, i.e. the dropout mask is shared over different timesteps.

Question Understanding. For each question word in Q, we employ one more layer of RNN to
generate a higher level of understanding of the question.

hQ,K+1
1 , ...,hQ,K+1

n = BiLSTM (hQ
1 , ...,h

Q
n ),

hQ
i = [hQ,1

i ; ...;hQ,K
i ]

Self-Attention on Question. As the question has integrated previous utterances, the model needs
to directly relate previously mentioned concept with the current question. This is helpful for
concept carry-over and coreference resolution. We thus employ self-attention on question. The
formula is the same as word-level attention, except that we are attending a question to itself:
{uQ

i }ni=1 = Attn({hQ,K+1
i }ni=1, {h

Q,K+1
i }ni=1, {h

Q,K+1
i }ni=1). The final question representa-

tion is thus {uQ
i }ni=1.

Multilevel Inter-Attention. After multiple layers of RNN extract different levels of understand-
ing of each word, we conduct multilevel attention from question to context based on all layers of
generated representations.

However, the aggregated dimensions can be very large, which is computationally inefficient. We
thus leverage the history-of-word idea from FusionNet (Huang et al., 2017): we use all previous
levels to compute attentions scores, but only linearly combine RNN outputs.

In detail, we conduct K + 1 times of multilevel attention from each RNN layer output of question
to context.

{m(k),C
i }mi=1 = Attn({HoWC

i }mi=1, {HoWQ
i }

n
i=1, {h

Q,k
i }ni=1), 1 ≤ k ≤ K + 1

where history-of-word vectors are defined as

HoWC
i = [GloVe(wC

i );BERTwC
i
;hC,1

i ; ...,hC,k
i ],

HoWQ
i = [GloVe(wQ

i );BERTwQ
i
;hQ,1

i ; ...,hQ,k
i ].

An additional RNN layer is applied to obtain the contextualized representation vC
i for each word in

C.
yC
i = [hC,1

i ; ...;hC,k
i ;m

(1),C
i ; ...;m

(K+1),C
i ],

vC
1 , ...,v

C
m = BiLSTM (yC

1 , ...,y
C
n ),

Self Attention on Context. Similar to questions, we conduct self attention on context to establish
direct correlations between all pairs of words in C. Again, we use the history of word concept to
reduce the output dimension by linearly combining vC

i .

sCi =[GloVe(wC
i );BERTwC

i
;hC,1

i ; ...;hC,k
i ;m

(1),Q
i ; ...;m

(K+1),Q
i ;vC

i ]

{ṽC
i }mi=1 = Attn({sCi }mi=1, {sCi }mi=1, {vC

i }mi=1)

The self-attention is followed by an additional layer of RNN to generate the final representation of
context:

{uC
i }mi=1 = BiLSTM ([vC

1 ; ṽ
C
1 ], ..., [v

C
m; ṽC

m])
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2.3 OUTPUT LAYER

Generating Answer Span. This component is to generate two scores for each context word corre-
sponding to the probability that the answer starts and ends at this word, respectively.

Firstly, we condense the question representation into one vector: uQ =
∑

i βiu
Q
i , where βi ∝

exp (wTuQ
i ) and w is a parametrized vector.

Secondly, we compute the probability that the answer span should start at the i-th word:

PS
i ∝ exp ((uQ)TWSu

C
i ),

where WS is a parametrized matrix. We further fuse the start-position probability into the computa-
tion of end-position probability via a GRU, tQ = GRU(uQ,

∑
i P

S
i uC

i ). Thus, the probability that
the answer span should end at the i-th word is:

PE
i ∝ exp ((tQ)TWEu

C
i ),

where WE is another parametrized matrix.

For CoQA dataset, the answer could be affirmation “yes”, negation “no” or no answer “unknown”.
We separately generate three probabilities corresponding to these three scenarios, PY , PN , PU , re-
spectively. For instance, to generate the probability that the answer is “yes”, PY , we use:

PY
i ∝ exp ((uQ)TWY u

C
i ),

PY = (
∑
i

PY
i uC

i )
TwY ,

where WY and wY are parametrized matrix and vector, respectively.

Training. For training, we use all questions/answers for one passage as a batch. The goal is to
maximize the probability of the ground-truth answer, including span start/end position, affirmation,
negation and no-answer situations. Equivalently, we minimize the negative log-likelihood function
L:

L =
∑
k

ISk (log(PS
isk
) + log(PE

iek
)) + IYk logPY

k + INk logPN
k + IUk logPU

k ,

where isk and iek are the ground-truth span start and end position for the k-th question. ISk , I
Y
k , I

N
k , I

U
k

indicate whether the k-th ground-truth answer is a passage span, “yes”, “no” and “unknown”, re-
spectively. More implementation details are in Appendix.

Prediction. During inference, we pick the largest span/yes/no/unknown probability. The span is
constrained to have a maximum length of 15.

3 EXPERIMENTS

We evaluated our model on CoQA (Reddy et al., 2018), a large-scale conversational question an-
swering dataset. In CoQA, many questions require understanding of both the passage and previous
questions and answers, which poses challenge to conventional machine reading models. Table 1
summarizes the domain distribution in CoQA. As shown, CoQA contains passages from multiple
domains, and the average number of question answering turns is more than 15 per passage. Many
questions require contextual understanding to generate the correct answer.

For each in-domain dataset, 100 passages are in the development set, and 100 passages are in the
test set. The rest in-domain dataset are in the training set. The test set also includes all of the
out-of-domain passages.

Baseline models and metrics. We compare SDNet with the following baseline models: PGNet
(Seq2Seq with copy mechanism) (See et al., 2017), DrQA (Chen et al., 2017), DrQA+PGNet (Reddy
et al., 2018), BiDAF++ (Yatskar, 2018) and FlowQA (Huang et al., 2018). Aligned with the official
leaderboard, we use F1 as the evaluation metric, which is the harmonic mean of precision and recall
at word level between the predicted answer and ground truth.1

1According to official evaluation of CoQA, when there are more than one ground-truth answers, the final
score is the average of max F1 against all-but-one ground-truth answers.
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Table 1: Domain distribution in CoQA dataset.

Domain #Passage #QA turn

Child Story 750 14.0
Literature 1,815 15.6
Mid/High Sc. 1,911 15.0
News 1,902 15.1
Wikipedia 1,821 15.4

Out of domain

Science 100 15.3
Reddit 100 16.6

Total 8,399 15.2

Table 2: Model and human performance (% in F1 score) on the CoQA test set.

Child. Liter. Mid-High. News Wiki Reddit Science Overall

PGNet 49.0 43.3 47.5 47.5 45.1 38.6 38.1 44.1
DrQA 46.7 53.9 54.1 57.8 59.4 45.0 51.0 52.6
DrQA+PGNet 64.2 63.7 67.1 68.3 71.4 57.8 63.1 65.1
BiDAF++ 66.5 65.7 70.2 71.6 72.6 60.8 67.1 67.8
FlowQA 73.7 71.6 76.8 79.0 80.2 67.8 76.1 75.0
SDNet (single) 75.4 73.9 77.1 80.3 83.1 69.8 76.8 76.6
SDNet (ensemble) 78.7 77.1 80.2 81.9 85.2 72.3 79.7 79.3
Human 90.2 88.4 89.8 88.6 89.9 86.7 88.1 88.8

Results. Table 2 report the performance of SDNet and baseline models.2 As shown, SDNet achieves
significantly better results than baseline models. In detail, the single SDNet model improves overall
F1 by 1.6%, compared with previous state-of-art model on CoQA, FlowQA. Ensemble SDNet model
further improves overall F1 score by 2.7%, and it’s the first model to achieve over 80% F1 score on
in-domain datasets (80.7%).

Figure 1 shows the F1 score on development set over epochs. As seen, SDNet overpasses all but one
baseline models after the second epoch, and achieves state-of-the-art results only after 8 epochs.

Ablation Studies. We conduct ablation studies on SDNet model and display the results in Table 3.
The results show that removing BERT can reduce the F1 score on development set by 7.15%. Our
proposed weight sum of per-layer output from BERT is crucial, which can boost the performance by
1.75%, compared with using only last layer’s output. This shows that the output from each layer in
BERT is useful in downstream tasks. This technique can also be applied to other NLP tasks. Using
BERT-base instead of BERT-large pretrained model hurts the F1 score by 2.61%, which manifests
the superiority of BERT-large model. Variational dropout and self attention can each improve the
performance by 0.24% and 0.75%, respectively.

Contextual history. In SDNet, we utilize conversation history via prepending the current question
with previous N rounds of questions and ground-truth answers. We experimented the effect of N
and show the result in Table 4. Excluding dialogue history (N = 0) can reduce the F1 score by as
much as 8.56%, showing the importance of contextual information in conversational QA task. The
performance of our model peaks when N = 2, which was used in the final SDNet model.

4 CONCLUSIONS

In this paper, we propose a novel contextual attention-based deep neural network, SDNet, to tackle
conversational question answering task. By leveraging inter-attention and self-attention on passage
and conversation history, the model is able to comprehend dialogue flow and fuse it with the diges-

2Result was taken from official CoQA leaderboard on Nov. 30, 2018.
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Figure 1: F1 score on CoQA dev set over training epochs. For BERT base model, as there is no
associated paper, we use the number on test set from the leaderboard.

Table 3: Ablation study of SDNet on CoQA development dataset.

Model F1

SDNet 77.99
–Variational dropout 77.75
–Question self attention 77.24
Using last layer of BERT output
(no weighted sum) 76.24
BERT-base 75.38
–BERT 70.84

tion of passage content. Furthermore, we incorporate the latest breakthrough in NLP, BERT, and
leverage it in an innovative way. SDNet achieves superior results over previous approaches. On
the public dataset CoQA, SDNet outperforms previous state-of-the-art model by 1.6% in overall F1

metric.

Our future work is to apply this model to open-domain multiturn QA problem with large corpus or
knowledge base, where the target passage may not be directly available. This will be an even more
realistic setting to human question answering.
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A IMPLEMENTATION DETAILS

We use spaCy for tokenization. As BERT use BPE as the tokenizer, we did BPE tokenization for
each token generated by spaCy. In case a token in spaCy corresponds to multiple BPE sub-tokens,
we average the BERT embeddings of these BPE sub-tokens as the embedding for the token. We fix
the BERT weights and use the BERT-Large-Uncased model.

During training, we use a dropout rate of 0.4 for BERT layer outputs and 0.3 for other layers. We use
variational dropout (Kingma et al., 2015), which shares the dropout mask over timesteps in RNN.
We batch the data according to passages, so all questions and answers from the same passage make
one batch.

We use Adamax (Kingma & Ba, 2014) as the optimizer, with a learning rate of α = 0.002, β =
(0.9, 0.999) and ε = 10−8. We train the model using 30 epochs, with each epoch going over the
data once. We clip the gradient at length 10.
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The word-level attention has a hidden size of 300. The flow module has a hidden size of 300. The
question self attention has a hidden size of 300. The RNN for both question and context has K = 2
layers and each layer has a hidden size of 125. The multilevel attention from question to context has
a hidden size of 250. The context self attention has a hidden size of 250. The final layer of RNN for
context has a hidden size of 125.
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