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Abstract

To solve a text-based game, an agent needs to formulate valid text commands for
a given context and find the ones that lead to success. Recent attempts at solving
text-based games with deep reinforcement learning have focused on the latter, i.e.,
learning to act optimally when valid actions are known in advance. In this work,
we propose to tackle the first task and train a model that generates the set of all
valid commands for a given context. We try three generative models on a dataset
generated with Textworld (Côté et al., 2018). The best model can generate valid
commands which were unseen at training and achieve high F1 score on the test set.

1 Introduction

Text-based games offer a unique framework to train decision-making models insofar as these models
have to understand complex text instructions and interact via natural language. At each time step of a
text-based game, the current environment of the player (or the ‘context’) is described in words. To
move the game forward, a text command (or an ‘action’) must be issued. Based on the new action
and the current game state, the game transitions to a new state and the new context resulting from the
action is described to the player. This iterative process can be naturally divided into two tasks. The
first task is to recognize the commands that are possible in a given context (e.g., open the door if the
context contains an unlocked door), and the second task is the reinforcement learning task of learning
to act optimally in order to solve the game (Narasimhan et al., 2015; Zelinka, 2018; He et al., 2015;
Haroush et al., 2018). Most work on reinforcement learning has focused on training an agent that
picks the best command from a given set of valid commands, i.e., pick the command that would lead
to completing the game.

Humans who play a text-based game typically do not have access to a list of commands and a large
part of playing the game consists of learning how to formulate valid commands. In this paper, we
propose models that try to accomplish this task. We frame it as a supervised learning problem and
train a model by giving it (input, label) pairs where the input is the current context as well as the
objects that the player possesses, and the output is the list of admissible commands given this input.
Similarly to Côté et al. (2018), we define an admissible command as a command that changes the
game’s state. We generate these (input, label) pairs with TextWorld (Côté et al., 2018), a sandbox
environment for generating text-based games of varying difficulty.

In this work, we explore and present three neural encoder-decoder approaches:

• a pointer-softmax model that uses beam search to generate multiple commands;
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Figure 1: An instance of a TextWorld game. The context is the concatenation of the room’s and
inventory’s description, and the admissible commands are the actions that would affect the state.

Dataset Train Valid Test Target

ACG 33,716 4,243 4,276 9.37 ± 26.3
ACGE 214,741 26,904 27,423 2.47 ± 0.7

Dataset Commands Unique Unseen

Train 315,974 14,328 -
Valid 39,302 4,006 846
Test 40,464 4,243 921

Table 1: Statistics of the datasets. Left) Number of data points in each train/valid/test split, and the
average number of admissible commands (i.e., target) per data point. Right) Number of commands in
each train/valid/test split, how many of those are unique, and how many are not seen in the train set.

• a hierarchical recurrent model with pointer-softmax generating multiple commands at once;
• a pointer-softmax model generating multiple commands at once.

The first model has the disadvantage of imposing a fixed number of actions for any given context.
The two others alleviate this constraint but suffer from conditioning on the previous action generated.
We compare empirical and qualitative results from those models, and pinpoint their weaknesses.

2 Related Work

Sequence to sequence generation Sentence generation has been studied extensively with the
inception of sequence to sequence models (Sutskever et al., 2014), and attentive decoding (Bahdanau
et al., 2014). Pointer-based sequence to sequence networks (Vinyals et al., 2015; Gulcehre et al.,
2016; Wang et al., 2017) help dealing with out-of-vocabulary words by introducing a mechanism
for choosing between outputting a word from the vocabulary or referencing an input word during
decoding. Vinyals et al. (2015) studied the problem of matching input sequences to output sets, i.e.,
where there is no natural order between the elements. This task is challenging because there is no
natural order between the sentences but there is an order between the tokens within each sentence.
One of the models we try for this task is the hierarchical encoder-decoder (Sordoni et al., 2015)
originally proposed to model the dialogue between two speakers. Another model is inspired by Yuan
et al. (2018b) who generates concatenated target sentences with orthogonally regularized separators.

Reinforcement learning for text-based games Many recent attempts at solving text-based games
have assumed that the agent has a predefined set of commands to choose from. For instance, the
Action-Eliminating Network (Haroush et al., 2018) assumes that the agent has access to all possible
permutations of commands in the entire game, and prunes that list in each state to allow the agent to
better select correct commands. One attempt at command generation for a text-based game is the
LSTM-DQN (Narasimhan et al., 2015). This approach generates commands by leveraging off-policy
deep Q-value approximations (Mnih et al., 2013), and learns two separate Q-functions for verbs and
nouns. This limits the structure of generated commands to verb-action pairs, and does not allow for
more robust multi-entity commands. Yuan et al. (2018a) extends the LSTM-DQN approach with an
exploration bonus to try and generalize, and beat games consisting of collecting coins in a maze.

Separating planning from generation in dialogue systems The task of choosing the best next
utterance to generate for a given context has been extensively studied in the literature on dialogue
systems (Rieser and Lemon, 2016; Pietquin et al., 2011; Fatemi et al., 2016). Historically, dialogue
systems have considered separately the tasks of understanding the context, producing the available
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next utterances and of generating the next utterance (Lemon and Pietquin, 2007). Recent attempts at
learning to perform all these tasks through one end-to-end model have produced encouraging results
(Li et al., 2017; Bordes and Weston, 2016) but so far, the best-performing models still separate these
two tasks (Wen et al., 2016; Asadi and Williams, 2016). Inspired by these results, we decide to frame
the task of solving a text-based game into an action generation and an action selection modules and
we propose models for action generation in the following section.

3 Methodology

3.1 Dataset and environment

In this section, we introduce a dataset called TextWorld Action Command Generation (TextWorld
ACG). It is a collection of game walkthroughs gathered from random games generated with TextWorld.
Statistics of TextWorld ACG are shown in Table 1. Each data point in TextWorld ACG consists of:

1. Context: concatenation of the room’s and inventory’s description for a game state;
2. Entities: a list of interactable object names or exits appearing within the context;
3. Commands: a list of strings that contains all the admissible commands recognized by

TextWorld.

We define two tasks using TextWorld ACG to learn the action space of these TextWorld games.
First, without conditioning on entities, the model needs to generate all the admissible commands.
Second, conditioning on one entity, the model is required to generate all valid commands that are
related to that entity. In the following sections, we denote the task without conditioning on entity
with ACG, and the task conditioning on entities with ACGE. The data used for the ACGE task is created
by splitting each data point in TextWorld ACG by its entities, so that each data point in ACGE has a
single entity. There exist commands with multiple entities (i.e., put apple on table) - in these cases
we group this action with one of the entities, and expect the models to produce the other entity. We
also ignore the two commands (look and inventory) that don’t affect the game state. This is because
the context already consists of the exact descriptions returned by look and inventory. Adding the
two commands would only serve to inflate metrics.

3.2 Command generation

In the following sections, we denote tokenized input words from the context sequence as w, x to
denote embedded tokens, a subscript (e or d etc.) to denote where the representations are from
(encoder, decoder etc.), h to represent hidden states, s to represent session states and y to denote
output tokens. We use superscripts to represent time steps. An absence of a superscript represents
multiple time-steps. We represent concatenation with angled brackets 〈 〉. We also represent linear
transformations with L, as well as linear transformations followed by an non-linear activation function
f as Lf . A subscript on these transformations (ie. L1, L2) represent transformations with different
parameters.

3.2.1 Context encoding

Given a sequence of length N in the context, we have the input sequence w = (w1
e , . . . , w

N
e ) which

we embed using GloVe (Pennington et al., 2014) vectors to produce xe = (x1e, . . . , x
N
e ). We feed xe

into a bidirectional RNN (Cho et al., 2014; Schuster and Paliwal, 1997) to retrieve forwards (he,f )
and backwards (he,b) encodings of the source sequence:

hte,f = GRUe,f (x
t
e, h

t−1
e,f ),

hte,b = GRUe,b(x
t
e, h

t+1
e,b ).

(1)

We concatenate the two to get the resulting encoded sequence hte = 〈hte,f , hte,b〉. Then, we take
a step depending on whether we condition on entity or not. Given a sequence of m word tokens
(w1

ent, . . . , w
m
ent) from the entity (which is also a sequence of word tokens), we find the indices

0 < i < j < N where the entity words appear in context, i.e., (w1
ent, . . . , w

m
ent) = (wi

e, . . . , w
j
e).

Now we take context encodings (hie, . . . , h
j
e) and use them as input to a GRU, where i 6 t 6 j:

ht
ent = GRUent(h

t
e, h

t−1
ent ). (2)

We use the final hidden state of this entity RNN as an entity encoding, which we will label as hent.
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Figure 2: Hierarchical decoding of multiple commands given a single context. The orange outline
represents the portions of the model also used for PS + BS and PS + Cat architectures.

3.2.2 Attentive decoding and Pointer Softmax

The decoder is also a recurrent model that takes in the context encodings he and the generated entity
encoding hent, at every timestep t it produces a probability distribution of generating the next token
p(yt). This next token can come from one of two sources - either a word in the context or a word in
our shortlist vocabulary. Our shortlist vocabulary in this case is just our entire vocabulary (consisting
of all possible 887 unique words in the dataset). The first part of the decoder model is an RNN that
takes in the embedding of the previous output xtd = embed(yt−1) and previous decoder hidden state
ht−1
d to produce the first hidden state:

ht
d1 = GRUd1(x

t
d, h

t−1
d ) (3)

Next, we concatenate this output hidden state with the entity representation to produce ut =
〈htd1, hent〉. We use this as the query to an attention mechanism (Bahdanau et al., 2014) which
generates annotations from this query and a value (in this case context encodings he). We generate
these annotations with a two layer Feed Foward Network (FFN), and define a distribution over the
context encodings. The context vector ct is then computed by taking the weighted sum of the context
encodings he:

αt = softmax(L1(L
tanh
2 (〈ut, he〉)))

ct =
∑
i

αt,ihie
(4)

We now use the annotations as the distribution over the context sequence, pc(yt) = αt. We take the
context vector and use this and the first RNN hidden state htd1 as input to a second RNN:

ht
d2 = GRUd2(c

t, ht
d1) (5)

We use this hidden state as the previous hidden state for the next time step (htd = htd2). We also apply
dropout on the output of this RNN for regularization purposes. We now use the concatenation of
〈htd2, ct, xtd〉 as input to both the shortlist FFN and switch FFN to generate the shortlist distribution
ps(y

t) and switch distributions st respectively:

ps(y
t) = softmax(L3(L

tanh
4 (〈htd2, ct, xtd〉)))

st = sigmoid(L5(L
tanh
6 (〈htd2, ct, xtd〉)))

(6)

We generate output tokens from a combined distribution over the context words (pc), shortlist words
and a switch that interpolate the probability of each distribution as per the Pointer Softmax (Gulcehre
et al., 2016) decoder framework

p(yt) = st · ps(yt) + (1− st) · pc(yt). (7)

3.2.3 Hierarchical session encoding

We adopt the framework of the hierarchical recurrent encoder-decoder (Sordoni et al., 2015) as one
solution to alleviate the problem of multiple phrase generation per context (Figure 2). We place the
session-level RNNs in between the encoder and decoder in order to condition on and summarize the
previously decoded phrases. The session-level RNN takes as input a sequence of query representations
q1, . . . , qM . We let q1 = hNe , and all subsequent qi’s will be the final decoder hidden state as per
Figure 2. The session-level state becomes sessionm = GRUses(session

m−1, qm), which we use
as initial hidden states of the decoder, h0d = sessionm.
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Dataset Model Precision Recall F1 score Unseen recall Seen recall

ACG
PS + BS(11, 30) 26.6 53.3 35.5 12.0 54.8
HRED + PS 94.1 84.7 89.2 48.4 86.0
PS + Cat 98.4 94.7 96.5 83.0 95.1

ACGE
PS + BS(3, 10) 20.1 93.0 33.0 80.9 93.5
HRED + PS 96.8 91.7 94.2 59.7 92.8
PS + Cat 98.9 96.3 97.6 76.7 96.9

Table 2: Models performance on the ACG and ACGE tasks. Where k in PS + BS(k, W ) was determined
by the highest F1 score on the respective validation sets. The recall for commands seen (resp. unseen)
during training is also reported.

3.2.4 Learning with command generation

We employ a cross-entropy loss for all the learning objectives. The first model architecture uses the
context encoder connected with a pointer-softmax decoder on single target commands (we label this
as PS + BS(k, W ). During inference, we use the top k out of W beams to produce k commands.
With Si as the phrase produced at time step i, we try to maximize the following log-likelihood:

L(Si) =

T∑
t=1

log p(yi,t | yi,1:t−1), for i = 1, . . . , |S| (8)

The second model applies hierarchical decoding, where we encode our context sequence as above
and have a session state run through all the pointer-softmax decoder steps (we label this as HRED +
PS). We use the same objective function as Sordoni et al. (2015) over the parameters for all the RNNs
in the model. We let S be all generated phrases given a context, Qm represents the phrase generated
at session time-step m, so objective is to maximize the following log-likelihood:

L(S) =
M∑

m=1

T∑
t=1

log p(yt | y1:t−1, Q1:m−1) (9)

The final model uses the same architecture as Yuan et al. (2018b), we train on the concatenated target
commands delineated by separator tokens (we label this as PS + Cat). In this case, the objective is:

L(S) =
|S|∑
t=1

log p(yt | y1:t−1) (10)

4 Results and Discussion

The empirical results (Table 2) and qualitative results (Appendix A.1) show the ability for our best
model to generate valid unseen commands and achieve F1 scores of 96.5 and 97.6 on ACG and ACGE
respectively. The hierarchical and concatenation models outperform the Pointer-Softmax with Beam
Search by a wide margin - largely due to the over-generation of PS + BS and the mismatch in number
of targets between k and actual number of target target commands (as seen in Appendix B.1). We
hypothesize the PS + Cat outperforms the HRED model due to the gating mechanism between each
session state. Conditioning on different queries gives HRED the ability to prevent gradients to flow
through to the next session. We can see the detriment of this gating by comparing their F1 scores.
We hypothesize that as we only have a single query from our encoded context (and hence no "noisy"
queries (Sordoni et al., 2015)) the gating mechanism hinders the model by "filtering" certain queries.
We also observe a noticeable gap between the performances in the ACG and ACGE as expected. In the
ACGE case, the models are more constrained by conditioning information. This means the scope of its
generation narrows - our models generate smaller sequences on average (as shown in Table 1), which
decreases the likelihood of generating missing or extra commands as shown in Appendix A.3.

Experiments for models initialized without pre-trained GloVe embeddings were also conducted on
both ACG and ACGE datasets, but resulted in an almost negligible (6 0.2%) decline in F1-score of the
model. We postulate this is due to the mismatch in objectives between how GloVe is trained and the
required entity relations in our environment.

Interestingly, the generative models are able to generate a large portion of the valid commands that
are unseen during training. Added diversity from beam search seems to help in producing unseen
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examples, but only in the case where the number of targets for a training instance is close to the
number of targets we generate during inference as seen in Table 2. A large beam width is able to
generate more unseen actions because of how beam search over generates actions.

In this work, we explored three different approaches at generating sets of text commands that are
context dependent. We tested them on TextWorld ACG and ACGE, two new datasets built using
TextWorld. Seeing those encouraging results, our next step would be to combine the command
generation with a control policy in order to play (and solve) text-based games. While the performance
of the command generation is good (on TextWorld games), using it as a fixed generator would set
an upper bound on the performance of the control policy (i.e., commands, mandatory for the game
progression, might never be generated in the first place). Instead, our next goal is to develop a control
policy that can use the generator and fine tune it to produce more relevant commands.
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A Full Results

A.1 Qualitative results from generation

Context -= attic = - you ’ve entered an attic . you see a closed type p box . oh wow ! is that what i
think it is ? it is ! it ’s a workbench . you see a type p keycard and a bug on the workbench .
hmmm ... what else , what else ? there is an unblocked exit to the east . you do n’t like
doors ? why not try going south , that entranceway is unblocked . you are carrying nothing .

PS + BS go bug; go east; go south; go type; open bug; open east; open type; open type p;
open type p box; open type p keycard’; take bug; take bug p keycard from; take east;
take south; take type; take type p; take type p box; take type p keycard;
take type p keycard from

HRED + PS go east; go south; open type p box; take type p keycard from workbench;

PS + Cat go east; go south; open type p box; take bug from workbench;
take type p keycard from workbench;

Ground Truth go east; go south; open type p box; take bug from workbench;
take type p keycard from workbench

Table 3: Example from ACG test set, predictions generated by 3 models. All mismatched commands
are shown in bold. All italicized commands are commands that are unseen during training.

A.2 Full empirical results

Dev Test Dev Test Dev Test

Model Precision Recall F1 score

PS + BS 26.5 26.6 54.1 53.3 35.6 35.5
HRED + PS 94.6 94.1 85.6 84.7 89.9 89.2

PS + Cat - 98.4 - 94.7 - 96.5

Dev Test Dev Test Dev Test

Model Precision Recall F1 score

PS + BS 19.9 20.1 93.0 93.0 32.7 33.0
HRED + PS 96.8 96.8 91.9 91.7 94.3 94.2

PS + Cat - 98.9 - 96.3 - 97.6

Table 4: Left: Model performance on the ACG task, with PS + BS we use the top 11 beam search
generated phrases. This number was determined by highest validation F1 score. Right: Model
performance on the ACGE task. Again, PS + BS uses the top 2 commands generated by beam search,
also determined by the highest validation F1 score.
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A.3 Graphical representation of results

Figure 3: Ratio of missing commands by number of words in predictions to total commands by
number of words in both ACG and ACGE.

Figure 4: The count of extra commands generated by number of words in the command for both ACG
and ACGE.
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B Dataset statistics

B.1 Additional statistics about the datasets

Figure 5: First column shows the number of admissible commands per extracted game state (i.e., rep-
resents the target in TextWorld ACG). Second column shows the number of entities (i.e., interactable
objects or exits) per game state. Third column shows the number of words per context

Figure 6: First column shows the frequencies of the verbs (i.e., first word of a command) in the
dataset. Second column shows the length of the commands in the dataset. Third column shows the
length of the unique commands.
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