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Abstract

An Euler discretization of the Langevin diffusion is known to converge to the
global minimizers of certain convex and non-convex optimization problems. We
show that this property holds for any suitably smooth diffusion and that different
diffusions are suitable for optimizing different classes of convex and non-convex
functions. This allows us to design diffusions suitable for globally optimizing con-
vex and non-convex functions not covered by the existing Langevin theory. Our
non-asymptotic analysis delivers computable optimization and integration error
bounds based on easily accessed properties of the objective and chosen diffusion.
Central to our approach are new explicit Stein factor bounds on the solutions of
Poisson equations. We complement these results with improved optimization guar-
antees for targets other than the standard Gibbs measure.

1 Introduction

Consider the unconstrained and possibly non-convex optimization problem
minimize f(z).
nimize f(x)

Recent studies have shown that the Langevin algorithm — in which an appropriately scaled isotropic
Gaussian vector is added to a gradient descent update — globally optimizes f whenever the objective
is dissipative ((V f(z),x) > af|z||3 — B for @ > 0) with a Lipschitz gradient [14, 26, 30]. Re-
markably, these globally optimized objectives need not be convex and can even be multimodal. The
intuition behind the success of the Langevin algorithm is that the stochastic optimization method
approximately tracks the continuous-time Langevin diffusion which admits the Gibbs measure — a
distribution defined by p, () oc exp(—7.f(x)) — as its invariant distribution. Here, v > 0 is an in-
verse temperature parameter, and when -y is large, the Gibbs measure concentrates around its modes.
As a result, for large values of v, a rapidly mixing Langevin algorithm will be close to a global
minimum of f. In this case, rapid mixing is ensured by the Lipschitz gradient and dissipativity. Due
to its simplicity, efficiency, and well-understood theoretical properties, the Langevin algorithm and
its derivatives have found numerous applications in machine learning [see, e.g., 7, 29].

In this paper, we prove an analogous global optimization property for the Euler discretization of any
smooth and dissipative diffusion and show that different diffusions are suitable for solving different
classes of convex and non-convex problems. Our non-asymptotic analysis, based on a multidimen-
sional version of Stein’s method, establishes explicit bounds on both integration and optimization
error. Our contributions can be summarized as follows:

e For any function f, we provide explicit (9( }2) bounds on the numerical integration error
of discretized dissipative diffusions. Our bounds depend only on simple properties of the
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diffusion’s coefficients and Stein factors, i.e., bounds on the derivatives of the associated
Poisson equation solution.

e For pseudo-Lipschitz f, we derive explicit first through fourth-order Stein factor bounds for
every fast-coupling diffusion with smooth coefficients. Since our bounds depend on Wasser-
stein coupling rates, we provide user-friendly, broadly applicable tools for computing these
rates. The resulting computable integration error bounds recover the known Markov chain
Monte Carlo convergence rates of the Langevin algorithm in both convex and non-convex
settings but apply more broadly.

e We introduce new explicit bounds on the expected suboptimality of sampling from a diffusion.
Together with our integration error bounds, these yield computable and convergent bounds
on global optimization error. We demonstrate that improved optimization guarantees can be
obtained by targeting distributions other than the standard Gibbs measure.

e We show that different diffusions are appropriate for different objectives f and detail concrete
examples of global non-convex optimization enabled by our framework but not covered by
the existing Langevin theory. For example, while the Langevin diffusion is particularly appro-
priate for dissipative and hence quadratic growth f [26, 30], we show alternative diffusions
are appropriate for “heavy-tailed” f with subquadratic or sublinear growth.

We emphasize that, while past work has assumed the existence of finite Stein factors [5, 30], focused
on deriving convergence rates with inexplicit constants [23, 27, 30], or concentrated singularly on
the Langevin diffusion [7, 10, 26, 30], the goals of this work are to provide the reader with tools to
(a) check the appropriateness of a given diffusion for optimizing a given objective and (b) compute
explicit optimization and integration error bounds based on easily accessed properties of the objec-
tive and chosen diffusion. The rest of the paper is organized as follows. Section 1.1 surveys related
work. Section 2 provides an introduction to diffusions and their use in optimization and reviews our
notation. Section 3 provides explicit bounds on integration error in terms of Stein factors and on
Stein factors in terms of simple properties of f and the diffusion. In Section 4, we provide explicit
bounds on optimization error by targeting Gibbs and non-Gibbs invariant measures and discuss how
to obtain better optimization error using non-Gibbs invariant measures. We give concrete examples
of applying these tools to non-convex optimization problems in Section 5 and conclude in Section 6.

1.1 Related work

The Euler discretization of the Langevin diffusion is commonly termed the Langevin algorithm
and has been studied extensively in the context of sampling from a log concave distribution. Non-
asymptotic integration error bounds for the Langevin algorithm are studied in [8—11]. A repre-
sentative bound follows from combining the ergodicity of the diffusion with a discretization er-
ror analysis and yields e error in O(Z%poly(log(2))) steps for the strongly log concave case and

O(Lpoly(log(L))) steps for the general log concave case [8, 10].

Our work is motivated by a line of research that uses the Langevin algorithm to globally optimize
non-convex functions. Gelfand and Mitter [14] established the global convergence of an appropri-
ate variant of the algorithm, and Raginsky et al. [26] subsequently used optimal transport theory to
prove optimization and integration error bounds. For example, [26] provides an integration error
bound of € after O (% poly(log(%))%) steps under the quadratic-growth assumptions of dissipativ-

ity and a Lipschitz gradient; the estimate involves the inverse spectral gap parameter A !, a quantity
that is often unknown and sometimes exponential in both inverse temperature and dimension. In
this work, we accommodate “heavy-tailed” objectives that grow subquadratically and trade the of-
ten unknown and hence inexplicit spectral gap parameter of [26] for the more user-friendly distant
dissipativity condition (Prop. 3.4) which provides a straightforward and explicit certification of fast
coupling and hence the fast mixing of a diffusion. For distantly dissipative diffusions, the size of
our error bounds is driven primarily by a computable distance parameter; in the Langevin setting, an
analogous quantity is studied in place of the spectral gap in the contemporaneous work of [6].

Cheng et al. [6] provide integration error bounds for sampling with the overdamped Langevin al-
gorithm under a distant strong convexity assumption (a special case of distant dissipativity). The
authors build on the results of [10, 12] and establish € error in O(; log(2)) steps. We consider
general distantly dissipative diffusions and establish an integration error of € in (’)(6%) steps under
mild assumptions on the objective function f and smoothness of the diffusion.



Vollmer et al. [27] used the solution of the Poisson equation in their analysis of stochastic Langevin
gradient descent, invoking the bounds of Pardoux and Veretennikov [25, Thms. 1 and 2] to obtain
Stein factors. However, Thms. 1 and 2 of [25] yield only inexplicit constants and require bounded
diffusion coefficients, a strong assumption violated by the examples treated in Section 5. Chen
et al. [5] considered a broader range of diffusions but assumed, without verification, that Stein
factor and Markov chain moment were universally bounded by constants independent of all problem
parameters. One of our principal contributions is a careful enumeration of the dependencies of
these Stein factors and Markov chain moments on the objective f and the candidate diffusion. Our
convergence analysis builds on the arguments of [15, 23], and our Stein factor bounds rely on distant
and uniform dissipativity conditions for L;-Wasserstein rate decay [12, 15] and the smoothing effect
of the Markov semigroup [4, 15]. Our Stein factor results significantly generalize the existing bounds
of [15] by accommodating pseudo-Lipschitz objectives f and quadratic growth in the covariance
coefficient and deriving the first four Stein factors explicitly.

2 Optimization with Discretized Diffusions: Preliminaries

Consider a target objective function f : R — R. Our goal is to carry out unconstrained mini-
mization of f with the aid of a candidate diffusion defined by the stochastic differential equation
(SDE)

dZi =b(Z7)dt + o(ZF)dB, with Z§ = z. 2.1)

Here, (B;):>0 is an [-dimensional Wiener process, and b : R? — R% and ¢ : R? — R4x! represent
the drift and the diffusion coefficients, respectively. The diffusion Z7 starts at a point z € R? and,
under the conditions of Section 3, admits a limiting invariant distribution P with (Lebesgue) density
p. To encourage sampling near the minima of f, we would like to choose p so that the maximizers of
p correspond to minimizers of f. Fortunately, under mild conditions, one can construct a diffusion
with target invariant distribution P (see, e.g., [15, 20, Thm. 2]), by selecting the drift coefficient

b(w) = 5555V, p(2)(a(z) + c(2))), 2.2

where a(z) £ o(z)o(z)" is the covariance coefficient, c(z) = —c(z)" € R?*9 is the skew-

symmetric stream coefficient, and (V, m(z)) =3, ¢; >, amj; ) denotes the divergence operator

with {e;}; as the standard basis of RY. As an illustration, consider the (overdamped) Langevin
diffusion for the Gibbs measure with inverse temperature v > 0 and density

Py(x) o< exp(—vf(x)) (2.3)
associated with our objective f. Inserting o(x) = /2/ I and ¢(z) = 0 into the formula (2.2) we
obtain

bj(@) = 5y (Vo py(@)(a(2) + o(x)); = i 30, Zopdlie = L 0l) 00
which reduces to b = —V f. We emphasize that the choice of the Gibbs measure is arbitrary, and we

will consider other measures that yield superior guarantees for certain minimization problems.

In practice, the diffusion (2.1) cannot be simulated in continuous time and is instead approximated
by a discrete-time numerical integrator. We will show that a particular discretization, the Euler
method, can be used as a global optimization algorithm for various families of convex and non-
convex f. The Euler method is the most commonly used discretization technique due to its explicit
form and simplicity; however, our analysis can be generalized to other numerical integrators as well.
Form = 0, 1, ..., the Euler discretization of the SDE (2.1) corresponds to the Markov chain updates

where 7 is the step size, and W,,, ~ Ng4(0, I) is an isotropic Gaussian vector that is independent
from X,,. This update rule defines a Markov chain which typically has an invariant measure that
is different from the invariant measure of the continuous time diffusion. However, when the step
size 1 is sufficiently small, the difference between two invariant measures becomes small and can
be quantitatively characterized [see, e.g., 22]. Our optimization algorithm is simply to evaluate the
function f at each the Markov chain iterate X,,, and report the point with the smallest function value.



Denoting by p(f) the expectation of f under the density p —i.e., p(f) =Ez~,[f(Z)] — we decom-
pose the optimization error after M steps of our Markov chain into two components,
. . M .
min Bf(X,0)] - min, f(2) < & S0 E[f(Xn) —p(f)] + p(f) = ming f(z), @4
integration error expected suboptimality

and bound each term on the right-hand side separately. The integration erro—which captures both
the short-term non-stationarity of the chain and the long-term bias due to discretization—is the sub-
ject of Section 3; we develop explicit bounds using techniques that build upon [15, 23]. The expected
suboptimality quantifies how well exact samples from p minimize f on average. In Section 4, we ex-
tend the Gibbs measure Langevin diffusion bound of Raginsky et al. [26], to more general invariant
measures and associated diffusions and demonstrate the benefits of targeting non-Gibbs measures.

Notation We say a function g is pseudo-Lipschitz continuous of order n if it satisfies

l9(x) = 9(y)] < fm(9)X + llz)|5 + lyll5)llz — yll2, forallz,y e RY, (2.5

where ||-||2 denotes the Euclidean norm, and fi; ,,(g) is the smallest constant satisfying (2.5). This
assumption, which relaxes the more stringent Lipschitz assumption, allows g to exhibit polynomial
growth of order n. For example, g(z) = 22 is not Lipschitz but satisfies (2.5) with ji; 1(g) < 1. In
all of our examples of interest, n < 1. For operator and Frobenius norms ||-||op and || -||r, we use

61(9) = SUD, yera oy LLEZEIE po(g) = sup,epa [|9(2) lop,
vi—1 _yi-t! R
and  jii(g) = P, yegit g py LTI LWl

for the i-th order Lipschitz coefficients of a sufficiently differentiable function g. We denote the
degree n polynomial coefficient of the i-th derivative of g by 7; ,,(g), i.e.,

IV 9()lop < i (6)(1+ llell3) where 7i(g) = sup Iticyies @6)
e

3 Explicit Bounds on Integration Error

We develop our explicit bounds on integration error in three steps. In Theorem 3.1, we bound integra-
tion error in terms of the polynomial growth and dissipativity of diffusion coefficients (Conditions 1
and 2) and Stein factors bounds on the derivatives of solutions to the diffusion’s Poisson equation
(Condition 3). Condition 3 is a common assumption in the literature but is typically not verified. To
address this shortcoming, Theorem 3.2 shows that any smooth, fast-coupling diffusion admits finite
Stein factors expressed in terms of diffusion coupling rates (Condition 4). Finally, in Section 3.1,
we provide user-friendly tools for explicitly bounding those diffusion coupling rates. We begin with
our conditions.

Condition 1 (Polynomial growth of coefficients). For some r € {1,2} and ¥Yx € RY, the drift and
the diffusion coefficients of the diffusion (2.1) satisfy the following growth condition

Ib(@)ll2 <% (L +l|z]l2), llo@)lle <21+ [lzll2), and (oo™ (@)]op <1+ |J2]5).

The existence and uniqueness of the solution to the diffusion SDE (2.1) is guaranteed under Con-
dition 1 [19, Thm 3.5]. The cases » = 1 and r = 2 correspond to linear and quadratic growth of
loo T (x)]|op, and we will explore examples of both r settings in Section 5. As we will see in each
result to follow, the quadratic growth case is far more delicate.

Condition 2 (Dissipativity). For a, 3 > 0, the diffusion (2.1) satisfies the dissipativity condition
Allz|3 < —allzl3 + 8 for Ag(x) = (b(x), Vg(2)) + 5{o(@)o(x) ", Vg()). G.D
A is the generator of the diffusion with coefficients b and o, and Al|x||3 = 2(b(z), z) + ||o(x)|/2.
Dissipativity is a standard assumption that ensures that the diffusion does not diverge but rather
travels inward when far from the origin [22]. Notably, a linear growth bound on ||o(z)||r, and

a quadratic growth bound on ||oo " (x)]|op follow directly from the linear growth of ||b(x)|| and
Condition 2. However, in many examples, tighter growth constants can be obtained by inspection.

Our final condition concerns the solution of the Poisson equation (also known as the Stein equation
in the Stein’s method literature) associated with our candidate diffusion.



Condition 3 (Finite Stein factors). The function uy solves the Poisson equation with generator (3.1)

f=p(f) = Auy, (3.2)

is pseudo-Lipschitz of order n with constant (1, and has i-th order derivative with degree-n polyno-
mial growth for 1 = 2,3,4, i.e.,

[Viug(x)|op < G(1+ ||z||3) fori € {2,3,4} and all x € RY.
In other words, fi1 n(uy) = C1, and T; n(uyp) = ¢ fori = 2,3,4 with max; §; < oc.

The coefficients ¢; govern the regularity of the Poisson equation solution u s and are termed Stein
factors in the Stein’s method literature. Although variants of Condition 3 have been assumed in
previous work [5, 27], we emphasize that this assumption is not easily verified, and frequently only
empirical evidence is provided as justification for the assumption [5]. We will ultimately derive
explicit expressions for the Stein factors ¢; for a wide variety of diffusions and functions f, but first
we will use the factors bound integration error of our discretized diffusion.

Theorem 3.1 (Integration error of discretized diffusions). Let Conditions I to 3 hold for some r €
{1,2}. For any even integer' n. > n+4 and a step size satisfyingn < 1\ 2(n€_1)!!(1+§\‘b/2+>\0/2)ne ,

< (eaghy + can+ can™ 121 ) (i, (ne) + B[ Xol[3°]),

where
c1 = 66y, 2= 15 [242)\12; + (3 M A2 4 Ca(1 + 3"*1))@},

3= 15 [C3/\§ + GAR(L+ 3" 4G

n

(A +n2XH) (A +niag)],

2ra.,

~ n
/@Aﬂ)zZ—i—%—l—%-l-%(w), with &1 =, G2 = [o — neAg /4] 4.

o
c3n'T1A"/2l can be combined with the dominant term con yielding (c2 + c3)np as n < 1. We
observe that one needs (’)(6*2) steps to reach a tolerance of e. Theorem 3.1 seemingly makes no
assumptions on the objective function f, but in fact the dependence on f is present in the growth
parameters, the Stein factors, and the polynomial degree of the Poisson equation solution. For
example, we will show in Theorem 3.2 that this polynomial degree is upper bounded by that of the
objective function f. To characterize the function classes covered by Theorem 3.1, we next turn to
dissecting the Stein factors.

This integration error bound, proved in Appendix A, is (’)( + 77) since the higher order term

While verifying Conditions 1 and 2 for a given diffusion is often straightforward, it is not imme-
diately clear how one might verify Condition 3. As our second principal contribution, we derive
explicit values for the Stein factors (; for any smooth and dissipative diffusion exhibiting fast L;-
Wasserstein decay:

Condition 4 (Wasserstein rate). The diffusion Z7 has L,-Wasserstein rate o, : R>o — R if
. 1
lnfcouplings (Z;”.,Z;y) E[HZ? - ZZJH:S] /2 S Q;D(t)”‘r - yH2 fOV all z,y S Rd andt Z 0,
where infimum is taken over all couplings between ZF and Z. We further define the relative rates

o1(t) = log(ea(t)/e1(t)) and 25(t) = log(e1(t)/[e1(0)e2(t)])/ log(e1(t)/01(0)).

Theorem 3.2 (Finite Stein factors from Wasserstein decay). Assume that Conditions 1, 2 and 4
hold and that f is pseudo-Lipschitz continuous of order n with, for v = 2, 3,4, at most degree-n
polynomial growth of its i-th order derivatives. Then, the Stein factors in Condition 3 are given as

G=Ti+& fooo o1(t)wr(t+1i—2)dt for i=1,2,3,4, where,
we(t) =1+ 4@1(15)171”91 (0)1/2 (1 + &Q—n{[l V or(8)]2Aan + 37’5}”),

'In a typical example where f is bounded by a quadratic polynomial, we have n = 1 and n. = 6. We also
remind the reader that the double factorial (n, — 1)l =1-3-5--- (n.—1) is of order vn.!.



with & = o, &o = infifa — nA,(1V 02(¢))]+, and
T1 :O and T = [Ll_’n(f)ﬁ'g:iyn(f)ﬁlzi(b)ﬂl;i(U)Hr(Gn) for 1= 2, 3,4,
& =fiin(f) and & = fi1n(f)01:(0)01:(0)P0:i—2 (07 01 (0)w, (1)K, (60) 1 for i=2,3,4,

where kr(n) is as in Theorem 3.1, o n(f) = maxj—o _; T;n(f), and for a function g, vy.(g)
denotes an upper bound on its derivatives of order k through l.

A more detailed version of the above theorem is given as Theorem C.6 in Section C along with its
proof. We emphasize that, to provide finite Stein factors, Theorem 3.2 only requires L;-Wasserstein
decay and allows the Lo-Wasserstein rate to grow. An integrable Wasserstein rate is an indication
that a diffusion mixes quickly to its stationary distribution. Hence, Theorem 3.2 suggests that, for
a given f, one should select a diffusion that mixes quickly to a stationary measure, like the Gibbs
measure (2.3), with modes at the minimizers of f. We explore user-friendly conditions implying fast
Wasserstein decay in Section 3.1 and detailed examples deploying these tools in Section 5. Crucially
for the “heavy-tailed” examples given in Section 5, Theorem 3.2 allows for an unbounded diffusion
coefficient o, unlike the classic results of [25].

3.1 Sufficient conditions for Wasserstein decay

A simple condition that leads to exponential L' and L?-Wasserstein decay is uniform dissipativity
(3.3). The next result from [28] (see also [3, Sec. 1], [15, Thm. 10]) makes the relationship precise.
Proposition 3.3 (Wasserstein decay from uniform dissipativity [28, Thm. 2.5]). A diffusion with
drift and diffusion coefficients b and o has Wasserstein rate g, (t) = e *t2 if for all z,y € R?,

2(b(z) = 0(y),z = y) + llo(@) — oW + (0 = Dllo(z) — o), < —kllz —yll5.  G.3)

In the Gibbs measure Langevin case, where b = —V f and ¢ = 4/2/~I, uniform dissipativity is
equivalent to the strong convexity of f. As we will see in Section 5, the extra degree of freedom in
the diffusion coefficient o will allow us to treat non-convex and non-strongly convex functions f.

A more general condition leading to exponential L;-Wasserstein decay is the distant dissipativity
condition (3.4). The following result of [15] builds upon the pioneering analyses of Eberle [12, Cor.
2] and Wang [28, Thm. 2.6] to provide explicit Wasserstein decay.

Proposition 3.4 (Wasserstein decay from distant dissipativity [15, Cor. 4.2]). A diffusion with drift
and diffusion coefficients b and o satisfying 5(x) = (o(z)o(x)" — s21)*/? and

@) —by)a—y) | 6@ -3  1E@-5w) -yl —Kif|lzr—ylla > R
e—yB/z T o—yl} P { Lifl—ylr<r  ©CY

for R,L>0,K >0,ands € (0,1/po(0c™1)) has Wasserstein rate o1 (t) = 2¢27° /8¢ /2 for

2p-1 < J TR+ eVBETTR 4 4K if LR <8
= \8V2rRLTV2(L + K exp(2E) +32R K% if LR® > 8.

Conveniently, both uniform and distant dissipativity imply our dissipativity condition, Condition 2.
The Prop. 3.4 rates feature the distance-dependent parameter eLR/8. In the pre-conditioned
Langevin Gibbs setting (b = —%aV f and o constant) when f is the negative log likelihood of a
multimodal Gaussian mixture, R in (3.4) represents the maximum distance between modes [15].
When R is relatively small, the convergence of the diffusion towards its stationary distribution is
rapid, and the non-uniformity parameter is small; when R is relatively large, the parameter grows
exponentially in R, as would be expected due to infrequent diffusion transitions between modes.

Our next result, proved in Appendix E, provides a user-friendly set of sufficient conditions for veri-
fying distant dissipativity and hence exponential Wasserstein decay in practice.

Proposition 3.5 (User-friendly Wasserstein decay). Fix any diffusion and skew-symmetric stream
coefficients o and c satisfying L* = F1(5)? + sup, Amax(V(V,m(2))) < oo for m(z) =
o(x)o(z)" +c(z), 5(z) £ (o(x)o(x)T — s31)'/2, and so € (0,1/po(c™1)). If

—(m@)V[f(z) —my)VIy)z—y _ {_Km if lle —yll2 > Bm
[z = yll3 U L il —ylla < B,

3.5)



holds for Ry,, L, > 0, K, > 0, then, for any lnverse temperature y > L* / K, the diffusion with
drift and diffusion coefficients b, = ——me + 5= (V m) and 0., = ﬁa has stationary density

py(x) x e —f®) and satisfies (3.4) with s = 7, K = 'YKS{L L= 'YL";;FL ,and R = R,,,.
0 0

4 Explicit Bounds on Optimization Error

To convert our integration error bounds into bounds on optimization error, we now turn our attention
to bounding the expected suboptimality term of (2.4). To characterize the expected suboptimality
of sampling from a measure with modes matching the minima of f, we generalize a result due
to Raginsky et al. [26]. The original result [26, Prop. 3.4] was designed to analyze the Gibbs
measure (2.3) and demanded that log p, be smooth, in the sense that po(logp,) < co. Our next
proposition, proved in Appendix D, is designed for more general measures p and importantly relaxes
the smoothness requirements on log p.

Proposition 4.1 (Expected suboptimality: Sampling yields near-optima). Suppose p is the station-
ary density of an («, B)-dissipative diffusion (Condition 2) with global maximizer x*. Fix C > 0
and § € (0,1]. Iflogp(xz*) — logp(x) < Cllx — x*||3? for all x, then

—p(logp) +logp(a*) < 55 log(2F) + & log(%2).
If this p takes the generalized Gibbs form p., o(z) o exp(—7(f(x) — f(z*))%) for v > 0, we have

Pro(f(@) = fla*) < {4 (310g(%) + log(252L))). @1

When 6 = 1, p, ¢ is the Gibbs measure, and the bound (4.1) exactly recovers [26, Prop. 3.4]. The
generalized Gibbs measures with § < 1 allow for improved dependence on the inverse temperature
when v > d/(26). Note however that, for < 1, the distributions p, ¢ also require knowledge
of the optimal value f(2*). In certain practical settings, such as neural network optimization, it is
common to have f(z*) = 0. When f(z*) is unknown, a similar analysis can be carried out by
replacing f(z*) with an estimate, and the bound (4.1) still holds up to a controllable error factor.

By combining Prop. 4.1 with Theorem 3.1, we obtain a complete bound controlling the global
optimization error of the best Markov chain iterate.

Corollary 4.2 (Optimization error of discretized diffusions). Instantiate the assumptions and no-
tation of Theorem 3.1 and Prop. 4.1. If the diffusion has the generalized Gibbs stationary density

Pro(x) o< exp(—y(f(x) — f(x*))?), then
Lmin E[f(X)] = f(a*) <(e1ghy + (catea)n) (krne) + E[IXoll3]) @42

4 {fE (F1og(%) + g2

Finally, we demonstrate that, for quadratic functions, the generalized Gibbs expected suboptimality
bound (4.1) can be further refined to remove the log(vy/d)'/? dependence.

Proposition 4.3 (Expected suboptimality bound Quadratic f). Let f(x) = (x — b, A(x — b)) fora
positive semidefinite A € R and b € Re. Then for p-o(x) o exp(—y(f(z) — f(z*))?) with
0 > 0, and for each positive integer k, we have

prap(f) = fa) < (AR .3)

The bound (4.3) applies to any f with level set (i.e., {x : f(x) = p}) volume proportional to p@~!.

5 Applications to Non-convex Optimization

We next provide detailed examples of verifying that a given diffusion is appropriate for optimizing a
given objective, using either uniform dissipativity (Prop. 3.3) or our user-friendly distant dissipativity
conditions (Prop. 3.5). When the Gibbs measure Langevin diffusion is used, our results yield global
optimization when f is strongly convex (condition (3.3) with b = —V f and 0 = /2/~I) or has
strongly convex tails (condition (3.5) with m = I). To highlight the value of non-constant diffusion
coefficients, we will focus on “heavy-tailed” examples that are not covered by the Langevin theory.



5.1 A simple example with sublinear growth

We begin with a pedagogical example of selecting an appropriate diffusion and verifying our global
optimization conditions. Fix ¢ > <£3 and consider f(x) = clog(1 + ||z||3), a simple non-convex
objective which exhibits sublinear growth in ||x||2 and hence does not satisfy dissipativity (Con-

dition 2) when paired with the Gibbs measure Langevin diffusion (b = -V f,0 = 1/2/vI). To
target the Gibbs measure (2.3) with inverse temperature v > 1, we choose the diffusion with coef-

ficients by (z) = —za(z)Vf(z) + 35(V,a(z)) and o, (z) = %a(x) for o(x) £ \/1+ &||=31
and a(z) = o(z)o(x)". This choice satisfies Condition 1 with A, = O(1), A, = O(y~'/?), and
Ao = O(y71) with respect to  and Condition 2 with a = ¢ — d—J;?’ and 8 = d/v. In fact, this

2
diffusion satisfies uniform dissipativity,

2(by(x) = by(y),z — y) + oy (z) — o5 (W)I[Z,

= (e~ Y)lle— w3+ £ (/T 30l - T+ 3IwB) < —alle - w3

yielding L; and Lo-Wasserstein rates g1(t) = 02(t) = e~**/2 by Prop. 3.3 and the relative rate
02(t) = 0. Hence, the i-th Stein factor in Theorem 3.2 satisfies ¢; = O(y(*~1)/2). This implies that

the coefficients ¢; in Corollary 4.2 scale with O ( i t Y3 n g2 4 'y) and the final optimization

error bound (4.2) can be made of order € by choosing the inverse temperature v = O (e ), the step
size n = O(€'"), and the number of iterations M = O(e~%5).

5.2 Non-convex learning with linear growth

Next consider the canonical learning problem of regularized loss minimization with
f(@) = L(z) + R(x)

for L(z) £ %Zle Yi((x,v1)), ¥ a datapoint-specific loss function, v; € R? the I-th data-
point covariate vector, and R(z) = p(||z||3) a regularizer with concave p satisfying d3p(z) >

Vmax(0, =/ (0)2p" (2)) and 2LEE < G < 5, for g, (2) 2 L — 5, some 81,6, 05 > 0,
2

and all z, s € R. Our aim is to select diffusion and stream coefficients that satisfy the Wasserstein

decay preconditions of Prop. 3.5. To achieve this, we set ¢ = 0 and choose o with po(c~!) < co so

that the regularization component of the drift is one-sided Lipschitz, i.e.,
—(a(z)VR(z) — a(y)VR(y),z —y) < —K,|lz —y||3 forsome K, > 0. (5.1)

We then show that L* from Prop. 3.5 is bounded and that, for suitable loss choices, a(z)VL(x) is
bounded and Lipschitz so that (3.5) holds with K, = % and L,,, R, sufficiently large.

Fix any z, let 7 = ||z||2, and define ) (z) = /T — s(I ol 2l gs(1r?) ,1].
We choose o = ¢(*) so that a( )V’R( ) = p'(0)x and (5.1) holds w1th K = p'(0). Our constramts

on p ensure that a(z) = 2z (r?) is positive definite, that zo(c~*) < 1, and that o and a have
at most linear and quadratic growth respectively, in satisfaction of Condition 1. Moreover,

VYV, a(z)) = I({90000 4 o0 (r2)) 4 2228 ((d — 1)(g] (r2) — 242) 4 202/ (r2)), and
Amnax (V{V, a(2))) = max({0CD 4 ggr(2) @000 4 9ggr (12) 4 dr2gy (r2)),
$0 that Amax(V(V, a(z))) < max((d— 1)d1 + /0102, dv/0102 +283). Forany so € (0,1), we have

~(s0) (x, ’U> mv IJLIJ 9sg (r2)—v1-s0 ﬁ Tg;() (TZ)
Vo) (@) o] = (1422 + () VT 25 (mv) e

for each v € R?, 50, as |\/gs, (12) — /T — 50| < \/91(12), ¢1(5) < d\/51 + /35 for & = 5(0),

Finally, to satisfy (3.5), it suffices to verify that a(x)V £L(x) is bounded and Lipschitz. For example,
in the case of a ridge regularizer, R(z) = %”IH% for A > 0, the coefficient a(x) = I, and it suffices



to check that £ is Lipschitz with Lipschitz gradient. This strongly convex regularizer satisfies our
assumptions, but strong convexity is by no means necessary. Consider instead the pseudo-Huber

function, R(z) = A(y/1+ 3[/#||3 — 1), popularized in computer vision [17]. This convex but

non-strongly convex regularizer satisfies all of our criteria and yields a diffusion with a(x) = I +

If—;R;m). Moreover, since VL(z) = 1 3, vt ((z,v;)) and V2L(z) = 1 3,00 ¢) ((z, ),

a(x)V L(z) is bounded and Lipschitz whenever |} (r)| < % and |9 (r)] < 1‘11 for some 64, d5 >
0. Hence, Prop. 3.5 guarantees exponential Wasserstein decay for a variety of non-convex £ based
on datapoint outcomes y;, including the sigmoid (¢)(r) = tanh((r — y;)?) for y; € R or ¢(r) =

1—tanh(y,r) fory; € {&1}) [1], the Student’s t negative log likelihood (v (r) = log(1+(r—;)?)),
and the Blake-Zisserman (¢(r) = —log(e~(""%) 4 ¢), e > 0) [17]. The reader can verify that
all of these examples also satisfy the remaining global optimization pre-conditions of Corollary 4.2
and Theorem 3.2. In contrast, these linear-growth examples do not satisfy dissipativity (Condition 2)
when paired with the Gibbs measure Langevin diffusion.

6 Conclusion

In this paper, we showed that the Euler discretization of any smooth and dissipative diffusion can
be used for global non-convex optimization. We established non-asymptotic bounds on global opti-
mization error and integration error with convergence governed by Stein factors obtained from the
solution of the Poisson equation. We further provided explicit bounds on Stein factors for large
classes of convex and non-convex objective functions, based on computable properties of the ob-
jective and the diffusion. Using this flexibility, we designed suitable diffusions for optimizing non-
convex functions not covered by the existing Langevin theory. We also demonstrated that targeting
distributions other than the Gibbs measure can give rise to improved optimization guarantees.
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A Proof of Theorem 3.1: Integration error of discretized diffusions

Proof of Theorem 3.1. Denoting by AX,,, = X,,,41 — X, and using the integral form Taylor’s theorem on ¢ (X,,+1) around
the previous iterate X,,, and taking expectations, we obtain
Elur(Xmt1) — up(Xm)] = E{(Vusr (X)), AXp)] + %E[(AXW, V2uf(Xm)AXm)] (A.1)

+EE[(A X, V3up(X0n) [A X, AXp])]
FL LA = 1PEAX , ViU (X + TAX ) [A Xy AXp, AX))] dr.

The first term on the right hand side can be written as
EKVUf(Xm), AXm>] :E[<V’u.f(Xm), nb(Xm) + \/ﬁo(Xm)Zm” )
=nE[(Vus(Xm), b(Xm))] + 1 E(Vuy(Xom), 0(Xm)Zm)],
=nE[(Vu s (Xm), b(Xm))],

where in the last step, we used the fact that Z,, is independent from X,,, and odd moments of Z,, is 0. Similarly for the second
and the third terms, we obtain respectively

sE[AX 0, V2uy (X)) AX )]
= LE[(B(Xn), V2us (Xn)o(Xn))] + BE[(V2up(X), 00T (X)),
and
LE[(AXom, V3up (X)) [AXm] AX o) ]

3

= ZE[(H(Xm), V217 (X)X} + ZE[(Voup (X DX, 00T (X))

Combining these with (3.2), we obtain (A.1) can be written as,

Elus (Xms1) — g (X)) = HEL (X)) = p()} + BE[(B(Xon), V2ur(Xon)b(Xm))]
FEE[(B(Xon), VPur (X)) [B(X) (X )]
L E[(VPu (X)) DX, 00T (X))
F3 1 = TPEAX, Viug (X + TAX ) [AX 0, AX ]| AX, )] dr.

Finally, dividing each term by 7, averaging over m, and using triangle inequalities, we reach the following bound

|4 S EL (X)] = p(f) (A2)
<

St E[(0(Xom), Vo (X)X )I6(X))]|
[ B[V (X)X 00T (X))
+ i | S o (U= 7V E[(AX o, Vg (X + 7AXn )| A X, AKX AXi) ]|

+
g

For the first term on the right hand side, using Condition 3 and Lemma A.2, we can write

[y Bl (K1) = g (Xon)]| = By (Xar1) = us (X)) (A3)
< i (BN + [ XarsalIf + 16013 Xar1 = X,
< firn(u)E[2 + 3 Xara 5 + 31X 15+,

~ 2 T, Ne Ne
< 6jinn(ug) (2 + 22 4 |Jo]3 ).

where we used Young’s inequality in the second step, and Lemma A.2 in the last step.
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The second term in the above inequality can be bounded by
S [ St E[0(Xm), Vur (X )o(Xn))] | < 57 oy B[ (0(X0m), V215 (X DX
27 Dot BV (Xom) o [0(Xm) 3],

IN

IN

A2 M

Biale M B[1+ (|1 X015+,
2

n>\8b42 (2 + 26;716 + Hnge),

IN

IN

where in the last step, we used Lemma A.2.

Similarly, the third and the fourth terms in the inequality (A.2) can be bounded by
M >Xp M n
> i1 E[(b(Xm), V217 (X ) [D(Xom)|6(Xim))] } < TP Yo E[1+ [ X 1547,

24,3
< T (24 P ),

,,72

6M

and

Ap\2 M
< lets SN B[+ || X5,

S [ B[P (X (X)) 00T (X)) | < 225

2
< 77)\b1)\6(,<3 (2 + Qﬁgne + Hx”ge)

For the last term, we write
it |t B[ Jy (1= 73 (A X, T (X + TAX ) A, AX ] AX )7,
< it St Jo (L= T GE[(L+ [ Xon + 7AX[[3) | A X |4] dr.
We first bound the expectation in the above integral
E[(1+[|Xm + TAXm [3)[AXn ]3] < E[8(774||17(Xm)|\‘2l + 0?0 (X ) Winll2)

X (143 X5+ 372 (DX 5 + 37270 (X Wi [3)
= A+ 7"B, where
A2 E[(1+ 3" X l5) 0 15X l13 + 121l (Xin) Wi [3)]
B £ 83" E[("[b(Xmn)l[5 + 1720 (X)W ll3) (7 60X m) 13 + 177 [[0/(Xn ) Wi [|3)] -

Using Condition 1, Lemma F.1 and < 1, we obtain

A4 n_1Ai n
A <s{y [SE[1+ |1 Xnllf] + 3" EE[L+ | Xonll ]

+ 12 [ SEE[L+ | Xlld] + 3732 E[1 + | Xl ]|}

< (A + 3 ADE[1+ || X, 5],

B <8 37 Pt 2R [ 2 (X, ) 15 4 726X I3l (X)) Won I3

+ 31X I3 o (X + 1 (Xom)Won 134

<2 (PXE + (e 4)(n 4+ M) (72N + I E[L+ [ X 3],

<2 L15M (A + n2A8) (A + nADE[L+ || X [5+4].

Plugging this in (A.7), we obtain
E[(1+ [ Xm + TAX 51 A X 4]

<E[1+ | X5 [%(n% +302A8) + T2 L1 (N - n2AE) (Ap + n!w;)} .

12

A M n
g7 2am—1 E[C(1+ [ Xom[5) (1 + [ Xom|12)?],

(A4)

(ALS)

(A.6)

(A7)



Therefore, the last term in (A.2) can be bounded by

st [ B[ (1= 13 (A X, Vg (X + 7AXn)[AXom, AX ] AXon)dr ]| (A8)
< ' zm:1 [+ 11X l157]
X Jo (1= 702 (B (AL + 30208) + T /25157 (N 4+ n2A8) O + nitag) ) dr.

Using Lemma A.2 and

Jy@—7)Brrdr < 5 and [} (1—7)3%dr =1,
the right hand side of (A.8) can be bounded by
San (L (200 + 3A) + /2 e 157 (AL + m2XE) O + i) ) (2 4+ Ze o a3, (A9)

Combining the above bounds in (A.3), (A.4), (A.5), (A.6) and (A.9) and applying them on (A.2), we reach the final bound
2 S BLF (X)) = ()| < (erhy + con+ e 120 (i, + a3

where
c1 =61,
—& (@2 + a2+ G+ 3”*1)/\§} ,
¢ =35 [CaX + CNR(1+371) SEOF +n2A 08 + g,
Kp =2+ 28 4 neda | Go (7"62;‘_:{?6) :
where &1 = avand d = [ — neAy /4] 4. O

A.1 Dissipativity for higher order moments

It is well known that the dissipativity condition on the second moment carries directly to the higher order moments [22]. The
following lemma will be useful when we bound the higher order moments of the discretized diffusion.
Lemma A.1. Forn > k > 2, we have the following relation
n n n—k n—
Allzlls = #llzllz~ " Allz5 + 3n(n = k)23~ lo 7 (2)z]3.
Further, assume that Conditions 1 and 2 hold, and n > 3. Then,
Allzlz < —allzllz + Brn

where

- n
ﬁr,n:B""%""%(M) )

2ra,

with &g = [a — nAg /4]+ and 61 = .

Proof. The proof for the first statement easily follows from the following expression,
— —4 —
Allzllz =nllall3™*(z,b(x)) + 3n(n = 2)|zll;™zz T, 00 T (2)) + gnllzll; |0 ()]|3.
For second statement, we use the first statement with £ = 2 and Conditions 1 and 2. First, we consider the case » = 1 and write
Allzllz =gnllzlz 2 Allz]3 + ln(n - 2)|Iw|\"*4<ww1 oo’ (z)),
< — ganl|z)3 + 38nllz]3 7 + Fen(n - 2)(|2ll3 " + HxII”’Q),
= - gon|z|3 + A?n(n—?)llﬂfl\ P {580+ den(n = 2) )3T
Using the inequality given in Lemma F.3 twice, we obtain
Allzllz < - gan|z|3 + {%n(n - 2) + §Bn} |5~

n a(n—2 o " n(n—2)A, n
< —allz|y + %( %0 +a(n 2)) + é(nf)l) +2(7£1)'

Same calculation yields a similar expression for the case » = 2. Generalizing, we obtain the following formula,

n n ar(n—2 nlg " n(n—2)Aq n
Alelly < = allolg +2:G=2 (pa 4 28 )" 4 et s

2ra,.

2ra.,.

< —aflally + 5 (220" 4 nha
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A.2 Proof of Lemma A.2: Markov Chain Moment Bounds

Lemma A.2. Let the Conditions 1 and 2 hold. For n > 1, denote by n. an even integer satisfying n. > n. If the step size
satisfies

1< 1A s DAz 7o

then we have
n Ne 2Br ne
Ell|[ Xmll2] <llzfl3 +1+ =5

« )

M n Ne 2 T, Me
7 Comet Bl X 3] <3 + 1+ 2z2e,
Proof of Lemma A.2. First, we handle the even moments. For n > 1, we write
E[[| Xom + 10(Xm) + /710 (X)) Win [157] = E[(IIXmH% + 72 [6(Xon) I3 + 1l (Xm)Winll3

20X, b(Xim)) + 20° (X, 7 (Xn) Won) + 205 (0(Xom), 0 (Xi)Won)) |

n

1
= Zk1+k2+---+k6:n (kl,kg ..... k6)77

B [ X 35 166 132 X ) W 35 (X, D) (Ko 7 (X )W) (6K, 7 (X ) Wi} ]

2ko+ka+ka+ks/2+3ke/2 9oka+ks+ke

2
<E[| Xnl3"] +nE[A|Xm[3"]+3 baphat tho=n (s o g )12 o b [243ka /2 ghathathe
1S even
2k2+k3+24+25/2+3k6/2>1

E [ 31 4 (0[5 4  (X JW [3H

3
n 2ko+ks+ka+ks/243ks/2 okst+ks+k
S kthetecthemn (o ko) (Zks K kg — 1)lly?kethethatho /20 3ke/2 ghathathe
ks+kg is even
2ka+kz+katks/243ks/2>1

E [HanglirMJrks b(Xm) H%k2+k4+k6

o (Xom) [ 455 | 4 (1= @[ X 13"] + 1820

4
< (1 —na+ 7722Pn)E[HXm”%n} +nBron + 772Pn
where

1 n " A§k2+k4+ks>\2k3+k5+k6
Pn = 3 Z kitkat...+ke=n (k17k2 ,,,,, kﬁ) (2k3+k5+k6_1)" 22k3 +2k3 kg
5+ kg is even
2ko+ks+katks/24+3ke/2>1

In the above derivation, step (1) follows from multinomial expansion theorem, step (2) follows from that the odd moments of
a Gaussian random variable is 0, and that the terms with coefficient 1 add up to E [AHXWH%"} . Step (3) follows from Cauchy-
Schwartz, Lemma F.1, and Condition 2, and finally step (4) uses Condition 1 and the fact that n < 1.

A compact and more interpretable estimate for p,, can be obtained as follows,

" n Ag 2 RatRe j2ka +hs t+ho
)Zkl-'rkg-'r-'rk(;:’ﬂ (kl,k . 22ko+2k3+kg

=1(2n - I + 2 + 22)2,

Pn S%(2n— 1
1
2

The above result reads

E[[|Xm+1l3"] < 7 (DE[IXm[13"] + 3n ()

where 7,(n) = 1 — na + n*2py, and ¥,,(n) = 1nBr2n + 1°ppn. Notice that 7,,(0) = 1 and 7/,(0) = —« is negative. Therefore,
we may obtain 7,(n) < 1 by choosing 7 small. More specifically, we have 7,,(n) < 1 when n < «/2p,, but by choosing
n < a/(4pn) we have control over the second term as well. That is, by Lemma F.2, we immediately obtain

E[XnlI3"] <mo(n)™ ]2 + (2200

<o ()™ ]2  Pnzatelz

[0}

§H$||2n + 267~,2an+a
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and
M 267‘, nt
7 Lot B[ Xm 3] < [l + =252
where we use a looser bound to ensure that the right hand side is larger than 1.

The above analysis only covers the even moments so far. For any integer n, denote by n. an even integer that is not smaller than
n. Then, by the Holder’s inequality we write

n/ne
Nel"/ ne nc 2 r,ne T
) Xonl15] <E() X131 < (Jlafme + Lmete)

e 267‘,ne
<zl + =5 + 1L

which concludes the proof.

B Directional Derivative Flow Moment Bounds

In this section, we provide high order moment bounds for the first four directional derivative flows. These moment bounds will
be used to bound the semigroup derivatives.

o The first directional derivative flow in the direction of v solves the first variation equation

Avyet =Vo(ZE))VP dt + Vo (ZF)VdB, with V7" = w. (B.1)
e The second derivative flow in the directions v, u solves the second variation equation
du =(V2(ZE) Vi, ViU + Vb(ZE) U™ ) dt (B.2)

H(V20(Z0) Vi Vi + Vo(Z7) U )dB, with U3™ =0
e The third derivative flow in the directions v, u, w solves the third variation equation
AW =V VL VO + VR U V) B3)
VU Vi 4 VR ZEUE ™ Vi) + Vb Z5 W ) de
+(VPo 20V Vi Vi) + V2 (Z5) U7 Vi) + V2o (Z5) U7, Vi)
+ V2 (ZE)UP VP 4 Vo (2 W By with Wi =0,
e The fourth derivative flow in the directions v, u, w, y solves the fourth variation equation
dyw ,Yuwy (v4b(Zw)[VJE7U7‘/VtI,u,%I,U)"/Vt"ﬂ,y] + v3b(ng)[Uf7’Uu,‘/t"E7w7‘/'t$,U] (B,4)
U Vi V4 (2 UV V]
Uz 'uw, ‘/tz.,u ‘/tm,y] Vg )[Utz , WY Vm K ‘/tzu]
Wtil) 'uuy7 ‘/til) ’IJJ] v2b [th vuw, I,y]
V[/tz.,uwy7 ‘/tz.,v] + V2b [th L VWY Vz u] + Vb(Ztm)}/tm,vuwy)dt

b(ZF
b(Z””

(Z)
(Z7)

(VB Vo Vi Vi) 4 Voo ZUE ™, Vi Vi)

+ v3 Zgg Um ,uy V;E U Vac w] + V3 ( )[Uac,wy V;p,y Vm’u]
+v3 Zgg Uac ,0Y VIU Vz w] +V3 )[Uz ,UW sz VI y]
+ Vo

e D2 o2 U, 57+,
W VI 4 Vo (2 W VY

WY VI 4 Va(ZE)Y Y ) dBy with Vg =0,

(
[
‘)

‘*Na
~—
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In the following, we will rely on Dynkin’s lemma [24] to find an upper bound on the n-th moment of the first four derivative
flows. The following function will be used to characterize the rates of moments of the derivative flows of a diffusion process
with drift b, and diffusion o,
Pin(b,0) = i (b) + npi(0)? + i (0)?,
where we use the following notation for the Lipschitz coefficients of a differentiable function g and a matrix m,
vifl V’L 1 o
MO(Q) = SUP;cRd Hg(‘r)HOIﬂ and Ml(g) = SUPg yeRd x4y L (||)z yll2 o =

¢i(m) = SUPgzeRd |jvy |lp=--|lvi]|2=1 Hvim(ﬂf)[vl, ey Ui [[ -

First derivative flow moments. In the case of first derivative flow (B.1), the Dynkin’s lemma applied to the function x — ||z||%
yields

E([V""ll3] =llvll3 +n fy B[V 152 (Vb(Z5)Ver, Vi) | ds
+3n(n —2) [y B[Vl (Vo (Z) [VErH Vo (Z2) [V} T Ve [Ver)T)] ds
+3n Jy BIVE 52 (Vo(Z0) [V H Vo (Z2) VYT, 1) ] ds

<Jloll3 + {np () + $n(n = 2)p1(0)? + né(0)?} [y E IIV“H
Finally, applying Gronwall’s inequality, we obtain the desired bound on the moments, i.e.,
E[|V;*113] <e®rn o], (B.5)
where
01, Znp1n—2(b,0) (B.6)

> (b) + 3n(n — 2 (0)? + gy (0)2.
Second derivative flow moments. Applying Dynkin’s lemma to the function z — ||z||5 for the diffusion (B.2) yields,
E[|U7""|15] = nfy BIUS |5~ (Vb(Z2) U™ 4 V2b(Z2) [V, Vel U | ds B.7)

+ MR R [T 5 (Vo (2 U] + VR (Z2) Ve, ve]) U3 ds

+ 3Ly E[JU 52|V (Z) Uz + V2o (Z22)[Vies, Vo] 2] ds

< npar (8) fy BINUZ " [31ds + nna(®) Jy E[JUZ 15~ |V [V ] ds

+nn = 2 E| U 5 Vo(Z) Uz, U3+ |V2a(Z) Ve, Vi, Uz 3} ds
+n fy E[JUze g2 IVo(Z) Uz + V2o (Z)Ver, vz f|ds

< L () + n(n = 21 (0)? +nn(0)? } fy E[|UZ"|8)ds

s (6) fy B[O 5[Vl [Velo] ds

+ {10 = 2)pa(0) + na(0)?} Jy BT 52V 31V 1) ds
By the Young’s inequality, we have
IUZ 5 IVl [Vl SPZHITE 5 + S IVECIBIVE 3,
[Tz~ IV IBIVE (13 <2202 5 + SV 51V 13-
Using the above inequalities on the last result in (B.7), we obtam

B0 8] < {npm () + nn — 2pu1(0)? + n61(0)? + (n — Daa(b) + (n — 2)2pa(0)?
+ (n = 2)62(0) } Jy E[|UZ"|3)d
* {W(b) +2(n = 2)u2(0)” + 202(0 }fo Ve 3 Ve« 3)ds
S{Wl () + n(n — 2)u1(0)? + ne1(0)2 + (n — Vpz(b) + (0 — 2)%ua(0)?
+ (n = 2)62(0) } Jy E[|UZ"|3]d
+ {m(b) +2(n — 2)pua(0)? + 2¢2<a>2}|\v||3uun3 Jyetrands,
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where in the last line, we used Cauchy-Schwartz inequality on the first derivative flow moments together with (B.5). Finally, by

the Gronwall inequality, we obtain
E[|U" 3] <veme®m vl13ulls,
where — using (B.6) — we have
n—2(b,o
Yo =pia=tlrle > oL {115(8) + 2(n — Dua(0)? + 262(0)* ],
02.n =3n¢1,2n—2(b,0) + np2.n—2(b,0),
201 20 + 11 (b) + n(n — 2)p1(0)? + néi(0)?
+(n = Dpa(b) + (n — 2)%p2(0)? + (n — 2)¢2(0)*.
Third derivative flow moments. Dynkin’s lemma applied to the function z — ||z||5 for the diffusion (B.3) yields
Z,0UW||n t T, vuw ||n— x z,v x,u x,w T x,vu x,w
E[”Wt ||2] :nfoE[”Ws) ||2 2<V3b(25)[‘/5’ 7Vs7 7Vs7 ]+V2b(ZS)[US’ 7Vs7 ]
+ V2(ZD)UP VY] + V2(ZD) U, VU] + V(ZE)WEvew W) [ ds
t T, ouw ||n— xr T, v T, u xr,w xT xr,ou xr,w
Ly B[ |53 V3a(Z2)[Vier, Vo, V] + V(20U Vi)

+ V2 (20U, VIR 4+ VRo(Z0)UE, V] + Va(Z0)Weee L] s
t T, vuw ||n— x x,v x,u xr,w
2) [y E[Iwzemlly= [ (Voo (zn)vee, v, vie)
+ V20 (Z2)[UF Vo] + V20(Z2) U, Vi)
+ V2(Z0)UP, V] + Vo (Z) W) T | ds,
t T, vuw ||n— x,v x,u x,w x,vu T, w
<n [y B{IWE 5 {ua OV 2V 20Vl + p2 OITZ |2 V|2
+ 2 O[T 2|V 2 + 2 OTE 2l Vo 2 + (B [WE |} ] ds
t T, vuw ||n— x,v x,u T, w x,vu x,w
+3nfy B[ IWzwwe |5~ g ()2 [V IBIVEBIVE 13 + 62(0) | Uz 31V

+ 62T BIVE13 + 02(0) [0 IBIVE 13 + o1 (0 PIWE 3} | ds
+3n(n = 2) fy E[IIWEw 572 {ua(@) |V 31V 131V 13
+ p (@) [T VIS + pa(o)? UL 3]V 13
+ pa (o) [UF 3]V 115 + ul(U)QIIW?”““JII%}}dS-
Using the Young’s inequality, we obtain the following inequalities
W e |y Vel VE Vel <EHIWE |3 + LIV B IVE 5 IVE©lls,
(W g2 Ve IBIVEIBIVE N3 <22 IwWeere|s + 2V IgIve s ivels,
W ey U |Vl SEAIWE |3 + S IlUE 5 VE©ll3,
W g2 lue e BIVeels <22 IWeeels + 2oz 5lves.
Using the above inequalities and reorganizing the terms in (B.9), we obtain the following
B[ 15] < (g (8) + 30— 2 (0)° + Sngn (0)?
+3(n = Dpa(b) + F(n = 2)*2(0)? + F(n — 2)h2(0)”

+ (0 = pis(b) + 30— 2)u5(0)? + 3 (n = 2)6(0)? ) E[[ W3] ds
+(113(8) + 5(n = 2)p13(0)? + 563(0)%) fy B[NV BV 15|V 5] ds
+(12(0) +5(n — 212 (0) + 562(0)%) Jy B[IUZ [V 3] ds
+(n2(b) + 5(n — 2)pa(0)? + 562(0)?) [y E[|UZ |12V ||3] ds
+(12(6) +5(n = 2)p12(0)? + 562(0)%) Jy B|UZ |13V 3] ds
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Using the moment bounds for the first and the second derivative flows derived previously in this section, we can write
t x,vlln ,ulln T,wl||n t S n n n n
Jo E[IVEv s vz Ive©iz]ds < fy eends|lvl3llul3llwl?,
t T, uv||n T, w||n P t s n s n n n n
fo E[HUS’ 5 IVE ||2]d5 < 72{;11 fo es02.2n /25002 /2d3HU||2H“H2||w||27
where we used (B.6) and (B.8). Therefore, we obtain that
E[IW 3] <5 ”(901n 2(b,0) + 3p2,n—2(b,0) + p3,n-2(, 0))E[|\Wf’””w||3}d8
+503,n-2(b,0) fy e ds|o3 w3 ]|
+15%) 5, 02,n2(b, 0) [y € (O2n/ 20120/ D [y u] |3 w3

We notice that both 63 2., /2+ 61 2, /2 and 61 35, can be upper bounded by 4n¢1 45,—2(b, 0) +np2 2, —2(b, o). Using these bounds
in the second and the third integrals, and using ”y;/ ;n < 1+ 72 2y, and finally applying the Gronwall’s inequality, we obtain

T, vuw t0
E[[Wm 5] < s e (ol Jullz wllz
where
15p2,n—2(b,0)+5¢3,n—2(b,0)
471(,01 An — 2(b O’)
1502 n—2(b,0) + 5¢3,n—2(b,0)
= 4np1,an—2(b,0) 4Anpi an—2(b,0)+np2 2n—2(b,0)
>15902n 2(b,0){2n¢1,4n—2(b,0)+p2,2n—2(b,0)}+10np1,4n—2(b,0)p3,n—2(b,0)
2121, an—2(b,0){4¢1,4n—2(b,0)+p2,2n—2(b,0)}

Y3n =

>§ 493,71—2(b70)+372,2n¥72,n72(b70’)
=n 4¢1,4n—2(b,0)+p2,2n_2(b,0)

03,n =Tn1 3n—2(b, 0) + 10np2 n—2(b, o) + 3nps n—2(b, o).

(B.10)

Fourth derivative flow moments. In order to bound the fourth derivative of the semigroup, we only need to consider the second

moment of the fourth derivative flow. Dynkin’s lemma applied to the function z — ||z||3 for the diffusion (B.4) yields

[V 18] =2 fy B[ (FA0(Z0) IV, Vi, Ve, VEv+73p(Z2) U, Ve, Vi)
+ VI(Z)[US, VT V] + VP(Z) U, Vi, V]
+ VI(Z)US VI, V] + VP(Z)[U Y, VY, V]
+ VEW(Z)[U, VI VI 4 VA ZE) U, U]
+ VE(Z)[UT ™, US ] + V2O Z9) U, US ] + V2b(Z5) Wy, V]
+ VEB(Z9) W V] 4 V2 Z5) Wy, Ve
+ V222 WY, VE] 4 Vh(Z2)YEvwen, Yavey) | ds

I B[tz Ve Ve Ve Ve 4 V(2 [ Ve Ve

+ V30 (Z2)[UP™, VI, VY] + V3a(Z2) U, VEr, V]

+ V30(Z2) Uy, VI, V] + V3a (Z2) U, VP, VY]

+ V30(Z2)[UP , VE VY] + V20 (Z2) U, U Y]

+ V3o (ZU U + V2 (Z) U, U] + V2o (Z) W, Vi
+ V2 (Z9) Wy, V] 4+ V2a (Z5) W, Vi)

+ V20 (Z2) Wy, VIV 4+ Vo (Z2)Y oy || }ds

Once again we will use the Young’s inequality to obtain a Gronwal form. The following inequalities will be useful
Yy || [V [V 2V VYl <53 + IVECIBIVE 1B IVE 131V 3],
[YEreey | |UZ 2|V 2Vl <z [IYECes |3 + U231V IV,
[Yoves|o US| UE Y |2 <[V ]5 + TS 131U |13],
Yoy oW ||| Ve [l <g[IIYeeev |3 + [IWEe v 3 VEvll3)]-
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The expression in (B.11) can be upper bounded as follows.
R 8] <2 fy (B[ o {1V I Vo Ve Ve (B.13)

ONUZ 20V 20 VEY N2 + s WU 2 IVE 2 VEY]]2
U N2([VE 20V ll2 + ps (DTS 2]V |2l VY2

+ usONUS Y 2V ll2lIVE 2 + ps (D) IUF 2 IVE 2V 2
ONUS 2T |2 + p2 VU 2| US ]2 + p2 (0TS [2[| U 12
OWE 2|V 2 + pa (O IWE 2] [VEEY]l2 + p2 (D) [WE ¥ 2]V [l2
(b)

Wz oVl -+ (B) [} ] ) ds

t x,v xr,u x,w x
+15 (¢4(0 E[IVEe I3V I3Vl v ’yIIQ}

+ 63 (0 ZE[ U2 3V 31V 3] + g (0)2E (U |3V |3 Ve 3]
+ 63 (o PE[[UZ BV I3NVEI3] + da(0)2E (UL |31V 31 V]3]
+ 93 (0)2E[|UZ [3[VE 3N VY]] + da(o 2E[||U:wun%||v:1wn%||v:1y||%}
+ 62 (0 E[| U 31U 3] + b2(0PE[IUZ B U7 3]
+ G2 (0 E[| U ZNUZ " 3] + o) E[| W ||V 3]
+ 6a(0)ZE[[ W |3 VEu|3] + go(0)2E[ W3V 3]

(0)E]

+ da(0) 2B [[W v |3V |13] +¢1(U)2E[I|5§m’”“wy||§])d5

Using the above Young’s inequalities (B.12) in the integrals in (B.13), we obtain
E[[Y;Y||3] <{N4(b + 6p3(b) + Tp2(b) 4 21 (b) + 15¢1(0)? } fo [[|[Yzvuwy|2]ds
+ Jy L (1a () + 1564(0)?)e % + (6p13(b) + 9095 (0) )7y e (P2oat02.0)/2
A1 (b) + 60¢2(0)2) 7y fes Bs.a+01.0)/2 (B.14)
Bpa(b) + 450(0)?) 2,46 b fol3] w3 wl3 113

Using the expressions derived earlier in (B.6), (B.8), and (B.10), we notice that all the exponents in the second integral in (B.14)
can be upper bounded by 161 9(b, o) + 202,2(b, ) + 63 2(b, o). Integrating the resulting upper bound, and finally, applying
the Gronwall’s lemma to the last expression, we obtain that

B[ Y2y |5] <yaze®2{lvl3]lull3]lwl3yll3

+

—~

+

where

#4,0(b,0)+693,0(b,0)+5p2,0(b,0)
742 = 16¢1,6(6,0)

1
>15 904,0(b><7)+6%,4 4/73,0(b»<7)+(4V3,/f+3V2,4)902,0(va)
= 16¢1,9(b,0)4+20p2,2(b,0)+6¢3 2(b,0)

01,2 =311 5(b,0) + 27p22(b,0) + 12¢3,1(b, 0) + @a,0(b, 0)
> pa(b) + 613 (b) + Tra(b) + 241 (b) + 15¢1 (0)?
=+ 16@179(1), 0') + 20(,02)2(1), 0') + 6(,03)2((), U).

The following lemma collects the results derived in this section.
Lemma B.1. Given the function

Pin(b,0) = i (b) + npsi(0)? + i (0)?,
we have the following moment bounds for the first four derivative flows
E[[V"l18] <yimetm o],

E[|U713] <veme®m vl13ulls,
E[|[Wy" (5] <yanet® [[vll8 |ull3 (w3,
B[V Y15] <vame®n [loll3llull3{lwll 15,
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where,

Yi,n :15
ol,n :n¢l,n72(b7 U)a

_ _#2.n-2(b,0)
72’" n¢1,27172(b)0)

02, =3n¢1,2n—2(b, 0) + N2 n_2(b,0),

__1509,n—2(b,0)+5¢3,n2(b,0)
RERD 4np1,an—2(b,0)

O3 =Tn01,3n—2(b,0) + 10np2 n—2(b, o) + 3nws n_2(b, o)

_4,0(0,0)+6¢3,0(b,0)+5¢2,0(b,0)
74,2 1651.6(6,0)

9472 :31(/7175(17, O') —+ 27()0272(17, O') + 12()0371(17, O') =+ (,0470(17, O').

C Bounds on the Semigroup Derivatives

In this section, we establish the polynomial growth of semigroup derivatives of up to fourth order. We state a few preliminary
results that will be helpful throughout this section. Our first lemma is a standard application of Dynkin’s formula [22], and
establishes a moment bound for the diffusion process.

Lemma C.1. Ifthe diffusion satisfies Condition 2, then we have

E[|Z#]3] < e=|a]l3 + 222 (1 — =) < [laf|f + E22,

where 3,2 = B and for n > 3, By, is as in Lemma A.1.

Proof. Applying Dynkin’s formula to the function (¢, z) — e®||z||™, we obtain
« x|[|mn n t as Zz||n as x|ln
e E[| Z7 (5] =lllls + [y Blae[|ZE]5 + e Al ZE|3]ds
n t as x|l s x|l s
<llzll3 + [y Elae**[| Z2]13 — ae*[| ZZ 5 + Br.ne°]ds
=g + 2 (e = 1),

where the second line follows from Lemma A.1. Multiplying both sides with e~* provides the desired result. |

We will use the polynomial coefficient of a function f defined as in (2.6). We observe that for any m € N, we can write
IVEf(@)llop < infe 7ok (F)(1+ [[2]|5) < Fim (£ + [|2[15"). (C.H

If f has a higher degree polynomial growth than m, we have 7, ,, = oo, and the above inequality is still satisfied. In order to
simplify our bounds, we define the following function v;.;(g) = 1 V max;<k<; pr(g) for j > 1.

Lemma C.2. Let g : R? — R be a pseudo-Lipschitz continuous function of order n as in 2.5. Then, the following items hold:

o g has polynomial growth of degree at most n + 1,

l9(2)] < 1lg(0)l2 + Air,n(g) (1 + 2[l2l5™).

o The gradient of g has polynomial growth of degree at most n,

IVg(@)ll2 < 201, (9) (L + [[2]|3), ie. T1,n(9) < 2f1,n(9)-

Proof. The first result follows from (2.5) by letting y = 0, and applying the triangle inequality. For the second result, for u € R?
with ||ul2 = 1 and we write

<Vg(x),u> :limE\LO w,

<limeyo fian(9) (1 + [lz + evll5 + [lz]13),
=fi1n(9) (1 + 2[|z][3).

Then the result follows by taking the supremum over w on the left hand side, and using the relation |Vg(z)|2 =
SUp|y =1 (V9(2), u).
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Lemma C.3. For a function g : R® — R with i-th derivative V'g, and any n,m,l > 1, we have

i T i od m n
E[IIVig(Zi)op] " <27in(@{1 + Brimn /@) H (1 + |[2]3).
Remark 1. Note that the above lemma still holds in the trivial case where g cannot be bounded with a degree-n polynomial. In
this case, T; ,, = 00 enforces the inequality.

Proof. We have,
E[IVig(Zo)ll,) " <Fin(9)E[(L+ 12713)] ",
<2Finle){1+E[I1ZEI]}",
<2in(o){1 +E[I1Z715) "},
<2 ({1 + 1|3 + (Bramn/e)™},
<275 (9){1 + (Bramn/a) /" } (1 + |2]|3),
where the first step follows from the polynomial growth assumption (C.1), and the last step follows from Lemma C.1. (|

The semigroup derivatives can be obtained by taking the derivative of P f(x) = E[f(ZF)] with respect to . This provides us
with the following expressions.

e The first derivative of the semigroup in the direction v is given as
(v, V(P f)(z)) = E(V f(Z7), VO).
e The second derivative of the semigroup in the directions v and u is given as
(0, V2(P.f)(x)u) = E[(V2 F(Z7)V," V) ] + BUVF(Z8), U]
e The third derivative of the semigroup in the directions v, u, and w is given as
VAP @)lo, u. w] =E[V3F(Z0) [V Vo VE] + B[V (Z0)UE V)] (€2)
E[(V2f(Z7) V2", US)] + BNV F(Z8) Vi, U5 )]
+E[Vf(ZF), W ).
o The fourth derivative of the semigroup in the directions v, u, w, and y is given as
v4<Ptf>< v, u,w,y) = E[VAF(ZD) [V, Vf’“ W,w ] (€3)
vgf( )[U;E,'Uy Vw,u Vw w]] [ Uw ,uy V;E U V;E w]]
V3R ZOUEY, V0 V] + [V3 Uf’"w, Vo vE]
E[V3f(Z)U5, Vi Vo] + B[V £( Z”” (U v v
E[(V2f(Z5) U, U5 + [<V2f(Z YU, U5
E[(V2F(ZE)USY, U] + E[(V? (Zt YW V)]
E[(V2F(ZE)W " V] + BNV F(ZE) W Vi)
[< FZEYWE vEn ] + [<Vf(Z””) Y.

The above expressions will be useful when we derive bounds on the semigroup derivatives when ¢ is small, say ¢ < 1. When
t > 1, we will appeal to a Bismut-Elworthy-Li (BEL) type equality to obtain upper bounds. BEL equality and related expressions
will be provided in Section C.2.

+E

— o —— — — —

C.1 First derivative of the semigroup

The following lemma establishes the polynomial growth of the first derivative of the semigroup.
Lemma C.4. Let f : R? — R be a pseudo-Lipschitz continuous function of order n, and the diffusion Z¥ satisfies Condition 1
and 2, and has L1- and Lo-Wasserstein rates p1 and g2, respectively. Then, the following items hold:

e Foranym,l > 1, we have

E[IVAZEIA]" < 4finn(H{L+ Brimn/0)V H (1 + [|2]]3)-
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o Let Pif(x) denote the transition semigroup of an It diffusion. Define 01(t) = log(oz2/01(t)) and g2(t) =
[log(01/02(t)/01(0))]/log(01(t)/01(0)), and when r = 2 assume that &« > nA,/202(t) ¥Vt > 0. Then for any m > 1,
P, f(z) is pseudo-Lipschitz continuous of order n with constant

fin(Pef) < i n(f)oi(t)wy(t), (C4)
and consequently 1 n(Prf) < 2fi1.n(f)01(t)w,(t) where

wr(t) = 1+401(8)' /" 01(0)"/? (1 +2 {—“V@f‘“)gja"”ﬂ )

where &1 = « and G > infifa — nAg(1V 02)]+.

o Let uy denote the function that solves the corresponding Poisson equation. Then for any m > 1, uy is pseudo-Lipschitz
continuous of order n with constant

i n(up) < () J5° o1 (t)wr (t)dt.
Remark 2. We would like to highlight two important cases when r = 1.

e When we have Lo-Wasserstein exponential decay, i.e., 01(t) = 02(t) = e~ "* then we obtain
w(t) =5+ 8([2Aan + 38]/a)™,

which is independent of time t. In this case, we obtain that ji1 ,,(P, f) = O(e™"') which decays exponentially with time.

o Whenwe have L1 -Wasserstein exponential decay and Lo-Wasserstein exponential growth, i.e., for k1, k2 > 0 01(t) = e~ "1t
and 05(t) = e*2!, then we obtain

wi(t) = 5+ 8({LV [r1 + ralt)}2Xan + 38] /)" = O(t"),

which grows polynomially with time. In this case, we obtain fi1 ,(P;f) = O(t"e"*) which still decays exponentially with
time.

Proof. For the first item, by Lemma C.2 we have a bound on the polynomial growth of the gradient, i.e., 71, (f) < 2f1.,(f).
Next, applying Lemma C.3 for some [, m, we immediately obtain

E[IVAZE)I4]) " <4fi1n(D{L+ Brimn/a) H(1+ |2]]3).

For the second item, we write

|Pf () = Pef(y)l <|E[f(Z7) = F(ZD)]I;
i (NE[L+I1ZE1" + 12211128 — ZE 1],
<inn(PLENZE = Z2IN+ Bl 271" 28 — 211 + Elll 2711127 — 2/ 11}
The first term can be bounded by the L;-Wasserstein rate, i.e., E[||Z¥ — Z7||]] < 01(¢)||x — y||2. For the second and the third

terms, we use the following lemma.
Lemma C.5. Assume that Condition 1 holds. We have,
E{| 2713128 = Z112) < (evr (0)201 (1) /" [l + 1 4 2(NeL2ent3m8) Ty,
E(IZY 150125 — Z112] < (evor(0) 201 ()" |1yl + 1+ 2 (L2AZentdm0) sy
where 01(t) = log(e2/01(t)) and g2(t) = [log(e1/02(t)/71(0))]/1og(e1(t)/r1(0))-

Proof. First, we prove the result for r = 2. We choose €, = % A and write

1
2log(e2/01(1))’
EllZ2I51128 — Z2|l2) =E[|1 22151128 — 2211511 28 — 21153~ (C.5)

n
€t
2

T 1—e T T ©t
<E[llZf - 2} |2l (1271512 - 212

€t

2n
5 "EllZz - 213]

b
2

T 1—es T
<E[|1Z - Z})l2)'E[11Z;
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The first term above is bounded by the L;-Wasserstein rate. The second term can be bounded by Lemma C.1. Since we have
T =2/¢; > 3, we can write

R n €t
E[1ZF 517 < ll2l5 + (Brnye, fo) . (C.6)

Below, we use the definition of 3, ., given in Lemma A.1 and that 1 + =™ > 27 for any > 0, and that 1/ 21/7 < 1 and
&, < « in order to derive a bound on (ﬁmn/a)l/T. For 7 > 3, we have

(57‘,1’77,)1/7— 1 ()xarn-i-GrB)n_i_ ()\a‘rn/4+26)1/7
o ~ ora, - 22 )

Combining the last line above with (C.6), we obtain

|21/ €t1et n Aan/er+3r
127 12/)7 < flallg + 1 4 2(2enletors)

IN

21/7 2ra,. 2a
n
Ao Tn+673
Sl + 2( 2ra,. ) :

" (C.7)

€t/2

In the sequel, we let r = 1. For the last term in (C.5), we use Lo-Wasserstein rate and obtain E[|| Z7 — Z?[13] 7~ < 02(t)“t ||z —

yl|5'. Combining these bounds, we obtain
E[|ZF11511ZE = ZE Nl2] <or(t)' = oa(t)* (2[5 + 1+ 2[(Aan/er + 3B)/a]™) ||z — yll2,
<or(t)e /> (|lallg + 1+ 2[ BL22kele /It T |y

SQQI(t)(Hng +1+ 2[{1\/10%(92/910(tt))}2>\an+3ﬂ}n) ||$ _ y||2

Next, we consider the case r = 2. Define g1 (t) = 01(t)/01(0). We again use the inequalities (C.5) and (C.7), but this time we
choose ¢; = 2 Alog(g1(t))/[2log(21/02(t))] which implies 2n/e; > 3. Hence, for &z = [a — nA./(2€;)]+ we get the same
inequality in (C.7) for r = 2.

ElIZE 131128 — 2¢12] < 01(0)201(8)/ [ lally + 1+ 2( 2242202 i — g,

ra,

< 91(0)1/291(t)1/2 {Hx”g 414 2([1V[10g(§1/92(t))]/10g(§1(t))]QAan+3Tﬁ) } Iz — yllo.

Ty

Combining these bounds, we obtain
EllZ7 131128 — Z¢l2]

< (eV a1(0))2ou ()7 [lallg + 1+ 2(LBZen )y oy
where g1 (t) = log(ea/01(#)) and 92(t) = [log(e1/ea(t)/01(0))]/log(e1(t)/01(0)). O

Therefore, we obtain
|Pef(z) = Pof(y)l < i (PAE[IZE — Z2 2] + B[ ZE (151128 — ZP 2] + E[l| 2 131128 — Z¢ |21},

~ r n n 0r]2Xan+3r "
< ()| o1() + 01 (/7 (eV 0r(0))2 (g + [yl + 2 + 4 | LY2AZRensorB Y g — g,

< i l(£)or(®)[1+201(6) /" (ev o1 (0))/? (1 4 2 Lee-WlRantd | Ty
x (L+[lz]13 + lyll5) Iz — yll2.
Hence, we conclude that P; f is pseudo-Lipschitz continuous of order n, with coefficient with

P (P f) < finn(f)o1(t)wr(t) where
wr(t) = 14 201 ()17 (eV 01 (0)) /2 (1 +2 [—“V@‘(t)ffbww] n)

For the last item, we write
lup(x) —up(y)| < [55|Pf(x) — Pof(y)ldt,
< Jo~ (P )AL+ lz]|5 + [lyl5) |1z — yll2,
which concludes the proof. O
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C.2 Second derivative of the semigroup

For the higher order derivatives, our main tools will be the Markov property of the semigroup,

(Pef)(x) = (Ps[Prs f]) () for s € [0,1],
the following Bismut-Elworthy-Li-type formula [2, 4, 13],

(V(P.f)(z), ) :%E[ £(23) [ (o= (27) Ve, dB, >} (C.8)

and the following identity which is obtained by applying Itd’s formula [24] to the function (s,z) — P:_sf(x) and used in the
derivation of (C.8) [13]

f(z7) = )+ Jy (V(Pios)(27),0(22)dBy). (C.9)
Differentiating the expression given in (C.8), we obtain
(u, V2(Pyf)(z)v) :%]E[Nf(zt VY [ o1 (22)Ve, dB, >} (C.10)
+1E|£(2F) [y (Vo (Z2) Ve Vi) dB.) |,
+1E[£(2F) Jy (o7 (Z2) Uz, dB,)].

The second and the third terms depend on f multiplied by an integrated Brownian motion, which helps us work directly with its
gradient. To see this, we plug in the identity given in (C.9) and the second term becomes,

%E[f(Zf) Jy (VoM @)V, v, st>} (eBE)
= 1E[{(P)@) + 3 (V(P—s /)(22),0(22)dBy) | [y (VoL (Z2) [V, V], dB)
- lE[fo (V(P o f)(Z2), 0(Z) Vo (Z2) [V, Vot ds|,
= —1B[ [y (V(Pe o )Z2), Vo 2DVl (Z2)Vi)ds),
where the second equality follows from Itd isometry, and for the last line, we used the identity given in Lemma F.4.
Similarly, for the third term we obtain
%]E{ 7(2¥) fo o~ (Z2\ U, dB >} (C.12)
= 1E[{(Pf)(@) + [y (V(Pi-o f)(Z2),0(22)aB,) } [y (o~ (Z2)UE", dB)]
= LB[fy (VP f)(22), U2 s
where the last line follows from the It6 isometry.

Plugging the expressions derived in (C.11) and (C.12) into (C.10), we obtain that
(u, VA(Pf) @)o) =HE[(VF(Z5), V") [y (o~ (22)Vio,dBy). C13)

E[fo (Pr_s f)(Z7), Vo (Z2)[VEu] o~ (Z5) Vv ds)
LB fy (VP f)(22), Uz ds .

We will bound the absolute value of each term in (C.13) in turn. For the first term, we write

HE[(VFZ0). V) )y <a*1<zzﬂ>v:-rv, aB)||
|

x Z,u /2 t — x x,v
< B[V AZDIBIVE) /E[\fo (o 22V, dB.)

< L[|V ANV | fy (07 (22 aBy)

2]1/2
SB[V 2 B R [ o 2y viras)
t t 0 2 9
< 4 (D) Bron/0) )L+ [l oo ) et/ ulalfo],

IN
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where we used Cauchy-Schwartz inequality in the first two steps, [td isometry in the second step and Lemma C.4 with [ = 4 and
m = 1.5 to obtain

E[IVZIE]" < 4 (£ + Bron/a) /)1 + ||2]3),

and Lemma B.1 to bound the derivative flow moments, i.e.,

B[ V4] 7" < |[ulletfr4/4,

B[y o~ 20V 13ds] < pololullave
For the second term in (C.13), we write
e[S (V- f)(22), Vo (20)ViElo (22)Viev)ds]
< p(0)po(0™ )3 [T EIIV (P f)(Z2) |2 VE© ol VE4||2)ds,
< a(@)po(0™ )% fy BV (P )(Z2)I3) BV 18] B[V 18]
<4pr (0o (0™ V)i () (1 + (Bron/@) )% fyo1(t — s)wn(t — s)e 5914/2d8(1+|\$||2)|\UH [0]l2,
< 41 (0)po (o) i ()01 (0)wr ()42 (1 + (Bron /) /) (1 + ||z[|5)[|ull2][ ]2,
where we used Lemma C.4 with [ = 2 and m = 3 to obtain
E[| V(P 1)(Z2)3] " <4fivn(Pes )L+ (Bron /) /) (L + [12]3), (C.14)
<4finp(f)or(t — s)wr(t = s)(L+ (Bron/) ) (1 + ||z]3),
and Lemma B.1 to bound the derivative flow moments, and for s € [0, ¢],

01(t — 8)wy(t — 5)e*14/2 < 01 (0)w, (t)et?14/2,

1/4

For the third term in (C.13), we have
1/2 1/2
LBy (V(Pi-o)(Z2), Usyds]| < 3 [ B[V (Peo)(Z2)13] B0 1] ds

< 4finn (Pt fo 01(t = s)or(t = s)e?22/2ds(1+ (Bron/a) /) (1 + []3)lfull2]v]]2,
< 4 (£) 01 (009 5w, (£)e22 /2 (14 (Byn /@) /) (1 + 2]|3) [ull2 | ]]2,

where we used (C.14), and Lemma B.1 to bound the moments of the second derivative flow, and g1 (t — s)w,.(t — s)e*02:2/2 <
01(0)w,.(t)e'?2:2/2 for s € [0, 1].

Combining the above bounds, we obtain a bound of the form
(u, V(P f) (2)0) < 4E(8)(1 + (Bron/) )i (F) (L + 213 ull2 o]l where C.15)
& (1) = vo(o™ o1 O)wp (et®2/2 [ L + 45 + ()]
2 Mo(U_l)%ewl""/2 + 1 (o) po(07 1) 01 (0)wy (t)e™47% + 01 (0 )Vg/zwr( t)ett>2/2,

In order to obtain our final bound, we will appeal to an argument given in [4, 15]. Using the Markov property of the diffusion
semigroup, we write

(u, V2(Pf)(x)v) =(u, V*(Ps[Pi—s f])(2)v), (C.16)
<48 (8) (1 4 (Bren/@) ) inn(P—s )L + [lz]|3)]ull2]v]l2,
<A&(8) (1 + (Bron /@) /) firn (for(t — s)wr(t — s)(1+ |lz)|3)]ull2]|v]|2,

for any s € (0,¢t]. Note that we also used Lemma C.4 to get fi1 n(Pi—sf) < fi1,n(f)o1(t — s)w,(t — s). For simplicity, we
choose s = 1 At in our calculations below, but it will be useful to only consider the case ¢ > 1 in the next two sections when we
bound the third and the fourth derivative of the Poisson function, where the above bound reduces to

7~T21n(Ptf) S 52@1(15 — 1)wr(t — 1) for
& = 4ir () {1+ (Bron/a)* b o1 (0o (Vo0 |1+ 55 + p ()| 22/,
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Consequently, the Poisson function can be bounded as
(u, V2ug(z)v) = [° (u, V(P f)(z)v)dt
S4p2{1 + (Brion /@) " irn (F)A + [|z]13) [ull2l|v]]2,
where

P2 :f0°° 52 TAt)o1(t — 1A w,(t — 1 At)dt
=01(0)w,(0) [y Ex(t)dt + (1) [ 01(t — D, (t — 1)dt,
=Q1(0)wr(0)uo(0_ )01(0)w, (1)ef2:2/2 {24—72/2 + (o } +&(1) ;7 o1 (t)wr(t)dt.

The final bound is obtained by taking the supremum over v and v, i.e.,
IV s (2)llop = SUP = fofj,=1 (1 VEur(z)v) < G(1 + [|2]|3),

where
G2 £ 2601(0)wr(0) + & [y~ 01 (t)wy(t)dt, with
& = 4firn(£){1+ (Bron/a)* }or (0w (Vvo(e ) [1 453 + i (0) | e22/2.

C.3 Third derivative of the semigroup
We differentiate (C.10) and obtain

V3(Pf)(@)u, v,w] = § 32, E[Ts ;] where (C.17)
T3y = V2f(Z)V VI g lo ™1 (28)VEY, dBs),
T2 = (Vf(ZF),US") J§lo™ (Z22)VE?, dBy),
Ts3 = (Vf(ZF), V") 5 (Vo™ HZ2)VEP, VEv], dBs),
Tsa = (VF(Z7), V") J§ (Vo (ZE) Vo, Vo], dBs),
Ts5 = (Vf(ZF), V") glo™ N (Z5) U™, dBy),
T3 = (Vf(ZF), VEr) filo~ (29U, dBy),
T3z = f(Z)J5(V2o™ H(Z) Ve, VEr, ViEv] dBy),
Tss = f(Z7) 5 (Vo= H(ZD)UF ", Vi), dBs),
Ts9 = f(Z7) 5 (Vo= H(ZD)[UF™, Vo), dBy),
T30 = f(Z7)J§ (Vo= (ZE)[UF", VY], dBy),
T30 = f(Z7) f3{o (Z5)W o™, dBs).
We will bound each of the terms in (C.17) in turn. For the first term, we write
(T ]| < T[22 IV I3 13) B e @ver, aB)?] (C.18)

T 1/ ZT,w 1/ T, U 1/ — N T.v 1/
FENIV2F 2] BV 15] TRV 18] oo™ E[SS IV ll5ds]
272, (S){1+ (Bron/a)°} (1 + ||2ll5) po(0 ™) J7e™ /2 [[ulla]|w]l2]|v]]2,

where the first and the second inequalities follow from Cauchy-Schwartz and the It6 isometry, and the third one follows from
Lemma C.3 for [ = 6,m = 1, and Lemma B.1 with 6, /3 > 61 2. We note that the inequality (C.18) holds for any n € N.
When f has a larger polynomial growth than n, we let 73 ,, (f) to be co.

<
<

For the second term, we write
1/2
LETs.q)| < FE[IVAEZDIS] BT 1) VB0 2 Ve dB)[]

< 4jin(Fpo(0 ™)1+ (Bron/a) *}rsls L2 (1 + ]3)|ullz w2 o]z,
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where the first step follows from Cauchy-Schwartz and Hoélder inequalities, and the second step follows from the Itd isometry,
Lemma C.4 for ] = 6, m = 1, as well as Lemma B.1 with 63 3/3 > 0} 5.

For the terms involving T3 3, T3 4 we write
1 1 x4 1/a T,U |14 1/4 t —1 x x,w x,v 2 /2
HEITs o] < FE[IV5 (23] VBV 1) B[ (Vo v, vl B[]
< i (FHpa (0 )L+ (Bron/@) 70} J7e0a/4 (1 + [l]3) lull2 w2 v]l2,
YE[Ts )| < 4finn(Fp (0 {1 + (Bron /) 1/6}% e/ ||z ]3) ullallw ] [0]
where we use Cauchy-Schwartz, the It isometry, Lemma C.4 for | = 4, m = 1.5, as well as Lemma B.1.

Similar steps yield the following bound for the terms involving 13 5, T3 ¢,
BT 5] v |E[T3 ol

< 4jin(Fio(o™ {1+ (Bron /)" 3s dre22/3(1 + ||al|3) [[ull2 w2 v]]2-

For the terms T3 7, T3 8, 13,9, 13,10, 13,11, we again invoke the Bismut-Elworthy-Li-type formula as given in (C.9) together with
the 1t6 isometry and obtain

E[T37] = E[f§(V2a =1 (ZD) [V, Ve V], o(Z8) TV (Pi—s f)(Z1)) ds], (C.19)
E[T35] = E[J§(Vo (Z) UL, VIv],0(Z8) TV (Pr—s f)(27)) ds],
E[T3] = E[f§{VoH(Z)[UF", Vvl 0(Z8) TV (Pi—s f)(27)) ds],
E[T3,10] = E[J§ (Vo™ (Z)[UZ*, VY], o(Z8) TV (Pi—s f)(27)) ds],

E[T511] = EB[fg (W, V(P f)(Z5))ds].
In the above expression, we use the chain rules given in Lemma F.4, and for the first term in (C.19) we obtain
FE[Ts.7]] < po(o™){2u1(0) (0™ ) + pa() }
x 1/ xr,u 1/ x,v 1/ x,v 1/

< B[V (Pi-s ) (25)13] “E[Hv 3] BV TRV N] as

<4pao(o ) (2411 (0)? 10 (0 ") + 12(0)H{1 + (Bron /) /7
t~ S

X 3 Jo P (Pees e/ 4 ds (1 + lelg)HuH [wll2[]l2;

<Afiy o (f)po(o ™) {201 (0)? po(0™1) + pa(0) {1 + (Bron/a) '/}

x 01(0)wr (1)1 /4 (1 + [l2]|3) lull2llwll2]lv]2,
where we used Lemma C.4 and that p; (¢) is non-increasing, and that w,(¢) is non-decreasing.

Similar steps yield the following bound for the terms involving 73 g, 13 9, 13 10,
H[E[Ts 5]| V |E[Ts0]| V [E[T5 10] ||

< i1 ()11 () 10(0 ™)L+ (Bron/ @)} 01 (0)7 30 (£)€/22:2/3 (1 + [|]|3) |[ull2||w]|2]|v ] -
Finally, for the last term we have

E[Ts11]| < 4fian (£){1+ (Bron /@) } 01 (007 50, (B)e2/2(1 + [l2]3) [ullz w2 o]

Combining all the bounds on terms 73 ;, we obtain
V3 (P f) (@) [u, v, w]
< 2720 ({1 + (Brion/@) 7} (1 + 2]13) o (o™ 1) Jretro/2 ull2]lw] 2 v]l2

+4ﬂ1,n(f){1+(ﬂrﬂﬁn/a)l/ﬁ}{#o( )7;/3\1[ 1025/ 4 9y1; (o) Lt/

+ 20(0 ™ )yl dr e/ 4 pro(0) (01 (0w (1)et 4/

+ 31 (0 )0 (0)e1 (0135300, (72272 + 02015 0r (£)e/2 L (1 + [e3) [l o,
< 270 n ({1 + (Bron/@) "} (1 ) oo™ Jre' s/ lullajwll2 o]

4710 (£ {1+ Bron /)7 H i + s (t) Fe /41 + allB) oz o]z
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where
€51 =po(o~ )3 + 2p1(01) + 20 (0~ )
€32 =[po(o™ {201 (0)2p0 (07 1) + p2(0)} + 3po(0 ™ )1 (0)5 +73'3] 01(0)

t93,4/4

The last inequality is obtained by bounding each of the exponential terms with e , and rearranging.

Once again using the Markov property of the semigroup, we write for any r € [0, ¢],
V3(Ptf)(x)[u,v,w] v3( [Pt rf])( )[uvvvw]
< 2700 (Pior o0 ) o + 4 (P ) st + Gz (r)}
X {1+ (Bron/a) 7} (1 + z]13)llullzl|w]l2]v]2.

67‘0314/4

Using the results of previous section — specifically (C.16) and (C.4) — we obtain for any r € (0,¢] and s € (0,¢ — 7],

VAP @), v, w] < (200 )6a(8)d + T + Eaawor() oa(t =7 = s) (t = 1)
X jin (£ AL+ (Bron/ @)V} (1 + llallg) fulzlwl o]l

Next, we plug in the definition of £>(s) (C.15) from the previous section, and assuming ¢ > 2, and choosing s = r = 1, we
obtain

VA (P) @) v, w] < |26a0(071) + 4jinn(F){E + Gowr (1)}

X 01(t — 2)wn(t — 1)e® 441+ (Brgn/a)}(1 + ]2) ullollw]][v]]>

< 4fi1 ()1 (0)wr (Vv (0)v1.2(0) o (0 roa (07 e/ 2(T + T35 + 755 +43)
x 01(t — 2w (t — 1){1 + Bre‘n/a)l/ﬁ} (1 + [zl [[ull2llwl|2[lv]|2-

Therefore, we obtain the following polynomial growth on the third derivative of the semigroup when ¢ > 2,
Tan(Pef) <&01(t — 2)w,(t — 1) where (C.20)
& =4 (f)vi(0)via(0)ro(o™ o (0701 (0)wy (1)es /2
2
X (7+ 1755 + 755 +25) {1 + (Brion/@) ).
The technique used in the previous section does not yield a converging integral for bounding || V3u ¢ ||op. Therefore, we split the

problem into two cases and deal with them separately. The case ¢ > 2 is dealt by the above argument. For the case ¢ < 2, we use
(C.2) and Lemma C.3 and the polynomial growth assumption on the derivatives of f to write

Ve ARV S E IV 18

+ [E[IV2A )13 BT IRV 13] 7

+ [E[IV2 )13 BV IBIE T3]

+ [E[Iv2s <zw H (v Eog 3] "

+ |E[IV £z 1B W3] |7,

< 2713, () (1+ 393 +75/2) €4/ {1 + (Bron/c) 7} (1 + [[2l|3) ullz][v]|2 ] w]l2-

V(P f) (@), u,w] <[E[V2F(Z7)]3 ]

Il
[op] B
[op] B
o] E

Combining this with (C.20), we obtain
Viug(2)[v,u,w] = [y V(P (@) v, u,wldt + [5° V3 (P f) (@), u, w]dt
< |:47~T1:3,n(f) (1 + 3'7 /3 1/2) 03’4/2{1 + (Br,Gn/a)l/G}

+& [, ot — 2wt - 1)dt] (4 [lzlI2) lull2llvll2(fwl]]2-
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Consequently, we obtain

[V3us(x)|lop < C3(1 + ||z]|5) where

(3 =4man(f)(1+ 371/2
& = 41,0 (flvi(o)rvr2(o)
x (7 + T35+ 135 +

C.4 Fourth derivative of the semigroup

We differentiate (C.17) and obtain that

VAP f)()[u, v, w,y] =
T4,1 =

1/2){1+ (Bron/a)/°} 4+ & [ 01(t)wr(t + 1)dt where
vo(o™ o (07101 (0)wy (1)ef4/2

Y/ {1+ (Bron/a) ).

% E E[Ty ;] where

V3 FEZOVE Vo Vo~ (Z2) VT, dBs),
VS VP o (28U, dBy),

Vt” Vo sg o 1(ZS)U”“ dBs),

Vi VS lo T (Z) U dBs)

VS VIR (Ve 1(Zm)[V“ V"], dBs),

S

x
S

x
)

Vi VP (Vo (Z2) [V V), dBy),
Vo VI (VoL (Z0) [V, Vv, dB),
U V) (o~ (Z2)ViEr, dBy),
U Vi (o= (Z2)ViEr, dBy),
U Vo (o1 (Z2)VE, dBy),
,Vf“w V20~ (ZE)[VE, Ve, VoY,
, “f> V2o1(22)
z,y V2U—1(Z;c)[vzu Ve e,
Vo l(22)[Uzey, V),
Vo l(22) Uy, V),
Vo l(Z2) Uz, Vi),
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Tyso = (V(Z7), W) (o~ (Z2)VE", dBy),
Tyas = f(Z7)I5(VP0 N ZE) VI, VES, VEY VY], dBs),
Tysa = f(Z7)[5(VPo~ (ZDUE, VY, VY], dBs),
Tuss = [(Z7)[5(V2o~ (ZDUFY, VI, VY], dBs),
Tuse = f(Z7)[5(V2o~(ZDUFY, VY, VEY], dBs),
Tyar = f(Z7)5(V2o~(ZD)UF, Vv, VY], dBs),
Tuss = f(Z7)[5(V2o~(ZDUFP, VY, VEY], dBs),
Tuse = f(Z7)[5(V2o~(ZDUF™™, VY, VY], dBs),
Tya0 = [(Z7)f5(Vo N (Z)UP™, U], dBs),
Tya1 = f(Z7)f5(Vo N (ZD)UP™, U], dBs),
Tyaz = f(Z7)15(Vo H(ZD)USY, UF"Y], dBs),
Tyaz = f(Z7)15(Vo~H(Z7)[Wewy, Vi), dBs),
Tyaa = f(Z7)[5(Vo~ 1 (Z7) WPy, VE], dBs),
Tyas = f(Z7)15(V o~ (Z3) Wy, Vv, dBs),
Tya6 = f(Z7)15(Vo 1 (Z1) WP, VEY], dBs),
Tyar = f(Z7)[5(0~(Z2)Y PV Y, dBs).

We will bound each of the terms contributing to the summation in (C.21) in turn. For the first term above, we have
1 1 3 T T,u z,w z,Y7||12 /2 t|| +—1 T z,v 2 /2
LE(Tua]| < SRV A0V Ve VI8 VR ot (Z) vl s

x T, u T, w x, 1/ — . .0 1/
<SR[V A2V BV 1BV 13] 7 o (o DE [ Vv 13ds] 7,
_ T 1/ X, U X, W x, 1/9 . xT.v 1/
< duo(o E[IVE £ (Z0) 5] R LIVE IRV IRV 18] | B[R v l3ds) .
< 2730 (F){1 + (Bron/@) (L + [|2[|8) 1o (o) Zze2 2 2| vll2[w]2]lyll2,

where the second step follows from Cauchy-Schwartz, the third step follows from the Itd isometry, and the last step follows from
Lemma C.3 forl = 6, m = 1, and Lemma B.1.

For the term involving T} o, we write
x T,u T, w 1/ - — T x,v 1/
YE[T2)| < LE[IV2F(Z0) V", Vi 113] E [ lo = (Z2) Uz |3ds] 72,
T 1/ T, U 1/ T, W 1/ — . .0 1/
< 3E[IV2FZDIS) CEIVES] RV NS) T o (o DB [T |13ds] 7,
<270 ({14 (Brion/a) (1 + ||215) po(o™ )75/3} 7022/5 w2 o]l wll2 ]yl 2,

where the above steps follow from Cauchy-Schwartz, the 1t6 isometry, Lemma C.4 with [ = 6, m = 1, and Lemma B.1.

Similarly for the terms involving T 3, T4 4, we obtain the same bound, i.e.,
T3]l v [E[Tud]ll
- n IR
< 2. (F) {14 (Bren/@) (1 + [|2]3) o (0~ )75 T ™22/ fulla o ]| w]l2 ]y
By the same steps above, for the term involving 7} 5, we obtain
+|E[Ty )]
1 2 x T,u T, W 1/2 —1 x x,v Z,Y 2 /2
< LRIV S (ZD) B3IV IV 13) (o E | 4o (Z) Ve, Vi), aB ] |
x,u T, w /6 — .U T 1/
< EIV2 @I NV STV IS] | a1V 131V 13ds) ™,
< 2720 (F{1 + (Bron /) /°} (1 + [[2l[B)pa (o) Je00/3 ul 2| l|2[[w]|2 ]|y ] 2-
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The above steps applied to the terms T} ¢ and T 7 yield the following bounds,
FIE[Ty6]l V [E[Ta7]ll
< 2720 (F){1 + (Brion /@) 7} (1 + [l2l|5)pa (0 1) re008/3 ul 2]l 2] w]l2 ]|y 2.

For the term involving T g, we have
1 1 2 £ (|27 78 | 217w (121 V2w | ot o1 ey 2]/
YET: s < SE[IV2FZDIBITT 31V 18] R [ o (Z2)ver, aBo) ]

<1E [||v2 FZo)18) R UE 18] ROV 18] o (0 Y[ | ViEe | 3ds] 72,
1
< 2y (F){1+ (Brion/)7* (1 + I|zl13) o (0= )1/ Zet®2/3 ullal[v 2]y -

The above steps applied to the terms T} 9 and T} 10 yield the same bounds,
$I[E[Ta0]l V [E[T4,10]|
- n TN
<270 (N){1 + (Bron/@)°} (1 + [[2]13) po(o 1)72/2} 203 |ull2]| 0] 2| wll2 ]y ll2-

For the term involving T} 11, we write

U — x z,v Tw /T /2
LE[Ts]l < LE[IV ORIV 18] B[ (V20 (Z2) Ve, v, Vi), dBM,

x Z,U Y - €T,V T, w €T,
AE[IV 2o BV 4] 2 (o E[RIVEIBIVE 1311V 13ds) 7
4 (Fpz(o7 {1+ (Bron/ @)/} e006/3 (1 + |lz]13) [[ull2]v]l2]w]|2]ly]l2.

where the last step follows from Lemma C.4 with [ = 4, m = 3/2.

The above steps applied to the terms T} 12 and Ty 13 yield the same bounds, i.e.,
FIE[Ty,12]] v IE[T4 13|
< Afn(Fpz(0 {1+ (Bron/a)7° } J7e10/3 (1 + [[]3) lullz | vll2l|wll2]ly 2.

For the term involving Ty 14, we have
xT 1/ ZT,u 1/ — T, v T, w 1/
$E[Ty14]] < lIE[IIVf(Z M3 TRV pa (0T E [l UE V(3] V| 3ds] 7,
- 1 n
< i n(Hpa (0~ {1+ (Bren/a) 1) Jre A2 (1 + ||zl13) [ull2lloll2llwli2llyll2,

where the last step follows from Lemma C.4 with [ = 4, m = 3/2.
The above steps applied to the terms from T 15 to T} 20 yield the following bounds,

BTy 15]| v |E[T4 16]| Vo V |E[Ty,20]|
< Afirn (fpa (0™ {1+ (Bron/c) 1/6}71/4 Let02.4/2(1 + ||z )|3) [Jull2]|v]l2llwl|2]|y]l2-

For the term involving T} 23, we write
x 1/ z,uw 1 _ . - - 1/
+IE[Ty 23]] < 1E[||Vf(Z N3] TETE 18] (o HE[IVEC I3 IVEY|3ds] 7,
< 4finn(fpa (0L + (Bron/a) 1/6}71/4 =el0242 (1 |lz]15) |lull2|[ o2l wll2]lyl2,

where the last step follows from Lemma C.4 with [ = 4, m = 3/2.

Similarly for the terms T 24 and T} 25, we obtain
FI[E[Ty,24]] v IE[T4 25|
< 4fin (01 + (Bron/a) 1/“}71/4 70242 (14 |z]|5) |ull2[[v]l2]lwll2]y]|2-
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For the term involving Ty 26, We write

1 1 1/4 T, WY |4 1/4 —1 t T, oul||2 /2

T|E[Ty26]l < £ [IIVf(Zt)II 1 E[IT?115] " po(e ™ HE[f|UZ (13ds] ™,

- 1 n
< 4 (Ho(e {1+ (Bron/) 375 Jre P 2 (1L ||zlI5) [ullzllvll2 w2yl

Similarly, for the terms T 27 to T 28, we have the same bounds,

H|E[Ty,27]] V |E[T4 28] ||

< 4firn(fro(0™ {1+ (Bron/a) /“}71/2 e 02 (1 z]|5) ull2[[v]l2]wll2]yll2-

For the term involving Ty 29, We write
1 <1lg A 1/4 V|4 /4 “WE[ W vwy||24 /2
T |E[Ta2]| < {E [IIVf( D] "BV N3] po(o™ YE[G WY |[3ds] ™,
~ 1 n
< 4 (Fuo(e™ {1+ (Bron /@) Yrsladre2/ (L + lz)13) [ullz[ollzllw]l2llylz-
The above steps applied to the terms T 30 to T} 31 yield the following bounds,
IE[Ty,30]] v |E[T4 s1lll
~ 1
< 4jinn(Ho(0™ {1+ (Bron/a) V313 0231+ [[2]3) [lull2[oll2 ]2 |yl

For the term T} 30 we write

z 1/ z,uw 1/ — z. 1/
HE(T) < $BIIOS 2N W] IV
- _ 1 n
< Afinn(Fro(o™ ) {1+ Brﬁn/a)l/ﬁ}%{g%ews‘?’/z(l+||fE||2)||U||2||U||2||w||2||y||2-

For the terms from T3 33, to T3 47, we again invoke the Bismut-Elworthy-Li type identity as given in (C.9) together with the Itd

isometry and obtain

E[Ty33] = E[f{(V3o ™ (Z2) [V, VEr, Vew Va],o(Z22) TV (P f)(ZT))ds),
E[Ty34) = B3 (V2o 1 (Z2) U™, V0, V), 0(Z5) TV (Poes f)(Z))ds],
[Ty 35] = B[f{(VZo =1 (Z2) U,V VEY], 0(Z2) V(P o f)(Z2))ds),
E[Ty36] = E[jH (V2o (Z2)[UY, VEL, VEY],0(22) TV (Ps f)(Z22))ds],
BTy 37 = B[§{(V2o =1 (Z3)[UZ™, VI, VEY), 0(Z5) TV (Poes )(Z))ds],
[Ty 3s] = E[f{ (V2o (Z2)[U, Ve, VEY], o(Z2) TV (Ps f)(22))ds],
E[Ty 9] = B3 (V201 (Z2)[UZ, VI, VEY), o(Z5) TV (Po—s f)(Z))ds],
E[Ty10] = B[f{(Vo (Z)[Uz, U], 0(22) TV (Pi—s /)(Z2))ds],
E[Tya1] = B[ (Vo (Z) U™, U], 0(Z5) TV (Pis f)(ZF))ds],
E[Ty 0] = B[[{(Vo 1 (Z2)[Uv, U], 0(22) TV (Pi—s [)(Z2))ds],
[Ty 43] = E[fH (Vo1 (Z2)[WEwy, VEr], o(Z2) TV (Pros f)(Z5))ds],
[Ty 4a] = E[ (Vo™ (Z)[WEvwy, V], 0(Z2) TV (Pres f)(ZE))ds],
[Ty 45) = E[fH (Vo H(Z2)[WEvwy, VEr],o(Z2) TV (Pos f)(Z5))ds],
E[Ty,46] = B[§{(VoH(Z) W, VY], 0(Z8) TV (Pi—s [)(Z))ds],
[Ty 7] = BI{(YE0"Y, V(P f)(Z5)) ds]



‘We bound each of the above terms in turn. For the term involving T 33 we write

BTl < zp0(0™){5pa (o)’ mo(o™")

+ 6po(o™ 1 (o) (o) + po(o™")2p1(0)? p2(o) + ps(o)}
x E[IIVE 2 VEC 2l VE 2l VEY 2|V (Pe—s £)(ZF) || 2ds],

< t1o(a {51 (0)? po(0™1) + 6p0(0 ™ (o) pa(0) + po(0~ 1) pa(0)? pa(0) + pa (o)}

x fy ‘E[”V?’“H EvE 13RIV ISE [||VSW||§]E[||V(Pt_sf)(2§)||§}}1/515,

< dfinn(Fpo(o™ )51 (0)? wo(o™") + 6po(o™ (o) p2(0) + po(0 ™) 1 (0)? p2(0) + ps(o)}
< (L4 (Brion /@) /6) (1 + ||z 3) L [ 01501 (t — s)wp (t — s)ds||ull2][vl|2]wl]l2]ly]l2,

< 4 (f)po(0™ ) {Bu1(0) po(o™") + 6po(o ™ pa(o)pz(0) + po(o ™) (0)* 2 (o) + ps(o)}

X (L4 (Bron/@)/®) o1 (0)wr ()e®s (1 + [l2]15) [ull2 |02 ]lwl/2]lyl2,

where we used Lemma C.4 with | = 5 and m = 6/5.

For the term involving T} 34 we have

3
< Luo(o™){2p0 (0 (0)? + pa () B[ [T o[ VE® o[ VE® 2|V (P /) (Z2) |24,
< Luo(o ™) {200(0 ™ a1 (0)? + pa(0)}

x Jy E[[Uz 4] "BV 18] BV 18] VRV (P £)(Z0)18] s
< 4t ()1 + (Brion /) )pio (=) {2p0(0 )11 (0)? + o)}

X 01(0) 4uor (£)et®24/2(1 + [l2l|g) [l [v]l2 o2yl

The above steps applied to the terms from T 35 to T} 39 yield the following bounds,
[Ty 35| V [E[Ta36]| V ... V [E[Tu30]| < 41,0 (F)(1 + (Br.on/a)"®)
% io(o ™) {240 (07 )1 (0)% + p2(0) o1 (007 dewr (£)e2472 (1 + | |3) |2l v |22 | -
For the term involving T} 49 we write
1 |E[Ty, 4o]| < tul( oo (0 E[GINTS 2| U 2]V (Pe—s [)(Z5) ] 2s],
T, uw 1/‘ xr,v 1/ xT 1/
< (o Y [y E[|uzee|3] PE[|Uzv 3] PRIV (P £)(22)]3] ds,
< 4 (f)(1+ (Brion /@) ) ()0 (1) 01 (073 swr (H)e2%2:5/3 (1 + [l |3) 2 0|22 [y 2-
Similar reasoning as above yields the same bound for the terms T 41 and T} 42,
HIE[Tya]| V [E[Ty 4]
t ) ,
- _ 2 n
< Afirn(F)A + Bron/@) ) (0) o (0~ 01 (0)75 swr (D)e2%2:3/3 (1 + [|a]8) ull2 v 2l wll2 -
For the term involving T} 43 we write
|E[Ty, 43]| < %Nl( Do (@)E[G WY |2 |[VEC 2|V (Pe—s f)(Z5) || 2],
T, uw 1/ xT, v 1/ xT 1/
< tm(o Y [y E[Iweewy 3] PR Vae 3] CE[IV(P-f)(22)]3] d
< 4u1,n(f)(1 + (Brion/a) /) pa ()10 (0~ Yy 5 00 (0)wr (£)e23/2(1 + |8 [l 2 [0l 2|yl
The same reasoning yields the same bound for the terms Ty 44, T} 45, and T} 46,
HIE[Ts,44)| V [E[Ty 45]| V [E[T4,46]]]
< 41 (1)1 + (Brgn/0) 7)1 (o) o (07 501 (O)wr (£)et022/2(1 + [|]3) Jull2 o2l 2 |y l2.
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Finally, for the term involving T} 47 we write

T, vuw 1/ x 1/
1E[Tuar] < } [y B[V 3] PE[|V (P )(Z0)13] 7 ds,
< 4jin(F)(1+ (Bron /) )1 501 (O)wn(t)et®2/2(1+ [l2]8) [ullal|o]l ol w]|2]1yl]2-

Combining these bounds, we obtain

VAP S) (@), v,w, ) = L 5 BT ),
<{2Fan(Nito(071) & + 6 (ol )05 3 + 62 (071
+ 6720 (f)po(0™ )72/gf + 1210 (Fp2(0™") 2 + 24 0 (Fpa (0™ )y /Z%[
+ 127, (Ftto (09 5 2 + 12000 (o (07755 L + 4 (Fpo (0 )5 L
+ 41 (Fpo(c ™) {5pa(0)? uo(a™")
+ pt0(0 ™ )pr ()2 (0)[6 + o (0 s (o)) + 3 () b1 () (1)
+ 24110 (F)po(0 ™ ){200(0 )1 (0)? + () o1 (007 wn (1)
+ 12710 (F)1o(0™ )1 (0) 01 (0073 500 (8) + 164110, () pto (0~ )i ()75 5 01 (0)ewy (2)
4 (1130100 (8) b2/ {1 4 (B60/0) (1 + ) ulzllolla o a1yl

Using once again the Markov property of the semigroup, we obtain for any 7 € (0, ¢]

VAP @), v,w,y] = VAP Prer f1) (@) [u, 0,0, ]

< {2750 (P o071 L + 67,0 (e Nito (07 )13k + 6720 (P fn (071
+ 672, (Prr fio(0 )56 2= + 12001, (Pr—r Fpia(07Y) J + 2400 (P fpa (0 )74 =

+ 1270 (Prr o (0 )0 = + 1270 n(Per Fpio (07 )05 = + 4 n(Prr o (0 a5 =
+ 4 (Pe—r fpo (o™ ) {51 (0)2 po(o™") + po (o™ (o) p2 (o)

X [6+ po(o™ (o)) + ps (o) o1 (0)w, (1)

+ 24fi1 0 (Po—7 [ oo ) {200(c ™ 1 (0)? + p2(0) }or (0)7;{1%(7)

+ 12/, (P )0 (0 1) 1(0) 01 (073 3wr (7) + 16fi1 (P 7 )t (0~ )pan ()73 01 (0)ewp (7)

I L T n
+ 4ul,n(Pt—ff)”Y4{§01(O)wr(t)}e 2002/3 1 + (Bron /) } (1 + l|zlI5) [ull2llvll2 w2l yll2-

Next, we use the results of the previous section — specifically (C.16) and (C.20) — and choose 7 = 1. For t > 3 we write
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V4P () u, v, w, 7]

< {2750 (Pt fao(0™1) + 6Fan (P Nttolo )33 + 6Fain (Pt Npa (07

+ 672 (Pee1 )pto(0™ )56 + 1211 (P )pa(0™) + 24f11 n(Picy ) (0~ 03

+ 12110 (Pe—1.f)po(0™ )7;/421 + 12ﬂ1,n(Pt—1f)Mo(U_l)7;{§ +4firn(Pi—1 f)po(o™ )7;/;,

+ 4fi1 0 (Pio1 f)po (o= ) {5 (o) wo(o™") + po(o™ ") pa (o) p2(o0)

% [6+ 1o (0 ) pa ()] + p3 () hor () (1)

+24fi1,n (Pr-1 f)pio (0~ ){2u0(0~ ()2 + p2(0) o1 (073 4w (1)

+ 12/ (Pi—1 )0 (0™ )i (0) 01 (073 5wr (1) + 16710 (Pr—1 1o (0 ) (0)73 501 (0)wp (1)

4 (P )1 301 0)wp (1) be42 3 {1+ (Bron /) Vo }(1 -+ )l ulzlloall ez ly 2
<o1(t —3)w(t — 1){2§3M0(0_1) + 652#0(0_1)7;{3 + 6&2p1(07")

+ 6E2410 (0 1) 7g + 1211, (Fpiz(0 1) + 2401, (F)pr (0~ )74

+ 1201100 (03 + 127010 (Fpto (053 + 4inm (Fo(o~ )7

+ 41,0 (fpo(o™ ) {Br (o) po(o™) + po(o™ ) pa (o) 2 (o)

X [6 4+ po(o™ ") pr(0)]+ps(o) } o1 (0)wr (1)

+ 24fi1, ()0 (0 ) {200(0™ )p11(0)? + p2(0) b o1 (0)3 e (1)

+12fi1,n (f) 0 (0 )11 (0) 01 (0)75 50 (1) + 1671 (F)pt0 (0~ ) (0) 75301 (0)ewp (1)

- 4jin (D131 (0)wr (1) }e242/3 {1 4 (Bron /) /o }(1+ ) llulzllol2leolzlly 2
<4jir o (fvi(o)?vis(o)vo(o71) v (o™t )e?2 01 (0)w, (1) {1 + (Br,ﬁn/a)l/s}

x [42 + 327,54+ 6922 + 2755 + 3val s + 24774 + 3153

+ 1272/6 + 5’73/2 + 5’73/3 + ’74/2 + 672/2’7 /G}
x 01(t = 3)wp(t — 1)1+ |z]3) ull2llvll2llw]2lly]l2.

Hence, obtain the following polynomial growth on the fourth derivative of the semigroup for ¢ > 3

Tan(Pif) < &o1(t —3)wr(t — 1), where (C.22)
&4 = 41 (F)1(0)*v1:3(0) 0 (07 ) 0201 )e?2 01 (0)w, (1){1 + (Bron/a) 7o}
[42 + 3272/2 + 6722 + 272/3 + 372/3 + 2472/4 + 372/4 + 12754 i

+ 573/2 + 573/3 + 74/2 + 6’72/2’7 el
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For the case t < 3, we use (C.3) and a slight abuse of notation to write
VAPf) (@) o, wyw,y) <| T (0w, w0,9)| 7+ ooy, w, )7 + Ty, w, )|
+| o (wy, w, y)| 4 o (ww, w, )7+ | Ta (v, w, )[4 o (vu, w, )

H s (wvw, )7 + |3 (wvy, w)| 7 + |3 (wwy, v)| 7 + [ Js(vwy, )| 7?
s (uw, vy)| 7+ | T (uy, vw)| 7+ [Ja(wy, vu)| 7 + | Js (vuwy)| 7,
Ji(a,b,c,d) =E[IV* £(Z0) SB[V ISR 1V 1P | B[V IR [1vie )],
2(a,b,¢) =E[IIV3F(Z0) 1 JE[IUT I8 E Vi 14 [E[IVi™[13),
b) =E[IIV2£(Z2) I3 E[IWe IS V1],
Ja(a,b) =E[|IV>£(Z0)|I3, E[ITF* I3]E [1U7°1°)
) =E[|IV£(Z2)|3]E[|[Y:|13].

Using Lemmas B.1 and C.3, we obtain the following bound for ¢ < 3,
VAP (@), u,w,y] < 27140 (H{L+ (Bron/@)°}
x (1 6+ o + 3955 + 403+ 3] (L )22 ol ullo ol
Combining this with (C.22), we can write
V4uf(:1:)[v,u w,y] = f03 VHPf) () v, u,w,y dt—l—f;o VH(PLf) () [v, u, w, y]dt
S |:677r1:4,n(f) |:1 + 672/4 + 472 3 + 372/3 + 473/3 + V4 e :| 304 2/2{1 + ﬂr Gn/a) /6}
+& 5 on(t = 3)wr(t — 1)dt} A+ [zl [ull2llvll2lwl2llyl2-

The final result follows from taking a supremum over u, v, w, y,
V4 (@)llop < Ca(1+[|2[|5) where

(4 = 6714, (f) [1 + 6754 + 4y2,3 + 370+ dis + ”YZS} e3042/2{1 4 (B, 6n /) "/}
+ & [y o1(t)wp(t + 2)dt,

where
& =4 (fri(o)?vrs(o)vo (01 o (o™t )e? 2 01 (0)w, (1) {1 + (8- Gn/Oé)l/G}
X |42+ 3293 + 6v2.0 + 293 + 3003 + 2403 + 3033 + 1272/,6

1 1 1
+ 573{; + 573{?’, + 74{; + 672/5’72/2

Collecting the results of this section, we reach Theorem C.6
Theorem C.6. Assume that f is pseudo-Lipschitz continuous of order n, and for i = 2,3,4 its i-th derivative has at most
degree-n polynomial growth, i.e.,

P (f)Vmaxi—2 34 Tin(f) < oo.
Then, we have

IViug(@)]lop < Gi(1+ [l2[3)
where

G2 =28201(0)w, (0) + &2 f3 01 (t)wr(t)dt,

G =471, (f) (1 + 375 + 1/2){1 + (Bren/a)®} + & [y o1(t)wr(t + 1)dt

Ca =67 1.an(f )[1 + 672/4 + 42,3 + 372/3 + 473/3 + 74/ } 302.2/2f1 + (By6n /) }
+& fo 01 (t)w,(t + 2)dt,
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with
& =4finn(N)v1(0)v0(0 {1+ (Bron/@) 7} 01(0)wr (1) [2 + 75/3] 22/,
s =41 n(f)va(o)vi. 2( Jo(0 Yvoa (o) {1+ (Bron/a)/}
« Ql( ) ( ) 03,4/2 [7_’_771/2 1/2 _’_71/2}
& =410 (f)ve (o) vis(o)vo (o) 2vpe (a7 1)e 2 {1 + (B 6n /) 1/G}Sgl (0)w, (1)
42+ 327, + 62,2 + 2975 + 3vals + 2454 + 3005 + 12455

1
+ 5”Y3 2t 573 3+ 74/2 + 6’72/;’72/2]

where vy; ; and 0; ; are as defined in Lemma B.1.

D Proofs of Expected Suboptimality Bounds
Proof of Prop. 4.1. By Lemma C.1, our dissipativity assumption implies that p(|| - ||3) < /. Moreover, as noted in the proof
of [26, Prop. 3.4], the differential entropy is bounded by that of a multivariate Gaussian with the same second moments:

—p(logp) < diog(Zmepllld)y < dog(2med),

Meanwhile, log p(z*) = —log [ p(x 2*)dz. Our smoothness assumption, a polar coordinate transform, and the integral
identity of [16, 3.326 2] 1mply that

[ p(x)/p(z*)dz = [ exp(logp(z) —logp(z*))dzx > [exp(—C|lz — x*||3%)dx (D.1)
= [, Sa—1r " exp(— Cr%))dr—Sd 151 (&) C~4/29)

where S;_1 = 2F( 7 /2) is the surface area of the unit sphere in R¢ and I(+) is the Gamma function. Since, by [18, Thm. 2],
L(z +y)/T(y) = a¥ 5 forall z,y > 0,

le'
-

log p(a*) < 45 log(C) — log(*51T(55)) = 35 log(C) + § log(2) — log(} T ) D2)
< 45 1og(C) + dlog(L) — (£ — 1) log($)
< 55 log(25) + 4 log(5%).

The first result now follows by summing the estimates (D.1) and (D.2).

Now consider the case in which p = p ¢. By design, z* is also a global minimizer of f, and hence V f(z*) = 0. Therefore, by
Taylor’s theorem, we have for each z

logpy.0(x*) —log pyp(z) = 7(f(x) — f(27))°
=1(Vf(@*), 2 —a*) + 5(z — 2%, V2 f(2) (z — 27)))°

6
< w;g(f) ||:v _ w*”%O'
The result now follows from Jensen’s inequality as p., o(y(f(z) — f(z*))?) > *ypzﬂ(f(:c) — f(z*)) for 6 € (0, 1]. O

Proof of Prop. 4.3. Let « = 1/k. We have

f((:z: —b)TA(z — b)) exp(—”y((:zr —b)TA(x — b))a)dx
Jexp(—=v((z — b)TA(z — b))")dx

Using the variable change y = A'/2(z — b),dy = det(A'/?)dz, the above equals

wavp%a[f(x)] - f* =

Syl exp(—vlyl**)dy _ f5° Sa—1r? r?exp(—yr?®)dr J5 rdt exp(—yr2®)dr
J exp(—=7(lyl[2*)dy - fooo Sa—1r?=Texp(—yr2e)dr f0°° rd—1 exp(—~r2%)dr ’

where Sy_1 is the surface area of the unit sphere in RY. Substituting an explicit expression for these integrals we get

() 2oy D/ p( 1)

-1/
r(L)2ani2e (L)
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where T'(+) is the Gamma function. Substituting back & = 1/, and noting that I'(z + 1) = 2T'(z) for all z, we get that the above
equals

D(%+k) —krTh=1(dk | - —k(dk k k(Fd+1)-1 ;
vR =L (S ) S M (S k1) = (S

r(4) i
([l
E Proof of Prop. 3.5: User-friendly Wasserstein decay for Gibbs measures
Proof of Prop. 3.5. Define 6. () = (0 (x)o, (z) " — s21)1/2 = %&(:c). Our assumptions imply
(by(@) = by(y), 2 —y)  N154(2) =5 W)IF  1(G1(2) =5, (¥) " (= — )3
s?[|lz —yl13/2 s2[lz = ylI3 s?lle = yll3
L m@)V @) =my)ViG).e —y) (VY mz) —my).e -y +llo@) = @)l
B sgllz — yl3 sglle —yll3
— L i |l — gl > R
< 0 .
T et ifr -yl <R
as advertised. [l

F Auxiliary Lemmas

Lemma F.1 (Quadratic form moment bounds). For Wy, ~ N4(0, I) which is independent from X,,, we have
E[[lo(Xm)Wml|3"] < (20 — DUE[]lo(Xm)|IE"]-

Proof. The exact expressions for the quadratic form moments can be found in [21]. We simply use the properties of Frobenius

norm to obtain a compact upper bound. O

Lemma F.2. For a sequence of real nonnegative numbers {a;}"_, satisfying a;+1 < Ta; + for 7 € (0,1) and v € R we have
1 n
n Zi:l a; S ap + 117--

Proof. By the recursive inequality, we have

1—7°
1—7°

a; < Tlag +y

Averaging over ¢, we obtain

1 o1l i 1—7°
Ly e <d 0 (aor ).
oT 1—7™
n 1—71

IN
<

b b
+E§a0+—

1—-7°
where in the last step, we used 7 < 1 and the Bernoulli inequality
1-mm=1-(1-(10-7)"<n(l-7).

Lemma F.3. For x,a,c > 0andm > 1, we have az™ + a(c/a)™/m > cz™ L.

Proof. The derivative of the polynomial p(z) = az™ — cx™ ' + b has m — 2 roots at 0, and a root at g = c¢(m — 1)/(am).
Therefore, p(z) for z > 0, attains its minimum value at zy. We choose b = a(c¢/a)™ /m so that

p(xo) =(azg — c)xgl_l +b
—b— (1 - Ly >

ma™

where for the last step, we use f(z) = (1 — 1/x)®~1 < 1forx > 1and lim,; f(x) = 1. O

38



Lemma F4. For a three times differentiable matrix valued function o : R% — R™**

Vo (@)] = —o~ 1( )Vo(z)v]o™ (2),
@), u] = o7 (@) [Vo(@)ulo ™ (2)Vo (@) [v] = V2o ()[v, u]
[ —1
)

+V0(af) Jo~ () o(z)[u]] o~ (2),
( (

[v

o Y z)[v,u,w) =0t a:)[— Vo(z)[w]o~(z)Vo(z)[ulo™ (z)Vo(z)[v]
+ V20(2)[u, wo™ () Vo (z)[v] = Vo(z)[ulo™! (2)Vo(z)[w]o ™" (z)Vo(z)[]
+ Vo (@)[ulo™! (2) V2o (2)[v, w] = Vo(a)[ulo™! () Vo (z)[v]o(z) T Vo (@) [w]
+ Vo (2)[wlo™ (2) Vo (2)[v, u] = Vio(z)[v, u, w]
+ Vo (2)[v, o™ (2) Vo (2)v] = Vo (z)[wlo™ (2)Vo(z)[v]o ™" (x) Vo (z)[u]
+ V2o (2)[v, wlo™ (z)Vo(2)[u] — Vo(z)vlo™ (2)Vo(z)[wlo™ (2) Vo (z) [u]
+ Vo (2)vlo ™ (2)V2o(x)[u, w] — Vo(z)[vlo™ (2)Vo(z)[ulo™ () Vo(x)[w] | o~ (x)

Proof. Results follow from matrix differentiation and the chain rule.
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, we have the following chain rules
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