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Abstract

Existing keyphrase generation studies suffer from the problems of generating
duplicate phrases and deficient evaluation based on a fixed number of pre-
dicted phrases. We propose a recurrent generative model that generates multiple
keyphrases sequentially from a text, with specific modules that promote genera-
tion diversity. We further propose two new metrics that consider a variable number
of phrases. With both existing and proposed evaluation setups, our model demon-
strates superior performance to baselines on three types of keyphrase generation
datasets, including two newly introduced in this work: STACKEXCHANGE and
TEXTWORLD ACG. In contrast to previous keyphrase generation approaches, our
model generates sets of diverse keyphrases of a variable number.

1 Introduction

Keyphrases are short pieces of text that humans use to summarize the high-level meaning of a longer
text, or to highlight certain important topics or information. Keyphrase generation is the task of
automatically predicting keyphrases given a source text. Models that perform this task should be
capable not only of distilling high-level information from a document, but also of locating specific,
important snippets within it. Complicating the problem, keyphrases may or may not appear directly
and verbatim in their source text (they may be present or absent).

A given source text is usually associated with a set of keyphrases. Thus, keyphrase generation is an
instance of set generation, where each element in the set is a short sequence of tokens and the size of
the set varies depending on the source. Most prior studies approach keyphrase generation similarly
to summarization, relying on sequence-to-sequence (Seq2Seq) methods (Meng et al. (2017); Chen
et al. (2018a); Ye and Wang (2018); Chen et al. (2018b)). Conditioned on a source text, Seq2Seq
models generate phrases individually or as a longer, concatenated sequence with delimiting tokens
throughout. Standard Seq2Seq models generate only one sequence at a time. To overcome this

∗These authors contributed equally. The order is determined by a fidget spinner.
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limitation so that a sufficient set of diverse phrases can be generated, one common approach is to
use beam-search decoding with a fixed, large beam width. Models are then evaluated by taking the
top k results from the over-generated beam of phrases (k is typically 5 or 10) and comparing them
to “groundtruth” keyphrases.

Though this approach has achieved good results, we argue that it suffers from two major problems.
Firstly, the evaluation setup is suboptimal because of the mismatch between a fixed k and the number
of groundtruth keyphrases for a text. The appropriate number of keyphrases for each text can vary
drastically, depending on factors like the length or topic of the text or the granularity of keyphrase
annotation. Therefore, arbitrarily using the same k to evaluate on all data samples may not be
appropriate. With the existing evaluation setup, for example, we find that the upper bounds for
F1@5 and F1@10 on KP20K is 0.858 and 0.626, respectively (see Section 4.1 for more details),
and worse for datasets where fewer keyphrases are available. Secondly, the beam-search strategy
ignores interactions between generated phrases. This often results in insufficient diversity in decoded
phrases. Although models such as in Chen et al. (2018a) or Ye and Wang (2018) can take diversity
into account during training, they rarely achieve it during decoding since they must over-generate
and rank phrases with beam search.

To overcome the above issues, we propose two improvements with regard to decoding and evalua-
tion for keyphrase generation frameworks. First, we propose a novel keyphrase generation model to
fit the demand of generating variable numbers of diverse phrases. This model predicts the optimal
number of phrases to generate for a given text, and uses a target encoder and orthogonal regular-
ization to facilitate more diverse phrase generation. Second, we propose two variable numbers,M
and V , in the evaluation as the cutoff for computing scores such as F1. They show better empirical
characteristics than previous metrics based on a fixed k. Besides the two improvements in modeling
and evaluation, a third major contribution of our study is two brand-new datasets for keyphrase gen-
eration: STACKEXCHANGE and TEXTWORLD ACG. Because their source material is distinct from
scientific publications as used in previous corpora, we expect these datasets to contribute to a more
comprehensive testbed for keyphrase generation.

2 Related Work

2.1 Keyphrase Extraction and Generation

Traditional keyphrase extraction has been studied extensively in past decades. In most existing lit-
erature, keyphrase extraction has been formulated as a two-step process. First, lexical features such
as part-of-speech tags are used to determine a list of phrase candidates by heuristic methods (Witten
et al. (1999); Liu et al. (2011); Wang et al. (2016); Yang et al. (2017)). Second, a ranking algorithm
is adopted to rank the candidate list and the top ranked candidates are selected as keyphrases. A
wide variety of methods were applied for ranking, such as bagged decision trees (Medelyan et al.,
2009; Lopez and Romary, 2010), Multi-Layer Perceptron and Support Vector Machine (Lopez and
Romary, 2010) and PageRank ((Mihalcea and Tarau, 2004; Le et al., 2016; Wan and Xiao, 2008)).
Recently, Zhang et al. (2016); Luan et al. (2017); Gollapalli et al. (2017) used sequence labeling
models to extract keyphrases from text. Similarly, Subramanian et al. (2017) used Pointer Networks
to point to the start and end positions of keyphrases in a source text.

The main drawback of keyphrase extraction is that sometimes keyphrases are absent from the source
text, thus an extractive model will fail predicting those keyphrases. Meng et al. (2017) first proposed
the CopyRNN, a neural generative model that both generates words from vocabulary and points
to words from the source text. Recently, based on the CopyRNN architecture, Chen et al. (2018a)
proposed CorrRNN, which takes states and attention vectors from previous steps into account in both
encoder and decoder to reduce duplication and improve coverage. Ye and Wang (2018) proposed
semi-supervised methods by leveraging both labeled and unlabeled data for training. Chen et al.
(2018b); Ye and Wang (2018) proposed to use structure information (e.g., title of source text) to
improve keyphrase generation performance. However, none of the above models have the ability to
generate variable numbers of keyphrases.
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Figure 1: Overall structure of our proposed model. A represents last states of the bi-directional
source encoder; B represents decoder states where target tokens are delimiters; C indicates target
encoder states where input tokens are delimiters. During orthogonal regularization, all B states are
used; during target encoder training, we maximize the mutual information between states A with
each of the C states; red dash arrow indicates a detached path, i.e., do not back propagate through
this path.

2.2 Sequence to Sequence Generation

Sequence to Sequence (Seq2Seq) learning was first introduced by Sutskever et al. (2014); together
with the soft attention mechanism of Bahdanau et al. (2014), it has been widely used in natural
language generation tasks. Gülçehre et al. (2016); Gu et al. (2016) used a mixture of generation
and pointing to overcome the problem of large vocabulary size. Paulus et al. (2017); Zhou et al.
(2017) applied Seq2Seq models on summary generation tasks, while Du et al. (2017); Yuan et al.
(2017) generated questions conditioned on documents and answers from machine comprehension
datasets. Seq2Seq was also applied on neural sentence simplification (Zhang and Lapata, 2017) and
paraphrase generation tasks (Xu et al., 2018).

2.3 Representation Learning for Language

Representation learning for language has been studied widely in the past few years. Mikolov et al.
(2013) propose Word2Vec, in which a contrastive loss is used to predict context words given a fo-
cus word. Kiros et al. (2015) further propose Skip-thought vectors, which uses Recurrent Neural
Networks to predict context sentences. Subramanian et al. (2018) leverage multi-task learning by
sharing a single recurrent sentence encoder across weakly related tasks to learn general sentence rep-
resentations. Logeswaran and Lee (2018) formulated the sentence-representation-learning task as a
classification problem, where the classifier learns to distinguish a context sentence from contrastive
negative samples based on their vector representations. Recently, van den Oord et al. (2018) pro-
posed Contrastive Predicting Coding (CPC), which learns sentence representations by maximizing
the mutual information between sequence encodings at different time-steps, also using a contrastive
loss.

3 Model Architecture

Given a piece of source text, our objective is to generate a variable number of multi-word phrases. To
this end, we opt for the sequence-to-sequence framework as the basis of our model, combined with
attention and pointer softmax mechanisms in the decoder. To teach the model to vary the number
of generated phrases, we join a variable number of multi-word phrases, separated by delimiters, as
a single sequence. This concatenated sequence is then the target for sequential generation during
training. An overview of our model’s structure is shown in Figure 1.1

Notations

In the following subsections, we use w to denote input text tokens, x to denote token embeddings,
h to denote hidden states, and y to denote output text tokens. Superscripts denote time-steps in a
sequence, and subscripts e and d indicate whether a variable resides in the encoder or the decoder of

1We plan to release the datasets and code in the near future.

3



the model, respectively. The absence of a superscript indicates multiplicity in the time dimension.
L refers to a linear transformation and Lf refers to it followed by a non-linear activation function f .
Angled brackets, 〈〉, denote concatenation.

3.1 Source Encoding

Given a source text consisting of N words w1
e , . . . , w

N
e , the encoder converts these discrete symbols

into a set of N real-valued vectors he = (h1e, . . . , h
N
e ). Specifically, we first embed each word wt

into a embedding vector xte, which is then fed into a bidirectional LSTM (Hochreiter and Schmid-
huber, 1997) for deriving hte from contextual information in the source text:

hte,fwd = LSTMe,fwd(x
t
e, h

t−1
e,fwd),

hte,bwd = LSTMe,bwd(x
t
e, h

t+1
e,bwd),

hte = 〈hte,fwd, h
t
e,bwd〉.

(1)

Dropout (Srivastava et al., 2014) is applied to both xe and he for regularization.

3.2 Attentive Decoding

The decoder is a recurrent model that takes the source encodings he and generates a distribution
p(yt) over possible output tokens at each time-step t. With pointer softmax (Gülçehre et al., 2016),
the target distribution consists of two parts: a distribution pa over a prescribed vocabulary (abstrac-
tive), and a pointing distribution pe over the tokens in the source text (extractive). We will focus on
the derivation of pa in this subsection.

The first component of the decoder is a uni-directional LSTM. At each time-step t, the decoding
LSTMd generates a new state htd from the embedding vector xtd and its recurrent state ht−1d . Specif-
ically, xtd is the embedding of wtd. During training by teacher forcing, wtd is the groundtruth target
token at previous time-step t − 1; during evaluation, wtd = yt−1, is the prediction at the previous
time-step,

htd = LSTMd(x
t
d, h

t−1
d ). (2)

The initial state h0d is derived from the final encoder state hNe by applying a single-layer feed-forward
neural net (FNN): h0d = Ltanh

0 (hNe ). Dropout is applied to both the embeddings xd and the LSTM
states hd.

In order to better incorporate information from the source text, an attention mechanism (Bahdanau
et al., 2014) is employed when generating token yt. The objective is to infer a notion of importance
αt,i for each source word wie based on the current decoder state htd. This is achieved by measuring
the “energy” between htd and the i-th source encoding hie with a 2-layer FNN:

energy(htd, h
i
e) = L1(L

tanh
2 (〈htd, hie〉)). (3)

The output of the second layer is a scalar-valued energy score. The energies over all encoder states
he thus define a distribution over the source sequence for each decoding step t:

αt = softmax(energy(htd, he)). (4)

To generate the new token yt, the final step is to derive the generative distribution pa by applying a
2-layer FNN to the concatenation of the decoder LSTM state htd and the weighted sum of the source
encodings weighted by the distribution αt:

pa(y
t) = Lsoftmax

3 (Ltanh
4 (〈htd,

∑
i

αt,i · hie〉)), (5)

where the output size of the second layer equals to the target vocabulary size.

3.3 Pointer Softmax

We employ the pointer softmax (Gülçehre et al., 2016) mechanism to choose between generating
tokens from the general vocabulary and pointing to tokens in the source text. Essentially, the pointer

4



softmax module computes a scalar switch st at each generation time-step and uses it to interpolate
the abstractive distribution pa over the vocabulary (see Equation 5) and the extractive distribution pe
over the source text tokens:

p(yt) = st · pa(yt) + (1− st) · pe(yt). (6)

Semantically, the switch should be conditioned on both the source representation and the decoder
state at each decoding step t. Specifically, we project the attention-weighted sum of the source
encodings

∑
i α

t,i · hie and the decoder state htd into the same space by two separate linear transfor-
mations, and further transform the sum of the resulting vectors into the scalar switch value st with a
1-layer FNN:

st = Lsigmoid
5 (tanh(L6(

∑
i

αt,i · hie) + L7(h
t
d))). (7)

We use the source attention weights αt from Equation 4 as the extractive distribution for time-step
t:

pe(y
t) = αt. (8)

3.4 Decoding Strategies

With the probability p(yt) defined in Equation 6, various decoding methods can be applied to decode
the target word yt. Selecting a decoding strategy is important because it determines whether the
generated keyphrase set is of fixed or variable size.

To our best knowledge, all existing models generate fixed size sets by first over-generating a large
number of candidate keyphrases, followed by some ranking algorithm to truncate the candidate set
to a fixed number of final results. One major limitation is that such approaches are incompatible
with the variable-number nature of keyphrases. In the KP20K dataset, for example, the average
number of keyphrases in the training set is 5.27, while the variance is as high as 14.22. In addition,
over-generation is usually achieved by setting a large beam size in beam search (e.g., 150 and 200
in Chen et al. (2018b); Meng et al. (2017), respectively), which is computationally rather expensive.

Since our proposed model is trained to generate a dynamic number of phrases as a single sequence
joined by delimiters, 〈SEP〉, we can obtain variable length output by simply decoding a single
sequence for each sample, either by greedy search or by taking the top beam sequence from beam
search. The resulting model thus undertakes the additional task of dynamically estimating the proper
size of the target phrase set. We will show in later sections that the model remains empirically
competitive when compared to baselines that lack this desirable capacity. Another notable attribute
of our decoding strategy is that, by generating a set of phrases in a single sequence, the model
conditions its generation on all its generation history. Compared to the strategy used in previous
works (i.e., phrases are generated in parallel by beam search, without interdependency), our model
can learn dependencies among target phrases in a more explicit way.

3.5 Diversified Generation

There are typically multiple keyphrases for a given text because each keyphrase represents certain
aspects of the text. Therefore keyphrase diversity is desired for the keyphrase generation, to increase
the semantics coverage of source text and meanwhile to reduce redundancy in generated phrases.
Most previous keyphrase generation models generate multiple phrases by over-generation, which
is highly prone to generate similar phrases due to the nature of beam search. Given our objective
to generate variable numbers of keyphrases, we need to adopt new strategies for achieving better
diversity in the output.

Recall that we represent variable numbers of keyphrases as delimiter-separated sequences. One
particular issue we observed during error analysis is that the model tends to produce identical tokens
following the delimiter token. For example, suppose a target sequence contains n delimiter tokens
at time-steps t1, . . . , tn, respectively. During training, the model is rewarded for generating the
same delimiter token at these time-steps, which presumably introduces much homogeneity in the
corresponding decoder states ht1d , . . . , h

tn
d . When these states are subsequently used as inputs at

the time-steps immediately following the delimiter, the decoder naturally produces highly similar
distributions over the following tokens, resulting in identical tokens being decoded. To alleviate this
problem, we propose two plug-in components for the sequential generation model.
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3.5.1 Orthogonal Regularization

We first propose to explicitly encourage the delimiter-generating decoder states to be different from
each other. This is inspired by Bousmalis et al. (2016), who use orthogonal regularization to encour-
age representations across domains to be as distinct as possible. Specifically, we stack the decoder
hidden states corresponding to delimiters together to form matrix H = 〈ht1d , . . . , h

tn
d 〉 and use the

following equation as the orthogonal regularization loss:

LOR =
∥∥H>H − In∥∥2 , (9)

whereH> is the matrix transpose ofH , In is the identity matrix of rank n, ‖M‖2 indicates L2 norm
of a matrix M . This loss function prefers orthogonality among the hidden states ht1d , . . . , h

tn
d and

thus improves diversity in the tokens following the delimiters.

3.5.2 Target Encoding

We propose an additional mechanism that focuses more on the semantic representations of gener-
ated phrases. Again, our goal here is to reduce covariance between certain decoder states and the
corresponding target tokens (namely, delimiters). Specifically, we introduce another uni-directional
recurrent model LSTMTE, dubbed target encoder, which encodes decoder-generated tokens yτ ,
where τ ∈ [0, t), into hidden states htTE. This state is then taken as an extra input to the decoder
LSTM, modifying Equation 2 to:

htd = LSTMd(〈xtd, htTE〉, ht−1d ). (10)

We do not train the target encoder with the training signal from generation (i.e., errors do not back-
propagate from the decoder LSTM to the target encoder, as shown in Figure 1), because the resulting
decoder would be equivalent to a 2-layer LSTM with residual connections. Instead, inspired by Lo-
geswaran and Lee (2018); van den Oord et al. (2018), we train the target encoder in an unsupervised
fashion. We extract target encoder hidden states htTE for which wtd is the delimiter token, 〈SEP〉,
and use these as phrase representations. We train by maximizing the mutual information between
each of these phrase representations and the final state of the source encoder, hTe , as follows. For
each phrase representation vector htTE, we take a set HT

e = {hTe,1, . . . , hTe,N} of N encodings of
N different sources. This set contains one positive sample hTe,true, the encoder representation for
the source sequence whose keyphrases are being generated, and N − 1 negative samples from other
source sequences (sampled at random from the training data). The target encoder is optimized on
the classification loss,

LTE = −log
g(hTe,true, h

t
TE)∑

i∈[1,N ] g(h
T
e,i, h

t
TE)

,

g(ha, hb) = exp(h>a Bhb),

(11)

where B is bi-linear transformation.

The motivation here is to constrain the representation of each generated keyphrase to be semantically
close to the overall meaning of the source text. With a recurrent architecture in the target encoder,
the model can potentially help to capture phrase-level semantics in the generated output, and thus
effectively address the diversity issue stemming from the delimiter tokens.

3.5.3 Training Loss

We adopt the widely used negative log-likelihood loss in our sequence generation model, denoted
as LNLL. The overall loss we use in our model is

L = LNLL + λOR · LOR + λTE · LTE, (12)

where λOR and λTE are scalars. As shown in Figure 1, at each time-step t, the decoder LSTM has
3 inputs: embedding vector xtd of input token wtd, target encoding htTE, and hidden state ht−1d from
the previous time-step. Both htTE and ht−1d are designed to boost generation diversity.

6



4 Datasets and Experiments

In this section we introduce the datasets we use for evaluation and report results from our models. In
the following subsections, catSeq refers to the sequence-to-concatenated-sequences model described
in Section 3, without the target encoder and orthogonal regularization; catSeqD refers to the model
augmented with the target encoder and orthogonal regularization. During teacher forcing, to build
the groundtruth sequences, we sort target keyphrases by their order of first occurrence in the source
text, and append absent keyphrases at the end. This order may guide the attention mechanism to
attend to source positions in a smoother way. Implementation details can be found in Appendix A.

4.1 Evaluation Methods

As mentioned in Section 3.4, previous models are only able to generate a fixed number of
keyphrases, and oftentimes, they over-generate. As a result, these studies opt for evaluating ei-
ther the top 5 or top 10 results against the groundtruth labels. We argue that this evaluation method
is unsuitable for the keyphrase generation task and variable-size set generation tasks in general.
To validate this hypothesis, we calculated the performance upper bounds for F1@5 and F1@10
on the KP20K validation set. For this we assume an oracle that generates the groundtruth sets of
keyphrases, and when the number of generated keyphrases differs from 5 or 10, we insert random
wrong answers. The F1@5 and F1@10 scores of this system are 0.858 and 0.626, respectively, sug-
gesting that the existing evaluation approach is problematic. Furthermore, different datasets have
different natures, so using the same arbitrarily chosen k to compute F1@k on all datasets may be
inappropriate. Statistics of all datasets we use in this work are shown in Table 1.

Dataset #Train Valid Test Avg# Var#

KP20K 567,830 20k 20k 5.27 14.22
INSPEC – 1500 500 9.57 22.42

KRAPIVIN – 1844 460 5.24 6.64
NUS – 169 42 11.54 64.57

SEMEVAL – 144 100 15.67 15.10
STACKEXCHANGE 298,965 16k 16k 2.69 1.37
TEXTWORLD ACG 12,837 575 575 9.96 25.01

Table 1: Statistics of datasets we use in this work. Avg# and Var# indicate the mean and variance of
numbers of target phrases per data point, respectively.

On the other hand, a well-trained neural sequence generation model should have the ability to decide
when to stop, i.e. decide how many keyphrases to predict by itself, by generating a stop token
(e.g., 〈EOS〉). Taking all this into consideration, we propose two new evaluation methods for set
generation tasks:

• F1@M (number determined by model): For models that generate variable numbers of
outputs, compute F1 score between all phrases generated by the model with phrases in
groundtruth.

• F1@V (number determined by validation performance): For models that over-generate,
take the k value that gives the highest F1@k on the validation set, report test performance
using this k value. On data point i where the model still generates fewer than k outputs,
F1@V(i) = F1@M(i).

In the following subsections, we report our experimental results on multiple datasets and compare
with CopyRNN2 and other existing works.

During generation, we use two strategies: Greedy and Recall+. In the Greedy strategy, the
decoder generates only one target sequence greedily, halting generation whenever an 〈EOS〉 token
is generated. In the Recall+ strategy, we generate more outputs to boost recall by utilizing beam
search, where each beam generates a sequence of keyphrases. We then follow Ye and Wang (2018)

2We compare all our results using new evaluation methods with CopyRNN, because by the time of writing,
it’s the only open sourced model enabling us to modify the evaluation code for fair comparisons.
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to rank the generated set as follows: 1) Split each beam by 〈SEP〉, remove duplicates; 2) Beams
with higher probabilities have higher rank; 3) Within a beam, keyphrases that are generated earlier
have higher rank.

4.2 Experiments on Scientific Publication Datasets

Following (Meng et al., 2017; Chen et al., 2018a; Ye and Wang, 2018; Chen et al., 2018b), we use
KP20K dataset to train our model and test it on a collection of scientific publication datasets, namely
KP20K, INSPEC, KRAPIVIN, NUS, and SEMEVAL.

KP20K is a dataset constructed by (Meng et al., 2017) that comprises a large number of scientific
publications. For each article, the abstract and title are used as the source text while the author
keywords are used as target. The other four datasets contain many fewer articles, so we use them
to test transferability of our model without tuning on them. Our proposed metric F1@V requires
validation data to determine the value of k, so for these four datasets, we use the training set for
validation if it exists, and otherwise split the test set into two portions: we order all the data points
by their file names alphabetically and take the first 20% as testing set and the rest 80% as validation
set.

We report our model’s performance on the present-keyphrase portion of the KP20K dataset in Ta-
ble 2, using F1@M and F1@V metrics. To compare with previous works, we also compute F1@5
and F1@10 scores; when the model generates less than 5 or 10 keyphrases, we use whatever it gen-
erates to compare with groundtruth. From the table, we can see TG-Net performs the best on F1@5,
but the score drops immediately on the top 10 predictions, perhaps because the quality of 6th to 10th
keyphrases are poor. An interesting observation is that, different from existing models, our model
always has better scores on F1@10 than F1@5. This suggests that our model always has an accurate
expectation regarding the number of keyphrases there should be, i.e., it decides to generate more
than 5 keyphrases when necessary.

catSeqD outperforms catSeq on all metrics, suggesting the target encoder and orthogonal regular-
ization help the model to generate higher quality keyphrases.

Model F1@5 F1@10 F1@M F1@V
Greedy

catSeq 34.1 34.5 34.5 34.5
catSeqD 35.8 36.1 36.2 36.2

Recall+

CopyRNN 32.8 25.5 – 33.1
Multi-Task 30.8 24.3 – –

TG-Net 37.2 31.6 – –
catSeq 33.8 34.5 34.6 34.6

catSeqD 35.0 35.8 35.9 35.9

Table 2: Present keyphrase predicting performance on KP20K test set. Compared with CopyRNN
(Meng et al., 2017), Multi-Task (Ye and Wang, 2018), and TG-Net (Chen et al., 2018b).

We report our models’ performance on the four transfer learning datasets in Table 3, using F1@M
and F1@V for both Greedy and Recall+ modes. The scores are computed on the present por-
tion of the four datasets. Our model performs competitively with CopyRNN on all four, and even
outperforms it on NUS and SEMEVAL. From Table 1, we know the statistics of these four datasets
are very different from KP20K. For example, in KP20K there are on average 5.27 keyphrases per
data point, while SEMEVAL has 15.67. Without the ability to transfer, a model would memorize
the distribution of the training data, thus having no chance to perform better on SEMEVAL than an
over-generating model (e.g., CopyRNN). This is evidence that our model generalizes effectively on
the scientific publication datasets.

On these datasets, generating absent keyphrases is extremely difficult and is far from solved. The
current state-of-the-art model (Chen et al., 2018b) gets 0.267 and 0.075 recall on KP20K and
SEMEVAL datasets, respectively, by forcing the model to generate 50 keyphrases. We argue that

8



Model INSPEC KRAPIVIN NUS SEMEVAL

Greedy (F1@M)

catSeq 21.8 32.0 33.0 28.2
catSeqD 22.5 32.0 35.9 30.6

Recall+ (F1@V)

CopyRNN 34.8 32.4 32.9 28.1
catSeq 28.3 28.3 35.9 28.9

catSeqD 30.9 27.4 36.3 29.9

Table 3: Model performance on transfer learning datasets.

evaluating a set generation task by only recall is problematic. In achieving higher recall by generat-
ing more keyphrases, a model sacrifices precision. An extreme case would be if a model generates
all possible English phrases: recall would be high but precision would be close to 0. On the contrary,
the precision score can be high if the model always generates only one keyphrase. According to our
experiments, the F1 scores on the absent portion of KP20K are around 1e−2, which makes it hard
to compare different models’ performance. We therefore do not report results on the absent portion
and leave it for future work.

4.3 Experiments on STACKEXCHANGE Dataset

Dev Test
Model present absent present absent

Greedy (F1@M)

catSeq 53.7 9.6 54.5 9.2
catSeqD 54.4 12.7 54.7 12.6

Recall+ (F1@V)

CopyRNN 57.6 24.6 58.0 24.8
catSeq 56.9 17.4 57.3 17.2

catSeqD 61.5 26.2 61.1 26.6

Table 4: Model performance on STACKEXCHANGE dataset.

Inspired by the StackLite tag recommendation task on Kaggle, we build a new benchmark based on
the public StackExchange data.3 From the raw data, we use question title and question text as the
source, and use user-assigned tags as target keyphrases.

Since oftentimes the questions on StackExchange contain less information than in scientific publica-
tions, there are fewer keyphrases per data point in STACKEXCHANGE. Furthermore, StackExchange
uses a tag recommendation system that suggests topic-relevant tags to users while submitting ques-
tions; therefore, we are more likely to see general terminology such as Linux and Java. This
characteristic challenges models with respect to their ability to distill major topics of a question
rather than selecting specific snippets from the text.

We report our models’ performance on STACKEXCHANGE in Table 4. Results show catSeqD per-
forms the best with both generation strategies; on the absent-keyphrase generation tasks, it outper-
forms catSeq by a large margin.

4.4 Text-based Game Command Generation

Text-based games are receiving more attention recently in the NLP, machine learning, and rein-
forcement learning communities. They are turn-based games in which all communications between
game engine and player occur through text. At each game step, an agent receives a text observation

3https://archive.org/details/stackexchange, we choose 19 computer science related topics from Oct. 2017
dump.

9



Dev Test Dev Test

Model Greedy (F1@M) Recall+ (F1@V)

CopyRNN – – 66.9 68.5
catSeq 88.3 85.4 87.2 88.4

catSeqD 90.6 86.2 87.3 88.1

Table 5: Model performance on TEXTWORLD ACG dataset.

Source a visual test development environment for gui systems
We have implemented an experimental test development environment (TDE) intended to raise the effectiveness
of tests produced for GUI systems, and raise the productivity of the GUI system tester.The environment links
a test designer, a test design library, and a test generation engine with a standard commercial capture/replay tool.
These components provide a human tester the capabilities to capture sequences of interactions with the system under
test (SUT), to visually manipulate and modify the sequences, and to create test designs that represent multiple
individual test sequences. Test development is done using a high-level model of the SUT’s GUI, and graphical
representations of test designs. TDE performs certain test maintenance tasks automatically, permitting previously
written test scripts to run on a revised version of the SUT.

catSeq test development ; test development environment ; test ; test generation

catSeqD test generation ; gui ; tool ; version ; capabilities ; systems ; design ; test ; human ; generation

Groundtruth engine ; developer ; design ; human ; standardization ; tool ; links ; graphics ; model ; libraries ; replay ; component ;
interaction ; product ; development environment ; script ; visualization ; capabilities ; systems ; experimentation ;
test designer ; environments ; test generation ; testing ; maintenance ; test maintenance ; version ; effect ; sequence

Table 6: Example from KP20K validation set, predictions generated by catSeq and catSeqD models.

describing the environment as input, then issues a text command to take action in the game. The
engine responds in turn with textual feedback and a numerical reward.

We here consider the admissible commands that an agent can issue in response to an observation to
be keyphrases. Admissible commands are those that have some effect on the environment described
by the text observation, and thus require picking out key details from it. In this formulation, the
observation is the source text and the set of admissible commands forms the target.

To generate keyphrase-style training data from text-based games, we use TextWorld (Côté et al.,
2018), a text-based learning environment, to procedurally generate a collection of games and their
playthroughs. Some example (observation, command-set) datapoints are shown in Appendix C. We
call this dataset TEXTWORLD ACG, its statistics can be found in Table 1.

We report our models’ performance on this dataset in Table 5. Note that since almost all target com-
mands are absent from the source text, we do not differentiate present and absent keyphrases in this
dataset. From the table, we can see catSeqD outperforms catSeq with the Greedy generation strat-
egy and gets similar performance when over-generating. Both of our models outperform CopyRNN
by a large margin.

5 Analysis and Discussion

5.1 Effect of Target Encoding and Orthogonal Regularization

To verify our assumption that target encoding and orthogonal regularization help to boost the diver-
sity of generated sequences, we use two metrics, one quantitative and one qualitative, to measure
diversity of generation. First, we simply calculate the average unique predictions on both KP20K
and TEXTWORLD ACG datasets produced by both catSeq and catSeqD. We observe that average
unique predictions from catSeqD are consistently slightly greater than those from catSeq, and give
further details in Appendix B.

Second, from the model running on the KP20K validation set, we randomly sample 2000 decoder
hidden states at k steps following a delimiter (k = 1, 2, 3) and apply an unsupervised clustering
method (t-SNE (van der Maaten and Hinton, 2008)) on them. From the Figure 2 we can see that
hidden states sampled from catSeqD are easier to cluster while hidden states sampled from catSeq
yield one mass of vectors with no obvious distinct clusters. Results on both metrics suggest target
encoding and orthogonal regularization indeed help diversifying generation of our model.
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Figure 2: t-SNE results on decoder hidden states. Upper row: catSeq; lower row: catSeqD; column
k shows hidden states sampled from tokens at k steps following a delimiter.

5.2 Result Examples

To illustrate the difference of predictions between catSeq and catSeqD, we show an example cho-
sen from the KP20K validation set in Table 6. In this example there are 29 groundtruth phrases.
Neither of the models is able to generate all of the keyphrases, but it is obvious that the predictions
from catSeq all start with “test”, while predictions from catSeqD are diverse. This to some extent
verifies our assumption that without the target encoder and orthogonal regularization, decoder states
generated from delimiter 〈SEP〉 are less diverse.

6 Conclusion and Future Work

We propose a recurrent generative model that generates multiple keyphrases sequentially, with two
extra modules that promote generation diversity. We propose new metrics to evaluate keyphrase
generation. Our model shows promising performance on three keyphrase generation datasets in-
cluding 2 newly introduced in this work. In future work, we plan to investigate how target phrase
order affects the generation behavior, and further explore ways to generate set in an order invariant
way. We would also like to investigate how to leverage reinforcement learning to help keyphrase
generation.
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A Implementation Details

Implemntation details of our proposed models are as follows. In all experiments, the word embed-
dings are initialized with 150-dimensional random matrices. The number of hidden units in both the
encoder and decoder LSTM are 300. The number of hidden units in target encoder LSTM is 64. The
size of vocabulary is 50,000.

The numbers of hidden units in MLPs described in Section 3 are as follows.

MLP L0 L1 L2 L3 L4 L5 L6 L7

Dimension 300 300 1 50k 300 1 64 64

During target encoder training, we maintain a queue of size 128, to store the recent source repre-
sentations. During negative sampling, we randomly sample 32 samples from this queue, thus target
encoding loss in Equation 11 is a 33-way classification loss. In catSeqD, we set both the λOR and
λTE in Equation 12 to be 0.03. In all experiments, we use a dropout rate of 0.3.

We use adam (Kingma and Ba, 2014) as the step rule for optimization. The learning rate is 1e−3.
The model is implemented using PyTorch (Paszke et al., 2017).

B Average Amount of Unique Predictions by Models

catSeq catSeqD

Dataset Greedy Recall+ Greedy Recall+

KP20K 3.43 5.05 3.54 5.23
TEXTWORLD ACG 8.24 10.97 8.88 11.30

Table 7: Average number of generated keyphrase on KP20K and TEXTWORLD ACG.

C TEXTWORLD ACG Data Examples

See Table 8
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Observations -= Kitchen =- You find yourself in a kitchen. An usual one. Let’s see what’s in here.
You can see a closed refrigerator in the room. You see a counter.
Why don’t you take a picture of it, it’ll last longer! The counter appears to be empty.
You swear loudly. You can see a kitchen island.
You shudder, but continue examining the kitchen island. The kitchen island is typical.
On the kitchen island you can see a note. You can see a stove.
On the stove you make out a tomato plant.
You idly wonder how they came up with the name TextWorld for this place. It’s pretty fitting.
There is an open screen door leading east. There is an open wooden door leading west.
There is an unblocked exit to the north. You need an unblocked exit? You should try going south.
You put the tomato plant on the stove. You are carrying: an old key.

Admissible close screen door; close wooden door; cook tomato plant; drop old key; open refrigerator;
Commands go east; go north; go south; go west; put old key on counter; put old key on kitchen island;

put old key on stove; take note from kitchen island; take tomato plant from stove

Observations -= Bedroom =- You’re now in a bedroom. You make out a chest drawer.
Look over there! an antique trunk. The antique trunk contains an old key.
You make out a king-size bed. But there isn’t a thing on it.
What, you think everything in TextWorld should have stuff on it?
There is a closed wooden door leading east.
You open the antique trunk, revealing an old key. You are carrying nothing.

Admissible close antique trunk ; open chest drawer ;
Commands take old key from antique trunk

Table 8: Example observations and admissible commands in TEXTWORLD ACG dataset.
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