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Abstract

Computable Stein discrepancies have been deployed for a variety of applications,
ranging from sampler selection in posterior inference to approximate Bayesian
inference to goodness-of-fit testing. Existing convergence-determining Stein dis-
crepancies admit strong theoretical guarantees but suffer from a computational cost
that grows quadratically in the sample size. While linear-time Stein discrepancies
have been proposed for goodness-of-fit testing, they exhibit avoidable degradations
in testing power—even when power is explicitly optimized. To address these
shortcomings, we introduce feature Stein discrepancies (ΦSDs), a new family of
quality measures that can be cheaply approximated using importance sampling.
We show how to construct ΦSDs that provably determine the convergence of a
sample to its target and develop high-accuracy approximations—random ΦSDs
(RΦSDs)—which are computable in near-linear time. In our experiments with
sampler selection for approximate posterior inference and goodness-of-fit testing,
RΦSDs perform as well or better than quadratic-time KSDs while being orders of
magnitude faster to compute.

1 Introduction

Motivated by the intractable integration problems arising from Bayesian inference and maximum
likelihood estimation [9], Gorham and Mackey [10] introduced the notion of a Stein discrepancy as a
quality measure that can potentially be computed even when direct integration under the distribution of
interest is unavailable. Two classes of computable Stein discrepancies—the graph Stein discrepancy
[10, 12] and the kernel Stein discrepancy (KSD) [7, 11, 19, 21]—have since been developed to
assess and tune Markov chain Monte Carlo samplers, test goodness-of-fit, train generative adversarial
networks and variational autoencoders, and more [7, 10–12, 16–19, 27]. However, in practice, the
cost of these Stein discrepancies grows quadratically in the size of the sample being evaluated,
limiting scalability. Jitkrittum et al. [16] introduced a special form of KSD termed the finite-set Stein
discrepancy (FSSD) to test goodness-of-fit in linear time. However, even after an optimization-based
preprocessing step to improve power, the proposed FSSD experiences a unnecessary degradation of
power relative to quadratic-time tests in higher dimensions.

To address the distinct shortcomings of existing linear- and quadratic-time Stein discrepancies, we
introduce a new class of Stein discrepancies we call feature Stein discrepancies (ΦSDs). We show
how to construct ΦSDs that provably determine the convergence of a sample to its target, thus making
them attractive for goodness-of-fit testing, measuring sample quality, and other applications. We
then introduce a fast importance sampling-based approximation we call random ΦSDs (RΦSDs).
We provide conditions under which, with an appropriate choice of proposal distribution, an RΦSD
is close in relative error to the ΦSD with high probability. Using an RΦSD, we show how, for any
γ > 0, we can compute OP (N−1/2)-precision estimates of an ΦSD in O(N1+γ) (near-linear) time
when the ΦSD precision is Ω(N−1/2). Additionally, to enable applications to goodness-of-fit testing,
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we (1) show how to construct RΦSDs that can distinguish between arbitrary distributions and (2)
describe the asymptotic null distribution when sample points are generated i.i.d. from an unknown
distribution. In our experiments with biased Markov chain Monte Carlo (MCMC) hyperparameter
selection and fast goodness-of-fit testing, we obtain high-quality results—which are comparable
to or better than those produced by quadratic-time KSDs—using only ten features and requiring
orders-of-magnitude less computation.

Notation For measures µ1, µ2 on RD and functions f : RD → C, k : RD × RD → C, we
let µ1(f) :=

∫
f(x)µ1(dx), (µ1k)(x′) :=

∫
k(x, x′)µ1(dx), and (µ1 × µ2)(k) :=∫ ∫

k(x1, x2)µ1(dx1)µ2(dx2). We denote the generalized Fourier transform of f by f̂ or F (f) and
its inverse by F−1(f). For r ≥ 1, let Lr := {f : ‖f‖Lr := (

∫
|f(x)|r dx)1/r <∞} and Cn denote

the space of n-times continuously differentiable functions. We let D
=⇒ and P→ denote convergence

in distribution and in probability, respectively. We let a denote the complex conjugate of a. For
D ∈ N, define [D] := {1, . . . , D}. The symbol & indicates greater than up to a universal constant.

2 Feature Stein discrepancies

When exact integration under a target distribution P is infeasible, one often appeals to a discrete
measure QN = 1

N

∑N
n=1 δxn to approximate expectations, where the sample points x1, . . . , xN ∈

RD are generated from a Markov chain or quadrature rule. The aim in sample quality measurement
is to quantify how well QN approximates the target in a manner that (a) recognizes when a sample
sequence is converging to the target, (b) highlights when a sample sequence is not converging to
the target, and (c) is computationally efficient. It is natural to frame this comparison in terms of
an integral probability metric (IPM) [20], dH(QN , P ) := suph∈H |QN (h)− P (h)|, measuring the
maximum discrepancy between target and sample expectations over a class of test functions. However,
when generic integration under P is intractable, standard IPMs like the 1-Wasserstein distance and
Dudley metric may not be efficiently computable.

To address this need, Gorham and Mackey [10] introduced the Stein discrepancy framework for
generating IPM-type quality measures with no explicit integration under P . For any approximating
probability measure µ, each Stein discrepancy takes the form

dT G(µ, P ) = sup
g∈G
|µ(T g)| where ∀g ∈ G, P (T g) = 0.

Here, T is an operator that generates mean-zero functions under P , and G is the Stein set of functions
on which T operates. For concreteness, we will assume that P has C1 density p with support Rd and
restrict our attention to the popular Langevin Stein operator [10, 21] defined by T g :=

∑D
d=1 Tdgd

for (Tdgd)(x) := p(x)−1∂xd(p(x)gd(x)) and g : RD → RD. To date, two classes of computable
Stein discrepancies with strong convergence-determining guarantees have been identified. The graph
Stein discrepancies [10, 12] impose smoothness constraints on the functions g and are computed by
solving a linear program, while the kernel Stein discrepancies [7, 11, 19, 21] define G as the unit ball
of a reproducing kernel Hilbert space and are computed in closed-form. Both classes, however, suffer
from a computational cost that grows quadratically in the number of sample points. Our aim is to
develop alternative discrepancy measures that retain the theoretical and practical benefits of existing
Stein discrepancies at a greatly reduced computational cost.

Our strategy is to identify a family of convergence-determining discrepancy measures that can be
accurately and inexpensively approximated with random sampling. To this end, we define a new
domain for the Stein operator centered around a feature function Φ : RD ×RD → C which, for some
r ∈ [1,∞) and all x, z ∈ RD, satisfies Φ(x, ·) ∈ Lr and Φ(·, z) ∈ C1:

GΦ,r :=
{
g : RD → R | gd(x) =

∫
Φ(x, z)fd(z) dz with

∑D
d=1‖fd‖

2
Ls ≤ 1 for s = r

r−1

}
.

When combined with the Langevin Stein operator T , this feature Stein set gives rise to a feature Stein
discrepancy (ΦSD) with an appealing explicit form (

∑D
d=1‖µ(TdΦ)‖2Lr )1/2:

ΦSD2
Φ,r(µ, P ) := supg∈GΦ,r

|µ(T g)|2 = supg∈GΦ,r

∣∣∣∑D
d=1 µ(Tdgd)

∣∣∣2
2



= supf :vd=‖fd‖Ls ,‖v‖2≤1

∣∣∣∑D
d=1

∫
µ(TdΦ)(z)fd(z) dz

∣∣∣2
= supv:‖v‖2≤1

∣∣∣∑D
d=1‖µ(TdΦ)‖Lrvd

∣∣∣2 =
∑D
d=1‖µ(TdΦ)‖2Lr . (1)

In Section 3.1, we will show how to select the feature function Φ and order r so that ΦSDΦ,r provably
determines convergence, in line with our desiderata (a) and (b).

To achieve efficient computation, we will approximate the ΦSD in expression (1) using an importance
sample of size M drawn from a proposal distribution with (Lebesgue) density ν. We call the resulting
stochastic discrepancy measure a random ΦSD (RΦSD):

RΦSD2
Φ,r,ν,M (µ, P ) :=

∑D
d=1

(
1
M

∑M
m=1 ν(Zm)−1|µ(TdΦ)(Zm)|r

)2/r

for Z1, . . . , ZM
i.i.d.∼ ν.

Importantly, when µ is the sample approximation QN , the RΦSD can be computed in O(MN)
time by evaluating the MND rescaled random features, (TdΦ)(xn, Zm)/ν(Zm)1/r; this computa-
tion is also straightforwardly parallelized. In Section 3.2, we will show how to choose ν so that
RΦSDΦ,r,ν,M approximates ΦSDΦ,r with small relative error.

Special cases When r = 2, the ΦSD is an instance of a kernel Stein discrepancy (KSD) with base
reproducing kernel k(x, y) =

∫
Φ(x, z)Φ(y, z) dz. This follows from the definition [7, 11, 19, 21]

KSDk(µ, P )2 :=
∑D
d=1(µ × µ)((Td ⊗ Td)k) =

∑D
d=1‖µ(TdΦ)‖2L2 = ΦSDΦ,2(µ, P )2. However,

we will see in Sections 3 and 5 that there are significant theoretical and practical benefits to using
ΦSDs with r 6= 2. Namely, we will be able to approximate ΦSDΦ,r with r 6= 2 more effectively
with a smaller sampling budget. If Φ(x, z) = e−i〈z,x〉Ψ̂(z)1/2 and ν ∝ Ψ̂ for Ψ ∈ L2, then
RΦSDΦ,2,ν,M is the random Fourier feature (RFF) approximation [22] to KSDk with k(x, y) =
Ψ(x− y). Chwialkowski et al. [6, Prop. 1] showed that the RFF approximation can be a undesirable
choice of discrepancy measure, as there exist uncountably many pairs of distinct distributions that,
with high probability, cannot be distinguished by the RFF approximation. Following Chwialkowski
et al. [6] and Jitkrittum et al. [16], we show how to select Φ and ν to avoid this property in Section 4.
The random finite set Stein discrepancy [FSSD-rand, 16] with proposal ν is an RΦSDΦ,2,ν,M with
Φ(x, z) = f(x, z)ν(z)1/2 for f a real analytic and C0-universal [4, Def. 4.1] reproducing kernel. In
Section 3.1, we will see that features Φ of a different form give rise to strong convergence-determining
properties.

3 Selecting a Random Feature Stein Discrepancy

In this section, we provide guidance for selecting the components of an RΦSD to achieve our
theoretical and computational goals. We first discuss the choice of the feature function Φ and order r
and then turn our attention to the proposal distribution ν. Finally, we detail two practical choices of
RΦSD that will be used in our experiments. To ease notation, we will present theoretical guarantees
in terms of the sample measure QN , but all results continue to hold if any approximating probability
measure µ is substituted for QN .

3.1 Selecting a feature function Φ

A principal concern in selecting a feature function is ensuring that the ΦSD detects non-convergence—
that is, QN

D
=⇒ P whenever ΦSDΦ,r(QN , P )→ 0. To ensure this, we will construct ΦSDs that

upper bound a reference KSD known to detect non-convergence. This is enabled by the following
inequality proved in Appendix A.

Proposition 3.1 (KSD-ΦSD inequality). If k(x, y) =
∫

F (Φ(x, ·))(ω)F (Φ(y, ·))(ω)ρ(ω) dω,
r ∈ [1, 2], and ρ ∈ Lt for t = r/(2− r), then

KSD2
k(QN , P ) ≤ ‖ρ‖Lt ΦSD2

Φ,r(QN , P ). (2)

Our strategy is to first pick a KSD that detects non-convergence and then choose Φ and r such that
(2) applies. Unfortunately, KSDs based on many common base kernels, like the Gaussian and Matérn,
fail to detect non-convergence when D > 2 [11, Thm. 6]. A notable exception is the KSD with
inverse multiquadric (IMQ) base kernel.

3



Example 3.1 (IMQ kernel). The IMQ kernel is given by ΨIMQ
c,β (x− y) := (c2 + ‖x− y‖22)β , where

c > 0 and β < 0. Gorham and Mackey [11, Thm. 8] proved that when β ∈ (−1, 0), KSDs with
an IMQ base kernel determine weak convergence on RD whenever P ∈ P , the set of distantly
dissipative distributions for which∇ log p is Lipschitz.2

Let mN := EX∼QN [X] denote the mean of QN . We would like to consider a broader class of base
kernels, the form of which we summarize in the following assumption:
Assumption A. The base kernel has the form k(x, y) = AN (x)Ψ(x − y)AN (y) for Ψ ∈ C2,
A ∈ C1, and AN (x) := A(x−mN ), where A > 0 and∇ logA is bounded and Lipschitz.

The IMQ kernel falls within the class defined by Assumption A (let A = 1 and Ψ = ΨIMQ
c,β ). On the

other hand, our next result, proved in Appendix B, shows that tilted base kernels with A increasing
sufficiently quickly also control convergence.
Theorem 3.2 (Tilted KSDs detect non-convergence). Suppose that P ∈ P , Assumption A holds,
1/A ∈ L2, and H(u) := supω∈RD e

−‖ω‖22/(2u
2)/Ψ̂(ω) is finite for all u > 0. Then for any sequence

of probability measures (µN )∞N=1, if KSDk(µN , P )→ 0 then µN
D

=⇒ P .
Example 3.2 (Tilted hyperbolic secant kernel). The hyperbolic secant (sech) function
is sech(u) := 2/(eu + e−u). For x ∈ RD and a > 0, define the sech kernel
Ψsech
a (x) :=

∏D
d=1 sech

(√
π
2 axd

)
. Since Ψ̂sech

a (ω) = Ψsech
1/a (ω)/aD, KSDk from Theorem 3.2

detects non-convergence when Ψ = Ψsech
a and A−1 ∈ L2. Valid tilting functions include

A(x) =
∏D
d=1 e

c
√

1+x2
d for any c > 0 and A(x) = (c2 + ‖x‖22)b for any b > D/4 (to ensure

A−1 ∈ L2).

With our appropriate reference KSDs in hand, we will now design upper bounding ΦSDs. To
accomplish this we will have Φ mimic the form of the base kernels in Assumption A:
Assumption B. Assumption A holds and Φ(x, z) = AN (x)F (x − z), where F ∈ C1 is positive,
and there exist a norm ‖·‖ and constants s, C > 0 such that

|∂xd logF (x)| ≤ C(1 + ‖x‖s), lim
‖x‖→∞

(1 + ‖x‖s)F (x) = 0, and F (x− z) ≤ CF (z)/F (x).

In addition, there exist a constant c ∈ (0, 1] and continuous, non-increasing function f such that
c f(‖x‖) ≤ F (x) ≤ f(‖x‖).

Assumption B requires a minimal amount of regularity from F , essentially that F be sufficiently
smooth and behave as if it is a function only of the norm of its argument. A conceptually straightfor-
ward choice would be to set F = F−1(Ψ̂1/2)—that is, to be the square root kernel of Ψ. We would
then have that Ψ(x − y) =

∫
F (x − z)F (y − z) dz, so in particular ΦSDΦ,2 = KSDk. Since the

exact square-root kernel of a base kernel can be difficult to compute in practice, we require only that
F be a suitable approximation to the square root kernel of Ψ:

Assumption C. Assumption B holds, and there exists a smoothness parameter λ ∈ (1/2, 1] such
that if λ ∈ (1/2, λ), then F̂ /Ψ̂λ/2 ∈ L2.

Requiring that F̂ /Ψ̂λ/2 ∈ L2 is equivalent to requiring that F belongs to the reproducing kernel
Hilbert space Kλ induced by the kernel F−1(Ψ̂λ). The smoothness of the functions in Kλ increases
as λ increases. Hence λ quantifies the smoothness of F relative to Ψ.

Finally, we would like an assurance that the ΦSD detects convergence—that is, ΦSDΦ,r(QN , P )→ 0
whenever QN converges to P in a suitable metric. The following result, proved in Appendix C,
provides such a guarantee for both the ΦSD and the RΦSD.
Proposition 3.3. Suppose Assumption B holds with F ∈ Lr, 1/A bounded, x 7→ x/A(x) Lipschitz,
and EP [A(Z)‖Z‖22] <∞. If the tilted Wasserstein distance

WAN (QN , P ) := suph∈H |QN (ANh)− P (ANh)| (H := {h : ‖∇h(x)‖2 ≤ 1,∀x ∈ RD})
2We say P satisfies distant dissipativity [8, 12] if κ0 := lim infr→∞ κ(r) > 0 for κ(r) =

inf{−2〈∇ log p(x)−∇ log p(y), x− y〉/‖x− y‖22 : ‖x− y‖2 = r}.
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converges to zero, then ΦSDΦ,r(QN , P ) → 0 and RΦSDΦ,r,νN ,MN
(QN , P )

P→ 0 for any choices
of r ∈ [1, 2], νN , and MN ≥ 1.
Remark 3.4. When A is constant,WAN is the familiar 1-Wasserstein distance.

3.2 Selecting an importance sampling distribution ν

Our next goal is to select an RΦSD proposal distribution ν for which the RΦSD is close to its
reference ΦSD even when the importance sample size M is small. Our strategy is to choose ν so that
the second moment of each RΦSD feature, wd(Z,QN ) := |(QNTdΦ)(Z)|r/ν(Z), is bounded by a
power of its mean:
Definition 3.5 ((C, γ) second moments). Fix a target distribution P . For Z ∼ ν, d ∈ [D], and
N ≥ 1, let YN,d := wd(Z,QN ). If for some C > 0 and γ ∈ [0, 2] we have E[Y 2

N,d] ≤ CE[YN,d]
2−γ

for all d ∈ [D] and N ≥ 1, then we say (Φ, r, ν) yields (C, γ) second moments for P and QN .

The next proposition, proved in Appendix D, demonstrates the value of this second moment property.
Proposition 3.6. Suppose (Φ, r, ν) yields (C, γ) second moments for P and QN . If M ≥
2CE[YN,d]

−γ log(D/δ)/ε2 for all d ∈ [D], then, with probability at least 1− δ,

RΦSDΦ,r,ν,M (QN , P ) ≥ (1− ε)1/r ΦSDΦ,r(QN , P ).

Under the further assumptions of Proposition 3.1, if the reference KSDk(QN , P ) & N−1/2,3 then a
sample size M & Nγr/2C‖ρ‖γr/2Lt log(D/δ)/ε2 suffices to have, with probability at least 1− δ,

‖ρ‖1/2Lt RΦSDΦ,r,ν,M (QN , P ) ≥ (1− ε)1/r KSDk(QN , P ).

Notably, a smaller r leads to substantial gains in the sample complexity M = Ω(Nγ r/2). For
example, if r = 1, it suffices to choose M = Ω(N1/2) whenever the weight function wd is bounded
(so that γ = 1); in contrast, existing analyses of random Fourier features [15, 22, 25, 26, 30] require
M = Ω(N) to achieve the same error rates. We will ultimately show how to select ν so that γ is
arbitrarily close to 0. First, we provide simple conditions and a choice for ν which guarantee (C, 1)
second moments.
Proposition 3.7. Assume that P ∈ P , Assumptions A and B hold with s = 0, and there exists a
constant C′ > 0 such that for all N ≥ 1, QN ([1 + ‖·‖]AN ) ≤ C′. If ν(z) ∝ QN ([1 + ‖·‖]Φ(·, z)),
then for any r ≥ 1, (Φ, r, ν) yields (C, 1) second moments for P and QN .

Proposition 3.7, which is proved in Appendix E, is based on showing that the weight function
wd(z,QN ) is uniformly bounded. In order to obtain (C, γ) moments for γ < 1, we will choose
ν such that wd(z,QN ) decays sufficiently quickly as ‖z‖ → ∞. We achieve this by choosing
an overdispersed ν—that is, we choose ν with heavy tails compared to F . We also require two
integrability conditions involving the Fourier transforms of Ψ and F .

Assumption D. Assumptions A and B hold, ω2
1Ψ̂1/2(ω) ∈ L1, and for t = r/(2− r), Ψ̂/F̂ 2 ∈ Lt.

The L1 condition is an easily satisfied technical condition while the Lt condition ensures that the
KSD-ΦSD inequality (2) applies to our chosen ΦSD.
Theorem 3.8. Assume that P ∈ P , Assumptions A to D hold, and there exists C > 0 such that,

QN ([1 + ‖·‖+ ‖· −mN‖s]AN/F (· −mN )) ≤ C for all N ≥ 1. (3)

Then there is a constant b ∈ [0, 1) such that the following holds. For any ξ ∈ (0, 1− b), c > 0, and
α > 2(1 − λ), if ν(z) ≥ cΨ(z −mN )ξr, then there exists a constant Cα > 0 such that (Φ, r, ν)
yields (Cα, γα) second moments for P and QN , where γα := α+ (2− α)ξ/(2− b− ξ).

Theorem 3.8 suggests a strategy for improving the importance sample growth rate γ of an RΦSD:
increase the smoothness λ of F and decrease the over-dispersion parameter ξ of ν.

3Note that KSDk(QN , P ) = ΩP (N−1/2) whenever the sample points x1, . . . , xN are drawn i.i.d. from a
distribution µ, since the scaled V-statistic N KSD2

k(QN , P ) diverges when ν 6= P and converges in distribution
to a non-zero limit when ν = P [23, Thm. 32]. Moreover, working in a hypothesis testing framework of
shrinking alternatives, Gretton et al. [13, Thm. 13] showed that KSDk(QN , P ) = Θ(N−1/2) was the smallest
local departure distinguishable by an asymptotic KSD test.
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(a) Efficiency of L1 IMQ (b) Efficiency of L2 SechExp (c) M necessary for std(RΦSD)
ΦSD

< 1
2

Figure 1: Efficiency of RΦSDs. The L1 IMQ RΦSD displays exceptional efficiency.

3.3 Example RΦSDs

In our experiments, we will consider two RΦSDs that determine convergence by Propositions 3.1
and 3.3 and that yield (C, γ) second moments for any γ ∈ (0, 1] using Theorem 3.8.

Example 3.3 (L2 tilted hyperbolic secant RΦSD). Mimicking the construction of the hyperbolic
secant kernel in Example 3.2 and following the intuition that F should behave like the square root of
Ψ, we choose F = Ψsech

2a . As shown in Appendix I, if we choose r = 2 and ν(z) ∝ Ψsech
4aξ (z −mN )

we can verify all the assumptions necessary for Theorem 3.8 to hold. Moreover, the theorem holds
for any b > 0 and hence any ξ ∈ (0, 1) may be chosen. Note that ν can be sampled from efficiently
using the inverse CDF method.

Example 3.4 (Lr IMQ RΦSD). We can also parallel the construction of the reference IMQ kernel
k(x, y) = ΨIMQ

c,β (x − y) from Example 3.1, where c > 0 and β ∈ [−D/2, 0). (Recall we have
A = 1 in Assumption A.) In order to construct a corresponding RΦSD we must choose the constant
λ ∈ (1/2, 1) that will appear in Assumption C and ξ ∈ (0, 1/2), the minimum ξ we will be
able to choose when constructing ν. We show in Appendix J that if we choose F = ΨIMQ

c′,β′ , then
Assumptions A to D hold when c′ = λc/2, β′ ∈ [−D/(2ξ),−β/(2ξ)−D/(2ξ)), r = −D/(2β′ξ),
ξ ∈ (ξ, 1), and ν(z) ∝ ΨIMQ

c′,β′(z −mN )ξr. A particularly simple setting is given by β′ = −D/(2ξ),
which yields r = 1. Note that ν can be sampled from efficiently since it is a multivariate t-distribution.

In the future it would be interesting to construct other RΦSDs. We can recommend the following
fairly simple default procedure for choosing an RΦSD based on a reference KSD admitting the form
in Assumption A. (1) Choose any γ > 0, and set α = γ/3, λ̄ = 1 − α/2, and ξ = 4α/(2 + α).
These are the settings we will use in our experiments. It may be possible to initially skip this step
and reason about general choices of γ, ξ, and λ̄. (2) Pick any F that satisfies F̂ /Ψ̂λ/2 ∈ L2 for some
λ ∈ (1/2, λ̄) (that is, Assumption C holds) while also satisfying Ψ̂/F̂ 2 ∈ Lt for some t ∈ [1,∞].
The selection of t induces a choice of r via Assumption D. A simple choice for F is F−1Ψ̂λ. (3)
Check if Assumption B holds (it usually does if F decays no faster than a Gaussian); if it does not, a
slightly different choice of F should be made. (4) Choose ν(z) ∝ Ψ(z −mN )ξr.

4 Goodness-of-fit testing with RΦSDs

We now detail additional properties of RΦSDs relevant to testing goodness of fit. In goodness-of-fit
testing, the sample points (Xn)Nn=1 underlying QN are assumed to be drawn i.i.d. from a distribution
µ, and we wish to use the test statistic Fr,N := RΦSD2

Φ,r,ν,M (QN , P ) to determine whether the null
hypothesis H0 : P = µ or alternative hypothesis H1 : P 6= µ holds. For this end, we will restrict
our focus to real analytic Φ and strictly positive analytic ν, as by Chwialkowski et al. [6, Prop. 2 and
Lemmas 1-3], with probability 1, P = µ ⇔ RΦSDΦ,r,ν,M (µ, P ) = 0 when these properties hold.
Thus, analytic RΦSDs do not suffer from the shortcoming of RFFs—which are unable to distinguish
between infinitely many distributions with high probability [6].

It remains to estimate the distribution of the test statistic Fr,N under the null hypothesis and to verify
that the power of a test based on this distribution approaches 1 as N →∞. To state our result, we

6



(a) Step size selection using RΦSDs and quadratic-time KSD baseline. With M ≥ 10, each quality measure
selects a step size of ε = .01 or .005.

(b) SGLD sample points with equidensity contours of p overlaid. The samples produced by SGLD with ε = .01
or .005 are noticeably better than those produced using smaller or large step sizes.

Figure 2: Hyperparameter selection for stochastic gradient Langevin dynamics (SGLD)

assume that M is fixed. Let ξr,N,dm(x) := (TdΦ)(x, ZN,m)/(Mν(ZN,m))1/r for r ∈ [1, 2], where
ZN,m

indep∼ νN , so that ξr,N (x) ∈ RDM . The following result, proved in Appendix K, provides the
basis for our testing guarantees.
Proposition 4.1 (Asymptotic distribution of RΦSD). Assume Σr,N := CovP (ξr,N ) is finite for all
N and Σr := limN→∞Σr,N exists. Let ζ ∼ N (0,Σr). Then as N →∞: (1) under H0 : P = µ,

NFr,N
D

=⇒
∑D
d=1(

∑M
m=1 |ζdm|r)2/r and (2) under H1 : P 6= µ, NFr,N

P→∞.

Remark 4.2. The condition Σr := limN→∞Σr,N holds if νN = ν0(· −mN ) for a distribution ν0.

Our second asympotic result provides a roadmap for using RΦSDs for hypothesis testing and is
similar in spirit to Theorem 3 from Jitkrittum et al. [16]. In particular, it furnishes an asymptotic null
distribution and establishes asymptotically full power.

Theorem 4.3 (Goodness of fit testing with RΦSD). Let µ̂ := N−1
∑N
n=1 ξr,N (X ′n) and Σ̂ :=

N−1
∑N
n=1 ξr,N (X ′n)ξr,N (X ′n)> − µ̂µ̂> with either X ′n = Xn or X ′n

i.i.d.∼ P . Suppose for
the test NFr,N , the test threshold τα is set to the (1 − α)-quantile of the distribution of∑D
d=1(

∑M
m=1 |ζdm|r)2/r, where ζ ∼ N (0, Σ̂). Then, under H0 : P = µ, asymptotically the

false positive rate is α. Under H1 : P 6= µ, the test power PH1
(NFr,N > τα)→ 1 as N →∞.

5 Experiments

We now investigate the importance-sample and computational efficiency of our proposed RΦSDs
and evaluate their benefits in MCMC hyperparameter selection and goodness-of-fit testing.4 In our
experiments, we considered the RΦSDs described in Examples 3.3 and 3.4: the tilted sech kernel
using r = 2 and A(x) =

∏D
d=1 e

a′
√

1+x2
d (L2 SechExp) and the inverse multiquadric kernel using

r = 1 (L1 IMQ). We selected kernel parameters as follows. First we chose a target γ and then

4See https://bitbucket.org/jhhuggins/random-feature-stein-discrepancies for our code.
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selected λ, α, and ξ in accordance with the theory of Section 3 so that (Φ, r, ν) yielded (Cγ , γ)

second moments. In particular, we chose α = γ/3, λ = 1− α/2, and ξ = 4α/(2 + α). Except for
the importance sample efficiency experiments, where we varied γ explicitly, all experiments used
γ = 1/4. Let m̂edu denote the estimated median of the distance between data points under the
u-norm, where the estimate is based on using a small subsample of the full dataset. For L2 SechExp,
we took a−1 =

√
2π m̂ed1, except in the sample quality experiments where we set a−1 =

√
2π .

Finding hyperparameter settings for the L1 IMQ that were stable across dimension and appropriately
controlled the size for goodness-of-fit testing required some care. However, we can offer some basic
guidelines. We recommend choosing ξ = D/(D + df), which ensures ν has df degrees of freedom.
We specifically suggest using df ∈ [0.5, 3] so that ν is heavy-tailed no matter the dimension. For
most experiments we took β = −1/2, c = 4 m̂ed2, and df = 0.5. The exceptions were in the sample
quality experiments, where we set c = 1, and the restricted Boltzmann machine testing experiment,
where we set c = 10 m̂ed2 and df = 2.5. For goodness-of-fit testing, we expect appropriate choices
for c and df will depend on the properties of the null distribution.

Figure 3: Speed of IMQ KSD vs. RΦSDs
with M = 10 importance sample points
(dimension D = 10). Even for moderate
sample sizes N , the RΦSDs are orders of
magnitude faster than the KSD.

Importance sample efficiency To validate the impor-
tance sample efficiency theory from Sections 3.2 and 3.3,
we calculated P[RΦSD > ΦSD/4] as the importance
sample size M was increased. We considered choices
of the parameters for L2 SechExp and L1 IMQ that
produced (Cγ , γ) second moments for varying choices
of γ. The results, shown in Figs. 1a and 1b, indicate
greater sample efficiency for L1 IMQ than L2 Sech-
Exp. L1 IMQ is also more robust to the choice of
γ. Fig. 1c, which plots the values of M necessary to
achieve stdev(RΦSD)/ΦSD < 1/2, corroborates the
greater sample efficiency of L1 IMQ.

Computational complexity We compared the com-
putational complexity of the RΦSDs (with M = 10) to
that of the IMQ KSD. We generated datasets of dimen-
sion D = 10 with the sample size N ranging from 500 to 5000. As seen in Fig. 3, even for moderate
dataset sizes, the RΦSDs are computed orders of magnitude faster than the KSD. Other RΦSDs like
FSSD and RFF obtain similar speed-ups; however, we will see the power benefits of the L1 IMQ and
L2 SechExp RΦSDs below.

Approximate MCMC hyperparameter selection We follow the stochastic gradient Langevin
dynamics [SGLD, 28] hyperparameter selection setup from Gorham and Mackey [10, Section 5.3].
SGLD with constant step size ε is a biased MCMC algorithm that approximates the overdamped
Langevin diffusion. No Metropolis-Hastings correction is used, and an unbiased estimate of the score
function from a data subsample is calculated at each iteration. There is a bias-variance tradeoff in the
choice of step size parameter: the stationary distribution of SGLD deviates more from its target as ε
grows, but as ε gets smaller the mixing speed of SGLD decreases. Hence, an appropriate choice of ε
is critical for accurate posterior inference. We target the bimodal Gaussian mixture model (GMM)
posterior of Welling and Teh [28] and compare the step size selection made by the two RΦSDs to
that of IMQ KSD [11] when N = 1000. Fig. 2a shows that L1 IMQ and L2 SechExp agree with
IMQ KSD (selecting ε = .005) even with just M = 10 importance samples. L1 IMQ continues to
select ε = .005 while L2 SechExp settles on ε = .01, although the value for ε = .005 is only slightly
larger. Fig. 2b compares the choices of ε = .005 and .01 to smaller and larger values of ε. The
values of M considered all represent substantial reductions in computation as the RΦSD replaces the
DN(N + 1)/2 KSD kernel evaluations of the form ((Td ⊗ Td)k)(xn, xn′) with only DNM feature
function evaluations of the form (TdΦ)(xn, zm).

Goodness-of-fit testing Finally, we investigated the performance of RΦSDs for goodness-of-fit
testing. In our first two experiments we used a standard multivariate Gaussian p(x) = N (x | 0, I) as
the null distribution while varying the dimension of the data. We explored the power of RΦSD-based
tests compared to FSSD [16] (using the default settings in their code), RFF [22] (Gaussian and Cauchy
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(a) Gaussian null (b) Gaussian vs. Laplace (c) Gauss vs. multivariate t (d) RBM

Figure 4: Quadratic-time KSD and linear-time RΦSD, FSSD, and RFF goodness-of-fit tests with
M = 10 importance sample points (see Section 5 for more details). All experiments used N = 1000
except the multivariate t, which used N = 2000. (a) Size of tests for Gaussian null. (b, c, d) Power
of tests. Both RΦSDs offer competitive performance.

kernels with bandwidth = m̂ed2), and KSD-based tests [7, 11, 19] (Gaussian kernel with bandwidth
= m̂ed2 and IMQ kernel ΨIMQ

1,−1/2). We did not consider other linear-time KSD approximations due
to relatively poor empirical performance [16]. There are two types of FSSD tests: FSSD-rand uses
random sample locations and fixed hyperparameters while FSSD-opt uses a small subset of the
data to optimize sample locations and hyperparameters for a power criterion. All linear-time tests
used M = 10 features. The target level was α = 0.05. For each dimension D and RΦSD-based
test, we chose the nominal test level by generating 200 p-values from the Gaussian asymptotic null,
then setting the nominal level to the minimum of α and the 5th percentile of the generated p-values.
All other tests had nominal level α. We verified the size of the FSSD, RFF, and RΦSD-based
tests by generating 1000 p-values for each experimental setting in the Gaussian case (see Fig. 4a).
Our first experiment replicated the Gaussian vs. Laplace experiment of Jitkrittum et al. [16] where,
under the alternative hypothesis, q(x) =

∏D
d=1 Lap(xd|0, 1/

√
2 ), a product of Laplace distributions

with variance 1 (see Fig. 4b). Our second experiment, inspired by the Gaussian vs. multivariate t
experiment of Chwialkowski et al. [7], tested the alternative in which q(x) = T (x|0, 5), a standard
multivariate t-distribution with 5 degrees of freedom (see Fig. 4c). Our final experiment replicated the
restricted Boltzmann machine (RBM) experiment of Jitkrittum et al. [16] in which each entry of the
matrix used to define the RBM was perturbed by independent additive Gaussian noise (see Fig. 4d).
The amount of noise was varied from σper = 0 (that is, the null held) up to σper = 0.06. The L1
IMQ test performed well across all dimensions and experiments, with power of at least 0.93 in almost
all experiments. The only exceptions were the Laplace experiment with D = 20 (power ≈ 0.88) and
the RBM experiment with σper = 0.02 (power ≈ 0.74). The L2 SechExp test performed comparably
to or better than the FSSD and RFF tests. Despite theoretical issues, the Cauchy RFF was competitive
with the other linear-time methods—except for the superior L1 IMQ. Given its superior power control
and computational efficiency, we recommend the L1 IMQ over the L2 SechExp.

6 Discussion and related work

In this paper, we have introduced feature Stein discrepancies, a family of computable Stein discrepan-
cies that can be cheaply approximated using importance sampling. Our stochastic approximations,
random feature Stein discrepancies (RΦSDs), combine the computational benefits of linear-time dis-
crepancy measures with the convergence-determining properties of quadratic-time Stein discrepancies.
We validated the benefits of RΦSDs on two applications where kernel Stein discrepancies have shown
excellent performance: measuring sample quality and goodness-of-fit testing. Empirically, the L1
IMQ RΦSD performed particularly well: it outperformed existing linear-time KSD approximations
in high dimensions and performed as well or better than the state-of-the-art quadratic-time KSDs.

RΦSDs could also be used as drop-in replacements for KSDs in applications to Monte Carlo variance
reduction with control functionals [21], probabilistic inference using Stein variational gradient
descent [18], and kernel quadrature [2, 3]. Moreover, the underlying principle used to generalize
the KSD could also be used to develop fast alternatives to maximum mean discrepancies in two-
sample testing applications [6, 13]. Finally, while we focused on the Langevin Stein operator, our
development is compatible with any Stein operator, including diffusion Stein operators [12].
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A Proof of Proposition 3.1: KSD-ΦSD inequality

We apply the generalized Hölder’s inequality and the Babenko-Beckner inequality in turn to find

KSD2
k(QN , P ) =

∑D
d=1

∫
|F (QN (TdΦ))(ω)|2ρ(ω) dω ≤ ‖ρ‖Lt

∑D
d=1 ‖F (QN (TdΦ))‖2Ls

≤ c2r,d‖ρ‖Lt
∑D
d=1 ‖QN (TdΦ)‖2Lr = c2r,d‖ρ‖Lt ΦSD2

Φ,r(QN , P ),

where t = r
2−r and cr,d := (r1/r/s1/s)d/2 ≤ 1 for s = r/(r − 1).

B Proof of Theorem 3.2: Tilted KSDs detect non-convergence

For any vector-valued function f , let M1(f) = supx,y:‖x−y‖2=1‖f(x)− f(y)‖2. The result will
follow from the following theorem which provides an upper bound on the bounded Lipschitz metric
dBL‖·‖2 (µ, P ) in terms of the KSD and properties of A and Ψ. Let b := ∇ log p.

Theorem B.1 (Tilted KSD lower bound). Suppose P ∈ P and k(x, y) = A(x)Ψ(x − y)A(y) for
Ψ ∈ C2 and A ∈ C1 with A > 0 and∇ logA bounded and Lipschitz. Then there exists a constant
MP such that, for all ε > 0 and all probability measures µ,

dBL‖·‖2 (µ, P ) ≤ ε+ C KSDk(µ, P ),

where

C := (2π)−d/4‖1/A‖L2MPH
(
E[‖G‖2B(G)](1 +M1(logA) +MPM1(b+∇ logA))ε−1

)1/2
,

H(t) := supω∈Rd e
−‖ω‖22/(2t

2)/Ψ̂(ω), G is a standard Gaussian vector, and B(y) :=
supx∈Rd,u∈[0,1]A(x)/A(x+ uy).
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Remarks By bounding H and optimizing over ε, one can derive rates of convergence in dBL‖·‖2 .
Thm. 5 and Sec. 4.2 of Gorham et al. [12] provide an explicit value for the Stein factorMP .

Let Aµ(x) = A(x − EX∼µ[X]). Since ‖1/A‖L2 = ‖1/Aµ‖L2 , M1(logAµ) ≤ M1(logA),
M1(∇ logAµ) ≤M1(∇ logA), and supx∈Rd,u∈[0,1]Aµ(x)/Aµ(x+ uy) = B(y), the exact conclu-
sion of Theorem B.1 also holds when k(x, y) = Aµ(x)Ψ(x − y)Aµ(y). Moreover, since logA is
Lipschitz,B(y) ≤ e‖y‖2 so E[‖G‖2B(G)] is finite. Now suppose KSDk(µN , P )→ 0 for a sequence
of probability measures (µN )N≥1. For any ε > 0, lim supn dBL‖·‖2 (µN , P ) ≤ ε, since H(t) is finite
for all t > 0. Hence, dBL‖·‖2 (µN , P )→ 0, and, as dBL‖·‖2 metrizes weak convergence, µN ⇒ P .

B.1 Proof of Theorem B.1: Tilted KSD lower bound

Our proof parallels that of [11, Thm. 13]. Fix any h ∈ BL‖·‖2 . Since A ∈ C1 is positive, Thm. 5
and Sec. 4.2 of Gorham et al. [12] imply that there exists a g ∈ C1 which solves the Stein equation
TP (Ag) = h − EP [h(Z)] and satisfies M0(Ag) ≤ MP forMP a constant independent of A, h,
and g. Since 1/A ∈ L2, we have ‖g‖L2 ≤MP ‖1/A‖L2 .

Since ∇ logA is bounded, A(x) ≤ exp(γ‖x‖) for some γ. Moreover, any measure in P is sub-
Gaussian, so P has finite exponential moments. Hence, since A is also positive, we may define
the tilted probability measure PA with density proportional to Ap. The identity TP (Ag) = ATPAg
implies that

M0(A∇TPAg) = M0(∇TP (Ag)− TP (Ag)∇ logA) ≤ 1 +M1(logA).

Since b and ∇ logA are Lipschitz, we may apply the following lemma, proved in Appendix B.2
to deduce that there is a function gε ∈ Kdk1

for k1(x, y) := Ψ(x − y) such that |(TP (Agε))(x) −
(TP (Ag))(x)| = A(x)|(TPAgε)(x)− (TPAg)(x)| ≤ ε for all x with norm

‖gε‖Kdk1

(4)

≤ (2π)−d/4H
(
E[‖G‖2B(G)](1 +M1(logA) +MPM1(b+∇ logA))ε−1

)1/2‖1/A‖L2MP .

Lemma B.2 (Stein approximations with finite RKHS norm). Consider a function A : Rd → R
satisfying B(y) := supx∈Rd,u∈[0,1]A(x)/A(x+ uy). Suppose g : Rd → Rd is in L2 ∩C1. If P has
Lipschitz log density, and k(x, y) = Ψ(x−y) for Ψ ∈ C2 with generalized Fourier transform Ψ̂, then
for every ε ∈ (0, 1], there is a function gε : Rd → Rd such that |(TP gε)(x)− (TP g)(x)| ≤ ε/A(x)
for all x ∈ Rd and

‖gε‖Kdk ≤ (2π)−d/4H
(
E[‖G‖2B(G)](M0(A∇TP g) +M0(Ag)M1(b))ε−1

)1/2‖g‖L2 ,

where H(t) := supω∈Rd e
−‖ω‖22/(2t

2)/Ψ̂(ω) and G is a standard Gaussian vector.

Since ‖Agε‖Kdk = ‖gε‖Kdk1

, the triangle inequality and the definition of the KSD now yield

|Eµ[h(X)]− EP [h(Z)]| = |Eµ[(TP (Ag))(X)]|
≤ |E[(TP (Ag))(X)− (TP (Agε))(X)]|+ |Eµ[(TP (Agε))(X)]|
≤ ε+ ‖gε‖Kdk1

KSDk(µ, P ).

The advertised conclusion follows by applying the bound (4) and taking the supremum over all
h ∈ BL‖·‖.

B.2 Proof of Lemma B.2: Stein approximations with finite RKHS norm

AssumeM0(A∇TP g)+M0(Ag) <∞, as otherwise the claim is vacuous. Our proof parallels that of
Gorham and Mackey [11, Lem. 12]. Let Y denote a standard Gaussian vector with density ρ. For each
δ ∈ (0, 1], we define ρδ(x) = δ−dρ(x/δ), and for any function f we write fδ(x) , E[f(x+ δY )].
Under our assumptions on h = TP g and B, the mean value theorem and Cauchy-Schwarz imply that
for each x ∈ Rd there exists u ∈ [0, 1] such that

|hδ(x)− h(x)| = |Eρ[h(x+ δY )− h(x)]| = |Eρ[〈δY ,∇h(x+ δY u)〉]|
≤ δM0(A∇TP g)Eρ[‖Y ‖2/A(x+ δY u)] ≤ δM0(A∇TP g)Eρ[‖Y ‖2B(Y )]/A(x).
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Now, for each x ∈ Rd and δ > 0,

hδ(x) = Eρ[〈b(x+ δY ), g(x+ δY )〉] + E[〈∇, g(x+ δY )〉] and
(TP gδ)(x) = Eρ[〈b(x), g(x+ δY )〉] + E[〈∇, g(x+ δY )〉],

so, by Cauchy-Schwarz, the Lipschitzness of b, and our assumptions on g and B,

|(TP gδ)(x)− hδ(x)| = |Eρ[〈b(x)− b(x+ δY ), g(x+ δY )〉]|
≤ Eρ[‖b(x)− b(x+ δY )‖2‖g(x+ δY )‖2]

≤M0(Ag)M1(b) δ Eρ[‖Y ‖2/A(x+ δY )] ≤M0(Ag)M1(b) δ Eρ[‖Y ‖2B(Y )]/A(x).

Thus, if we fix ε > 0 and define ε̃ = ε/(Eρ[‖Y ‖2B(Y )](M0(A∇TP g) + M0(Ag)M1(b))), the
triangle inequality implies

|(TP gε̃)(x)− (TP g)(x)| ≤ |(TP gε̃)(x)− hε̃(x)|+ |hε̃(x)− h(x)| ≤ ε/A(x).

To conclude, we will bound ‖gδ‖Kdk . By Wendland [29, Thm. 10.21],

‖gδ‖2Kdk = (2π)−d/2
∫
Rd

|ĝδ(ω)|2

Φ̂(ω)
dω = (2π)d/2

∫
Rd

|ĝ(ω)|2ρ̂δ(ω)2

Φ̂(ω)
dω

≤ (2π)−d/2

{
sup
ω∈Rd

e−‖ω‖
2
2δ

2/2

Φ̂(ω)

}∫
Rd
|ĝ(ω)|2 dω,

where we have used the Convolution Theorem [29, Thm. 5.16] and the identity ρ̂δ(ω) =
ρ̂(δω). Finally, an application of Plancherel’s theorem [14, Thm. 1.1] gives ‖gδ‖Kdk ≤
(2π)−d/4F (δ−1)1/2‖g‖L2 .

C Proof of Proposition 3.3

We begin by establishing the ΦSD convergence claim. Define the target mean mP := EZ∼P [Z].
Since logA is Lipschitz andA > 0,AN ≤ AemN and hence P (AN ) <∞ and EP

[
AN (Z)‖Z‖22

]
<

∞ for all N by our integrability assumptions on P .

Suppose WAN (QN , P ) → 0, and, for any probability measure µ with µ(AN ) < ∞, define the
tilted probability measure µAN via dµAN (x) = dµ(x)AN (x). By the definition ofWAN , we have
|QN (ANh)− P (ANh)| → 0 for all h ∈ H. In particular, since the constant function h(x) = 1 is in
H, we have |QN (AN )− P (AN )| → 0. In addition, since the functions fN (x) = (x−mN )/AN (x)
are uniformly Lipschitz in N , we have mN −mP = QN (fN )− P (fN )→ 0 and thus AN → AP
for AP (x) := A(x −mP ) > 0. Therefore, P (AN ) → P (AP ) > 0, and, as x/y is a continuous
function of (x, y) when y > 0, we have

QN,AN (h)− PAN (h) = QN (ANh)/QN (AN )− P (ANh)/P (AN )→ 0

and hence the 1-Wasserstein distance dH(QN,AN , PAN )→ 0.

Now note that, for any g ∈ GΦ/AN ,r,

QN (T ANg) = QN (ANTPAN g) = QN (AN )QN,AN (TPAN g)

= ((QN (AN )− P (AN )) + P (AN ))QN,AN (TPAN g)

≤ (WAN (QN , P ) + P (AN ))QN,AN (TPAN g)

where TPAN is the Langevin operator for the tilted measure PAN , defined by

(TPAN g)(x) =

D∑
d=1

(p(x)AN (x))−1∂xd(p(x)AN (x)gd(x)).

Taking a supremum over g ∈ GΦ/AN ,r, we find

ΦSDΦ,r(QN , P ) ≤ (WAN (QN , P ) + P (AN )) ΦSDΦ/AN ,r(QN,AN , PAN ).
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Furthermore, since Φ(x, z)/AN (x) = F (x− z), Hölder’s inequality implies

sup
x∈RD

‖g(x)‖∞ ≤ ‖F‖Lr ,

sup
x∈RD,d∈[D]

‖∂xdg(x)‖∞ ≤ ‖∂xdF‖Lr , and

sup
x∈RD,d,d′∈[D]

∥∥∂xd∂xd′ g(x)
∥∥
∞ ≤

∥∥∂xd∂xd′F∥∥Lr
for each g ∈ GΦ/AN ,r. Since ∇ log p and ∇ logAN are Lipschitz and EP

[
AN (Z)‖Z‖22

]
< ∞,

we may therefore apply [11, Lem. 18] to discover that ΦSDΦ/AN ,r(QN,AN , PAN )→ 0 and hence
ΦSDΦ,r(QN , P )→ 0 whenever the 1-Wasserstein distance dH(QN,AN , PAN )→ 0.

To see that RΦSD2
Φ,r,νN ,MN

(QN , P )
P→ 0 whenever ΦSD2

Φ,r(QN , P ) → 0, first note that since
r ∈ [1, 2], we may apply Jensen’s inequality to obtain

E[RΦSD2
Φ,r,νN ,MN

(QN , P )] = E[
∑D
d=1( 1

M

∑M
m=1 νN (Zm)−1|QN (TdΦ)(Zm)|r)2/r]

≤
∑D
d=1(E[ 1

M

∑M
m=1 νN (Zm)−1|QN (TdΦ)(Zm)|r])2/r

= ΦSD2
Φ,r(QN , P ).

Hence, by Markov’s inequality, for any ε > 0,

P[RΦSD2
Φ,r,νN ,MN

(QN , P ) > ε] ≤ E[RΦSD2
Φ,r,νN ,MN

(QN , P )]/ε ≤ ΦSD2
Φ,r(QN , P )/ε→ 0,

yielding the result.

D Proof of Proposition 3.6

To achieve the first conclusion, for each d ∈ [D], apply Corollary M.2 with δ/D in place of δ to the
random variable

1
M

∑M
m=1 wd(Zm, QN ).

The first claim follows by plugging in the high probability lower bounds from Corollary M.2 into
RΦSD2

Φ,r,ν,M (QN , P ) and using the union bound.

The equality E[Yd] = ΦSDr
Φ,r(QN , P ), the KSD-ΦSD inequality of Proposition 3.1

(ΦSDr
Φ,r(QN , P ) ≥ KSDr

k(QN , P )‖ρ‖−r/2Lt ), and the assumption KSDk(QN , P ) & N−1/2 im-

ply that E[Yd] & N−r/2‖ρ‖−r/2Lt . Plugging this estimate into the initial importance sample size
requirement and applying the KSD-ΦSD inequality once more yield the second claim.

E Proof of Proposition 3.7

It turns out that we obtain (C, 1) moments whenever the weight functions wd(z,QN ) are bounded.
Let Q(Φ, ν, C ′) := {QN | supz,d wd(z,QN ) < C ′}.
Proposition E.1. For any C > 0, (Φ, r, ν) yields (C, 1) second moments for P and Q(Φ, ν, C ′).

Proof It follows from the definition of Q(Φ, ν, C) that

sup
QN∈Q(Φ,ν,C)

sup
d,z
|(QNTdΦ)(z)|r/ν(z) ≤ C.

Hence for any QN ∈ Q(Φ, ν, C) and d ∈ [D], Yd ≤ C a.s. and thus

E[Y 2
d ] ≤ C ′E[Yd].

14



Thus, to prove Proposition 3.7 it suffices to have uniform bound for wd(z,QN ) for all QN ∈ Q(C′).
Let σ(x) := 1 + ‖x‖ and fix some Q ∈ Q(C′). Then ν(z) = QN (σΦ(·, z))/C(QN ), where
C(QN ) := ‖F‖L1Q(σA(· −mN )) ≤ ‖F‖L1C′. Moreover, for c, c′ > 0 not depending on QN ,

|(QNTdΦ)(z)|r ≤ QN (|∂d log p+ ∂d logA(· −mN ) + ∂d logF (· − z)|Φ(·, z))r

≤ cQN (|1 + ‖·‖+ ‖· −mN‖a|Φ(·, z))r

≤ c′(C′)r−1QN (σΦ(·, z)).

Thus,

wd(z,QN ) =
|(QNTdΦ)(z)|r

ν(z)
≤ C(Q)c′(C′)r−1QN (σΦ(·, z))

QN (σΦ(·, z))
≤ c′(C′)r‖F‖L1 .

F Technical Lemmas

Lemma F.1. If P ∈ P , Assumptions A to D hold, and (3) holds, then for any λ ∈ (1/2, λ),

|(QNTdΦ)(z)| ≤ Cλ,C KSD2λ−1
kd

.

Proof Let ςd(ω) := (1 + ωd)
−1QN (TdA(· −mN )e−iω··). Applying Proposition H.1 with D =

QNTdA(· −mN ), h = F , %(ω) = 1 + ωd, and t = 1/2 yields

|(QNTdΦ)(z)| ≤ ‖F‖Ψ(λ)

(
‖ςd‖L∞‖(1 + ∂d)Ψ

(1/4)‖L2

)2−2λ

‖QNTdΦ‖2λ−1
Ψ

The finiteness of ‖F‖Ψ(λ) follows from Assumption C. Using P ∈ P , Assumption A, and (3) we
have

ςd(ω) = (1 + ωd)
−1QN ([∂d log p+ ∂d logA(· −mN )− iωd]A(· −mN )e−iω··)

≤ CQN ([1 + ‖·‖]A(· −mN )

≤ CC′,

so ‖ςd‖L∞ is finite. The finiteness of ‖(1 + ∂d)Ψ
(1/4)‖L2 follows from the Plancherel theorem and

Assumption D. The result now follows upon noting that ‖QNTdΦ‖Ψ = KSDkd .

Lemma F.2. If P ∈ P , Assumptions A and B hold, and (3) holds, then for some b ∈ [0, 1), Cb > 0,

|QNTdΦ(z)| ≤ CbF (z −mN )1−b.

Moreover, b = 0 if s = 0.

Proof We have (with C a constant changing line to line)

|QNTdΦ(z)| ≤ QN |TdΦ(·, z)|
= QN (|∂d log p+ ∂d logA(· −mN ) + ∂d logF (· − z)|A(· −mN )F (· − z))
≤ CQN (|1 + ‖·‖+ ‖· − z‖s|A(· −mN )F (· −mN )−1)F (z −mN )

≤ CQN (|1 + ‖·‖+ ‖· −mN‖s + ‖z −mN‖s|A(· −mN )F (· −mN )−1)F (z −mN )

≤ CC(1 + ‖z −mN‖s)F (z −mN ).

By assumption (1 + ‖z‖s)F (z) → 0 as ‖z‖ → ∞, so for some Cb > 0 and b ∈ [0, 1),
(1 + ‖z −mN‖s) ≤ CbF (z)−b.
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G Proof of Theorem 3.8: (C, γ) second moment bounds for RΦSD

Take QN ∈ Q(C) fixed and let wd(z) := wd(z,QN ). For a set S let νS(S′) :=
∫
S∩S′ ν(dz). Let

K := {x ∈ RD | ‖x−mN‖ ≤ R}. Recall that Z ∼ ν and Yd = wd(Z). We have

E[Y 2
d ] = E[wd(Z)2] = E[wd(Z)21(Z ∈ K)] + E[wd(Z)21(Z /∈ K)]

≤ ‖wd‖L1(ν)‖wd1(· ∈ K)‖L∞(ν) + ‖1(· /∈ K)‖L1(ν)‖w2
d1(· /∈ K)‖L∞(ν)

= ‖QNTdΦ‖rLr sup
z∈K

wd(z) + ν(K{) sup
z∈K{

wd(z)
2

= E[Yd] sup
z∈K

wd(z) + ν(K{) sup
z∈K{

wd(z)
2

Without loss of generality we can take ν(z) = Ψ(z −mN )ξr/‖Ψξr‖L1 , since a different choice of ν
only affects constant factors. Applying Lemma F.1, Assumption D, and (2), we have

sup
z∈K

wd(z) ≤ Crλ,C KSD
r(2λ−1)
kd

sup
z∈K

ν(z)−1

≤ Crλ,C‖Ψξr‖L1 sup
z∈K

F (z −mN )−ξr KSD
r(2λ−1)
kd

≤ Crλ,Cc−ξr‖Ψξr‖L1‖Ψ̂/F̂ 2‖Ltf(R)−ξr‖QNTdΦ‖r(2λ−1)
Lr

= Crλ,C‖(Ψ/c)ξr‖L1‖Ψ̂/F̂ 2‖Ltf(R)−ξrE[Yd]
2λ−1.

Applying Lemma F.2 we have

sup
z∈K{

wd(z)
2 ≤ C2

b sup
z∈K{

F (z −mN )2(1−b)r/ν(z)2

= C2
b ‖Ψξr‖2L1 sup

z∈K{

F (z −mN )2(1−b−ξ)r

= C2
b ‖Ψξr‖2L1f(R)2(1−b−ξ)r.

Thus, we have that

E[Y 2
d ] ≤ Cλ,C,r,ξE[Yd]

2λf(R)−ξr + Cb,ξrf(R)2(1−b−ξ)r.

As long as E[Yd]
2λ ≤ Cb,ξrf(0)2(1−b−ξ/2)r/Cλ,C,r,ξ, since f is continuous and non-increasing to

zero we can choose R such that f(R)2(1−b−ξ)r = Cλ,C,r,ξE[Yd]
2λ/Cb,ξr and the result follows for

E[Yd]
2λ ≤ Cb,ξrf(0)2(1−b−ξ/2)r/Cλ,C,r,ξ.

Otherwise, we can guarantee that E[Y 2
d ] ≤ CαE[Yd]

2−γα be choosing Cα sufficiently large, since by
assumption E[Yd] is uniformly bounded over QN ∈ Q(C).

H A uniform MMD-type bound

Let D denote a tempered distribution and Ψ a stationary kernel. Also, define D̂(ω) := Dxe−i〈ω,x̂〉.
Proposition H.1. Let h be a symmetric function such that for some s ∈ (0, 1], h ∈ KΨ(s) and
Dxh(x̂− ·) ∈ KΨ(s) . Then

|Dxh(x̂− z)| ≤ ‖h‖Ψ(s)

∥∥∥DxΨ(s)(x̂− ·)
∥∥∥

Ψ(s)

and for any t ∈ (0, s) any function %(ω),∥∥∥DxΨ(s)(x̂− ·)
∥∥∥1−t

Ψ(s)
≤
(∥∥∥%−1D̂

∥∥∥
L∞

∥∥∥%Ψ̂t/2
∥∥∥
L2

)1−s
‖DxΨ(x̂− ·)‖s−tΨ .

Furthermore, if for some c > 0 and r ∈ (0, s/2), ĥ ≤ c Ψ̂r, then

‖h‖Ψ(s) ≤
c
∥∥Ψ(r−s/2)

∥∥
L2

(2π)d/4
.
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Proof The first inequality follows from an application of Cauchy-Schwartz:
|Dxh(x̂− z)| = |〈h(· − z),DxΨ(s)(x̂− ·)〉Ψ(s) |

≤ ‖h(· − z)‖Ψ(s)

∥∥∥DxΨ(s)(x̂− ·)
∥∥∥

Ψ(s)

= ‖h‖Ψ(s)

∥∥∥DxΨ(s)(x̂− ·)
∥∥∥

Ψ(s)
.

For the first norm, we have

‖h‖2Φ(s) = (2π)−d/2
∫

ĥ2(ω)

Φ̂s(ω)
dω

≤ c2(2π)−d/2
∫

Φ̂2r−s(ω) dω

= c2(2π)−d/2
∥∥∥Ψ(r−s/2)

∥∥∥2

L2
.

Note that by the convolution theorem F (DxΨ(s)(x̂− ·))(ω) = D̂(ω)Ψ̂s(ω). For the second norm,
applying Jensen’s inequality and Hölder’s inequality yields∥∥∥DxΨ(s)(x̂− ·)

∥∥∥2

Ψ(s)
= (2π)−d/2

∫
Ψ̂(ω)2s|D̂(ω)|2

Ψ̂s(ω)
dω

= (2π)−d/2
(∫

Ψ̂t|D̂|2
)∫

Ψ̂(ω)t|D̂(ω)|2∫
Ψ̂t|D̂|2

Ψ̂(ω)s−t dω

≤ (2π)−d/2
(∫

Ψ̂t|D̂|2
)(∫

Ψ̂(ω)t|D̂(ω)|2∫
Ψ̂t|D̂|2

Ψ(ω)1−t dω

) s−t
1−t

=

(∫
Ψ̂t|D̂|2

) 1−s
1−t

‖DxΨ(x̂− ·)‖2
s−t
1−t

Ψ

≤
(∥∥∥|%−1D̂|2

∥∥∥
L∞

∫
%2Ψ̂t

) 1−s
1−t

‖DxΨ(x̂− ·)‖2
s−t
1−t

Ψ

=

(∥∥∥%−1D̂
∥∥∥2

L∞

∥∥∥%Ψ̂t/2
∥∥∥2

L2

) 1−s
1−t

‖DxΨ(x̂− ·)‖2
s−t
1−t

Ψ .

I Verifying Example 3.3: Tilted hyperbolic secant RΦSD properties

We verify each of the assumptions in turn. By construction or assumption each condition in As-
sumption A holds. Note in particular that Ψsech

2a ∈ C∞. Since e−a|xd| ≤ sech(axd) ≤ 2e−a|xd|,
Assumption B holds with ‖·‖ = ‖·‖1, f(R) = 2de−

√
π
2 aR, and c = 2−d, and s = 1. In particular,

∂xd log Ψsech
2a (x) =

√
2π a tanh(

√
2π axd) +

∑D
d′ 6=d log sech(

√
2π axd′)

≤ (
√

2π a)(1 +
∑D
d′ 6=d|xd′)

≤ (
√

2π a)(1 + ‖x‖1)

and using Proposition L.3 we have that

Ψsech
a (x− z) ≤ e

√
π
2 a‖x‖1Ψsech

a (z) ≤ 2dΨsech
a (z)/Ψsech

a (x).

Assumption C holds with λ = 1 since for any λ ∈ (0, 1), it follow from Proposition L.2 that

f̂j/Φ̂
λ/2
j = Ψ̂sech

2a /(Ψ̂sech
a )λ/2 ≤ 2d/2(Ψ̂sech

2a )1−λ ∈ L2.

The first part of Assumption D holds as well since by (6), ω2
dΨ̂sech

a (ω) = a−Dω2
dΨsech

1/a (ω) ∈ L1.

Finally, to verify the second part of Assumption D, we first note that since r = 2, t = ∞. The
assumption holds since by Proposition L.2, Ψ̂sech

a (ω)/Ψ̂sech
2a (ω)2 ≤ 1.
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J Verifying Example 3.4: IMQ RΦSD properties

We verify each of the assumptions in turn. By construction or assumption each condition in As-
sumption A holds. Note in particular that ΨIMQ

c′,β′ ∈ C∞. Assumption B holds with ‖·‖ = ‖·‖2,
f(R) = ((c′)2 +R2)β

′
, c = 1, and s = 0. In particular,

|∂xd log ΨIMQ
c′,β′(x)| ≤ − 2β′|xd|

(c′)2 + ‖x‖22
≤ −2β′

and

ΨIMQ
c′,β′(x− z)
ΨIMQ
c′,β′(z)

=

(
(c′)2 + ‖x− z‖22

(c′)2 + ‖z‖22

)−β′

≤

(
(c′)2 + 2‖z‖22 + 2‖x‖22

(c′)2 + ‖z‖22

)−β′

≤
(

2 + 2‖x‖22/(c
′)2
)−β′

= 2−βΨIMQ
c′,β′(x)−1.

By Wendland [29, Theorem 8.15], ΨIMQ
c,β has generalized Fourier transform

Ψ̂IMQ
c,β (ω) =

21+β

Γ(−β)

(
‖ω‖2
c

)−β−D/2
Kβ+D/2(c‖ω‖2),

where Kv(z) is the modified Bessel function of the third kind. We write a(`) ∼̇ b(`) to denote
asymptotic equivalence up to a constant: lim` a(`)/b(`) = c for some c ∈ (0,∞). Asymptotically [1,
eq. 10.25.3],

Ψ̂IMQ
c,β (ω) ∼̇ ‖ω‖−β−D/2−1/2

2 e−c‖ω‖2 , ‖ω‖2 →∞ and

Ψ̂IMQ
c,β (ω) ∼̇ ‖ω‖−(β+D/2)−|β+D/2|

2 = ‖ω‖−(2β+D)+

2 ‖ω‖2 → 0.

Assumption C holds since for any λ ∈ (0, λ),

Ψ̂IMQ
c′,β′/(Ψ̂

IMQ
c,β )λ/2 ∼ ‖ω‖−(β′+D/2−1/2)+(β+D/2−1/2)λ/2

2 e(−c′+cλ/2)‖ω‖2 , ‖ω‖2 →∞ and

∼ ‖ω‖λ(2β+D)+/2−(2β′+D)+

2 = ‖ω‖λ(2β+D)/2
2 ‖ω‖2 → 0,

so Ψ̂IMQ
c′,β′/(Ψ̂

IMQ
c,β )λ/2 ∈ L2 as long as c′ = cλ/2 > cλ/2 and λ(2β+D) > −D. The first condition

holds by construction and second condition is always satisfied, since 2β +D ≥ 0 > −D.

The first part of Assumption D holds as well since Ψ̂IMQ
c′,β′(ω) decreases exponentially as ‖ω‖2 →∞

and Ψ̂IMQ
c′,β′(ω) ∼ 1 as ‖ω‖2 → 0, so ω2

dΨ̂IMQ
c′,β′(ω) is integrable.

Finally, to verify the second part of Assumption D we first note that t = r/(2−r) = −D/(D+4β′ξ).
Thus,

Ψ̂IMQ
c,β /(Ψ̂IMQ

c′,β′)
2 ∼̇ ‖ω‖−2(β+D/2−1/2)/2+2(β′+D/2−1/2))

2 e2(−c/2+c′)‖ω‖2 , ‖ω‖2 →∞ and

∼̇ ‖ω‖2(2β′+D)+−(2β+D)+

2 = ‖ω‖−(2β+D)
2 ‖ω‖2 → 0,

so Ψ̂IMQ
c,β /(Ψ̂IMQ

c′,β′)
2 ∈ Lt whenever c/2 > c′ and

D

(D + 4β′ξ)
(2β +D) > −D ⇔ −β/(2ξ)−D/(2ξ) > β′.

Both these conditions hold by construction.
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K Proofs of Proposition 4.1 and Theorem 4.3: Asymptotics of RΦSD

The proofs of Proposition 4.1 and Theorem 4.3 rely on the following asymptotic result.

Theorem K.1. Let ξi : RD × Z → R, i = 1, . . . , I , be a collection of functions; let ZN,m
indep∼ νN ,

where νN is a distribution on Z; and let Xn
i.i.d.∼ µ, where µ is absolutely continuous with respect

to Lebesgue measure. Define the random variables ξN,nim := ξi(Xn, ZN,m) and, for r, s ≥ 1, the
random variable

Fr,s,N :=

(∑I
i=1

(∑M
m=1

∣∣∣N−1
∑N
n=1 ξN,nim

∣∣∣r)s/r)2/s

.

Assume that for all N ≥ 1, i ∈ [I], and m ∈ [M ], ξN,1im has a finite second moment that that
Σim,i′m′ := limN→∞ Cov(ξN,im, ξN,i′m′) <∞ exists for all i, i ∈ [I] and m,m′ ∈ [M ]. Then the
following statements hold.

1. If %N,im := (µ× νN )(ξi) = 0 for all i ∈ [N ] then

NFr,s,N
D

=⇒
(∑I

i=1

(∑M
m=1|ζim|

r
)s/r)2/s

as N →∞, (5)

where ζ ∼ N (0,Σ).

2. If %N,im 6= 0 for some i and m, then

NFr,s,N
a.s.→ ∞ as N →∞.

Proof Let VN,im = N−1/2
∑N
n=1 ξN,nim. By assumption ‖Σ‖ <∞. Hence, by the multivariate

CLT,

VN −N1/2%N
D

=⇒ N (0,Σ).

Observe that NFr,s,N = (
∑I
i=1(

∑M
m=1 |VN,im|r)s/r)2/s. Hence if % = 0, (5) follows from the

continuous mapping theorem.

Assume %N,ij 6= 0 for some i and j and all N ≥ 0. By the strong law of large numbers,
N−1/2VN

a.s.→ %∞. Together with the continuous mapping theorem conclude that Fr,s,N
a.s.→ c for

some c > 0. Hence NFr,s,N
a.s.→ ∞.

When r = s = 2, the RΦSD is a degenerate V -statistic, and we recover its well-known distribution
[24, Sec. 6.4, Thm. B] as a corollary. A similar result was used in Jitkrittum et al. [16] to construct
the asymptotic null for the FSSD, which is degenerate U -statistic.
Corollary K.2. Under the hypotheses of Theorem K.1(1),

NF2,2,N
D

=⇒
∑I
i=1

∑M
m=1 λimω

2
im as N →∞,

where λ = eigs(Σ) and ωij
i.i.d.∼ N (0, 1).

To apply these results to RΦSDs, take s = 2 and apply Theorem K.1 with I = D, ξN,dm = ξr,N,dm.
Under H0 : µ = P , P (ξr,N,dm) = 0 for all d ∈ [D] and m ∈ [M ], so part 1 of Theorem K.1 holds.
On the other hand, when µ 6= P , there exists some m and d for which µ(ξr,dm) 6= 0. Thus, under
H1 : µ 6= P part 2 of Theorem K.1 holds.

The proof of Theorem 4.3 is essentially identical to that of Jitkrittum et al. [16, Theorem 3].

L Hyperbolic secant properties

Recall that the hyperbolic secant function is given by sech(a) = 2
ea+e−a . For x ∈ Rd, define the

hyperbolic secant kernel

Ψsech
a (x) := sech

(√
π

2
ax

)
:=

d∏
i=1

sech

(√
π

2
axi

)
.
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It is a standard result that

Ψ̂sech
a (ω) = a−DΨsech

1/a (ω). (6)

We can relate Ψsech
a (x)ξ to Ψsech

aξ (x), but to do so we will need the following standard result:

Lemma L.1. For a, b ≥ 0 and ξ ∈ (0, 1],

aξ + bξ

21−ξ ≤ (a+ b)ξ ≤ aξ + bξ.

Proof The lower bound follows from an application of Jensen’s inequality and the upper bound
follows from the concavity of a 7→ aξ.

Proposition L.2. For ξ ∈ (0, 1],

Ψsech
a (x)ξ ≤ Ψsech

a (ξx) = Ψsech
aξ (x) ≤ 2d(1−ξ)Ψsech

a (x)ξ

2−d(1−ξ)Ψ̂sech
a/ξ (x) ≤ Ψ̂sech

a (x)ξ ≤ Ψ̂sech
a/ξ (x).

Thus, Ψsech
a/ξ is equivalent to (Ψsech

a )(ξ).

Proof Apply Lemma L.1 and (6).

Proposition L.3. For all x, y ∈ Rd and a > 0,

Ψsech
a (x− z) ≤ e

√
π
2 a‖x‖1Ψsech

a (z).

Proof Take d = 1 since the general case follows immediately. Without loss of generality assume
that x ≥ 0 and let a′ =

√
π
2 a. Then

Ψsech
a (x− z)
Ψsech
a (z)

=
ea
′z + e−a

′z

ea′(x−z) + e−a′(x−z)
=

ea
′z + e−a

′z

e−a′z + e2a′xea′z
ea
′x ≤ ea

′x.

M Concentration inequalities

Theorem M.1 (Chung and Lu [5, Theorem 2.9]). Let X1, . . . , Xm be independent random variables
satisfying Xi > −A for all i = 1, . . . ,m. Let X :=

∑m
i=1Xi and X2 :=

∑m
i=1 E[X2

i ]. Then for all
t > 0,

P(X ≤ E[X]− t) ≤ e− 1
2 t

2/(X2+At/3).

Let X̂ := 1
m

∑m
i=1Xi.

Corollary M.2. Let X1, . . . , Xm be i.i.d. nonnegative random variables with mean X̄ := E[X1].
Assume there exist c > 0 and γ ∈ [0, 2] such that E[X2

1 ] ≤ cX̄2−γ . If, for δ ∈ (0, 1) and ε ∈ (0, 1),

m ≥ 2c log(1/δ)

ε2
X̄−γ ,

then with probability at least 1− δ, X̂ ≥ (1− ε)X̄.

Proof Applying Theorem M.1 with t = mεX̄ and A = 0 yields

P(X̂ ≤ (1− ε)X̄) ≤ e− 1
2 ε

2mX̄2/(cE[X2
1 ]) ≤ e− 1

2c ε
2mX̄γ .

Upper bounding the right hand side by δ and solving for m yields the result.
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Corollary M.3. Let X1, . . . , Xm be i.i.d. nonnegative random variables with mean X̄ := E[X1].
Assume there exists c > 0 and γ ∈ [0, 2] such that E[X2

1 ] ≤ cX̄2−γ . Let ε′ = |X∗ − X̄| and assume
ε′ ≤ ηX∗ for some η ∈ (0, 1). If, for δ ∈ (0, 1),

m ≥ 2c log(1/δ)

ε2
X̄−γ ,

then with probability at least 1− δ, X̂ ≥ (1− ε)X∗. In particular, if ε′ ≤ σX∗√
n

and X∗ ≥ σ2

η2n , then

with probability at least 1− δ, X̂ ≥ (1− ε)X∗ as long as

m ≥ 2c(1− η)2η2γ

ε2σ2γ log(1/δ)
nγ .

Proof Apply Corollary M.2 with εX∗

X̄
in place of ε.

Example M.1. If we take γ = 1/4 and η = ε = 1/2, then X∗ ≥ 4σ2

n and m ≥
√

2 c log(1/δ)
σ1/2 n1/4

guarantees that X̂ ≥ 1
2X
∗ with probability at least 1− δ.
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