
165

Verified Three-Way Program Merge

MARCELO SOUSA, University of Oxford, United Kingdom
ISIL DILLIG, University of Texas at Austin, United States
SHUVENDU K. LAHIRI,Microsoft Research, United States

Even though many programmers rely on 3-way merge tools to integrate changes from different branches,
such tools can introduce subtle bugs in the integration process. This paper aims to mitigate this problem by
defining a semantic notion of conflict-freedom, which ensures that the merged program does not introduce
new unwanted behaviors. We also show how to verify this property using a novel, compositional algorithm
that combines lightweight summarization for shared program fragments with precise relational reasoning for
the modifications. Towards this goal, our method uses a 4-way differencing algorithm on abstract syntax trees
to represent different program versions as edits applied to a shared program with holes. This representation
allows our verification algorithm to reason about different edits in isolation and compose them to obtain
an overall proof of conflict freedom. We have implemented the proposed technique in a new tool called
SafeMerge for Java and evaluate it on 52 real-world merge scenarios obtained from Github. The experimental
results demonstrate the benefits of our approach over syntactic conflict-freedom and indicate that SafeMerge
is both precise and practical.

CCS Concepts: • Software and its engineering→ Formal software verification;

Additional Key Words and Phrases: Three-way program merge, relational verification, product programs

ACM Reference Format:
Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri. 2018. Verified Three-Way Program Merge. Proc. ACM
Program. Lang. 2, OOPSLA, Article 165 (November 2018), 29 pages. https://doi.org/10.1145/3276535

1 INTRODUCTION
Developers who edit different branches of a source code repository rely on 3-way merge tools (like
git-merge or kdiff3) to automatically merge their changes. Since the vast majority of these tools
are oblivious to program semantics and resolve conflicts using syntactic criteria, they can —and, in
practice, do— introduce bugs in the merge process. For example, numerous on-line posts illustrate
the pitfalls of textual merge tools [Fowler, Martin 2011; Lee, TK 2012; Lenski, Dan 2015; Reddit
2017b] and provide ample examples of bugs that are introduced in themerge process [DavidWheeler
2017; Knoy, Gabriel 2012; Lutton, Mark 2014; Reddit 2017a; Rostedt, Steven 2011]. Furthermore,
according to a simple empirical study that we performed on public Github data, there are 3500
commits that likely introduce a bug during the merge. 1 According to several sources, the infamous

1We estimate this number by performing a query over Github public data on commits searching for “*merge.*introduce.*bug”
on the subject and description of the commit.

Authors’ addresses: Marcelo Sousa, University of Oxford, United Kingdom, marcelo.sousa@cs.ox.ac.uk; Isil Dillig, University
of Texas at Austin, United States, isil@cs.utexas.edu; Shuvendu K. Lahiri, Microsoft Research, United States, shuvendu.
lahiri@microsoft.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2475-1421/2018/11-ART165
https://doi.org/10.1145/3276535

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

https://doi.org/10.1145/3276535
https://doi.org/10.1145/3276535

165:2 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

Apple SSL bug (that resulted from duplicate goto statements) may have been introduced in the
automatic merge process [David Wheeler 2017; John Gruber 2014; SlashDot 2014].
To see how bugs may be introduced in the merge process, consider the simple base program

shown in Figure 1 together with its two variants A and B. 2 In this example, the base program
contains a redundant guard against null on the return of malloc. One can either remove the first
check for null (as done in variant A) or the second check for non-null (as done in variant B).
However, the merge generated by running a standard 3-way merge tool (in this case, git merge

with default options) generates an incorrect merge merge that removes both the checks, which
exposes the null-dereference bug not present in any of the three versions.

Base
void f() {
p = malloc(4);
if (!p) {

return;
}
q = 2;
if (p) {

*p = 1;
}

}

Variant A
void f() {
p = malloc(4);
q = 2;
if (p) {

*p = 1;
}

}

Variant B
void f() {

p = malloc(4);
if (!p) {
return;

}
q = 2;

*p = 1;
}

Generated Merge
void f() {
p = malloc(4);
q = 2;

*p = 1;
}

Fig. 1. Simple motivating example.

This paper takes a step towards eliminating bugs that arise due to 3-way program merges by
automatically verifying semantic conflict-freedom, a notion inspired by earlier work on program
integration [Horwitz et al. 1989; Yang et al. 1990]. To motivate what we mean by semantic conflict-
freedom, consider a base program P , two variants A,B, and a merge candidate M . Intuitively,
semantic conflict freedom requires that, if variant A (resp. B) disagrees with P on the value of some
program variable v , then the merge candidateM should agree with A (resp. B) on the value of v . In
addition to ensuring that the merge candidate does not introduce new behavior that is not present
in either of the variants, conflict freedom also ensures that variants A and B do not make changes
that are semantically incompatible with each other.
The main contribution of this paper is a novel compositional verification algorithm, and its

implementation in a tool called SafeMerge, for automatically proving semantic conflict-freedom
of Java programs. Our method is compositional in that it analyzes different modifications to the
program in isolation and composes them to obtain an overall proof of semantic conflict-freedom.
A key idea that allows compositionality is to model different versions of the program using edits
applied to a shared programwith holes. Specifically, the shared program captures common statements
between the program versions, and holes represent discrepancies between them. The edits describe
how to fill each hole in the shared program to obtain the corresponding statement in a variant. Given
such a representation that is automatically generated by SafeMerge, our verification algorithm
uses lightweight analysis to reason about shared program fragments but resorts to precise relational
techniques to reason about modifications.
2This example is inspired from a presentation by Jim Larus https://barghouthi.github.io/repsatsixty/larus.pdf.

P

A

B

M

4-way
diff SharedEdit1 Edit2

Edit3 Edit4

VC
Gen

Mini
product

Verifier

Fig. 2. High-level overview of our approach.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

https://barghouthi.github.io/repsatsixty/larus.pdf

Verified Three-Way Program Merge 165:3

The overall workflow of our approach is illustrated schematically in Figure 2. Our method
takes as input four related programs, namely the original program P , two variants A and B, and
a merge candidate M , and represents them as edits applied to a shared program by running a
“4-way diff" algorithm on the abstract syntax trees. The verifier leverages the result of the 4-way
diff algorithm to identify which parts of the program to analyze more precisely. Specifically, our
verification algorithm summarizes shared program fragments using uninterpreted functions of
the form x = f (x1, . . . ,xn) that encode dependencies between program variables. In contrast,
the verifier reasons about edited program fragments in a more fine-grained way by constructing
4-way product programs that encode the simultaneous behavior of all four edits. Overall, this
interplay between lightweight dependence analysis and product construction allows our technique
to generate verification conditions whose complexity depends on the size and number of the edits.

To evaluate our technique, we collected over 50 real-world merge scenarios obtained by crawling
Github commit histories and evaluate SafeMerge on these benchmarks. Our tool is able to verify
the correctness of the merge candidate in 75% of the benchmarks and identifies eleven real violations
of semantic conflict-freedom, some of which are not detected by textual merge tools. Our evaluation
also demonstrates the scalability of our method and illustrates the advantages of performing
compositional reasoning.

In summary, this paper makes the following key contributions:
• We introduce the merge verification problem based on the notion of semantic conflict-freedom.
• We provide a compositional verification algorithm that combines precise relational reasoning
about the edits with lightweight reasoning for unedited program fragments.
• We present a novel n-way product construction technique for precise relational verification.
• We describe an n-way AST diff algorithm and use it to represent program versions as edits
applied to a shared program with holes.
• We implement our method in a tool called SafeMerge and evaluate our approach on real-world
merge scenarios collected from Github repositories.

2 OVERVIEW
In this section, we give an overview of our approach with the aid of a merge example from the
RxJava project 3, a popular library for composing asynchronous and event-based programs using
observable sequences for the Java VM. Figure 3 shows the Base version (O) of the triggerActions
method from the TestScheduler.java file. The two variants A, B and the mergeM perform the
following modifications:
• Variant A moves the statement time = targetTimeInNanos at line 7 to immediately after the
while loop. This modification potentially impacts the value of the variable time inA with respect
to the Base version.
• Variant B guards the call current.action.call(...) at line 12 with the condition:

if(!current.isCancelled.get()) {...}

The call (at line 12) has a side effect on the variable called value which changes the effect on
value with respect to the Base version.
• The mergeM incorporates both of these changes.
This example is interesting in that both variants modify code within a loop, and one of them

(namely, B) changes the control-flow by introducing a conditional. The loop in turn depends on the
state of an unbounded collection queue, which is manipulated usingmethods such as queue.isEmpty

3https://github.com/ReactiveX/RxJava/commit/1c47b0c.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

https://github.com/ReactiveX/RxJava/commit/1c47b0c

165:4 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

1 Queue<TimedAction > queue = new PriorityQueue <TimedAction >(...);
2 int time; int value;
3 void triggerActions(long targetTimeInNanos) {
4 while(!queue.isEmpty()){
5 TimedAction current = queue.peek();

6 if(current.time > targetTimeInNanos){
7 time = targetTimeInNanos;

8 break;
9 }

10 time = current.time;

11 queue.remove();

12 current.action.call(current.scheduler , current.state);

13 } }

Fig. 3. Procedure from the base program in RxJava.

Shared program with holes (Ŝ)
void triggerActions(long targetTimeInNanos) {

while (!queue.isEmpty()) {
TimedAction current = queue.peek();

if (current.time > targetTimeInNanos) {
<?HOLE?>;

break; }
time = current.time; queue.remove();

<?HOLE?>;

}

<?HOLE?>;

} Edit O (∆O)
[time = targetTimeInNanos , current.action.call(...), skip]

Edit A (∆A)
[skip, current.action.call(...), time = targetTimeInNanos]

Edit B (∆B)
[time = targetTimeInNanos ,

if(!current.isCancelled.get()) { current.action.call(...);},
skip]

EditM (∆M)
[skip,

if(!current.isCancelled.get()) { current.action.call(...); },
time = targetTimeInNanos]

Fig. 4. Shared program with holes and the edits.

and queue.remove. Furthermore, while triggerActions has no return value, it has implicit side-
effects on variables time and value, and on the collection queue. Together, these features make
it challenging to ensure that the mergeM preserves changes from both variants and does not
introduce any new behavior.

To verify semantic conflict-freedom, our technique represents the changes formally using a list
of edits over a shared program with holes. Figure 4 shows the shared program Ŝ along with the
corresponding edits ∆O ,∆A ,∆B ,∆M . A hole (denoted as <?HOLE?>) in Ŝ is a placeholder for a
statement. The shared program captures the statements that are common to all the four versions
(O,A, B andM), and the holes in Ŝ represent program fragments that differ between the program
versions. An edit ∆P for program version P represents a list of statements that will be substituted
into the holes of the shared program to obtain P.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

Verified Three-Way Program Merge 165:5

Program version Pv := (Ŝ,∆)
Edit ∆ := [] | S :: ∆
Stmt with hole Ŝ := [·] | A | Ŝ1; Ŝ2 | C ? {Ŝ1} : {Ŝ2}

| while(C) {Ŝ}
Stmt S := A | S1;S2 | C ? {S1} : {S2}

| while(C) {S}
Atom A := skip | x := e | x[e1] := e2

Fig. 5. Representation of program versions. Here, :: denotes list concatanation, and e and C represent
expressions and predicates respectively.

Given this representation, we express semantic conflict-freedom as an assertion for each of the
return variables (in this case, global variables modified by the triggerActions method). Since the
triggerActions method modifies time, value and queue, we add an assertion for each of these
variables. For instance, we add the following assertion on the value of time at exit from the four
versions:

(timeO = timeB = timeA = timeM)
∨(

(timeO , timeA ⇒ timeA = timeM)
∧

(timeO , timeB ⇒ timeB = timeM)
)

This assertion states that either (i) all four versions have identical side-effects on time, or (ii) if
the side-effect on timeA (resp. timeB) differs from timeO , then timeM in the merge should have
identical side-effect as timeA (resp. timeB). We add similar assertions for value and queue.
To prove these assertions, our method assumes that all four versions start out in identical

states and then generates a relational postcondition (RPC) ψ such that the merge is semantically
conflict-free ifψ logically implies the added assertions. Our RPC generation engine reasons about
modifications over the base program by differentiating between three kinds of statements:
Shared statements. We summarize the behavior of shared statements using straight-line code

snippets of the form y = f (x1, . . . ,xn) where f is an uninterpreted function. Essentially, such a
statement indicates that the value of variable y is some (unknown) function of variables x1, . . . ,xn .
These “summaries" are generated using lightweight dependence analysis and allow our method to
perform abstract reasoning over unchanged program fragments.
Holes. When our RPC generation engine encounters a hole in the shared program, it performs

precise relational reasoning about different modifications by computing a 4-way product program
of the edits. As is well-known in the relational verification literature [Barthe et al. 2011, 2013],
a product program P1 × P2 is semantically equivalent to P1; P2 but is constructed in a way that
facilitates the verification task. However, because product construction can result in a significant
blow-up in program size, our technique generates mini-products in a novel way by considering
each hole in isolation rather than constructing a full-fledged product of the four program versions.

Loops. Our RPC generation engine infers relational loop invariants for loops that contain edited
program fragments. For instance, our method infers that (i) timeO = timeB and timeA = timeM ,
(ii) valueO = valueA and valueB = valueM , and (iii) the state of collection queue is identical in
all four versions for the shared loop from Figure 4.
Using these ideas, our method is able to automatically generate an RPC that implies semantic

conflict-freedom of this example. Furthermore, the entire procedure is push-button, including the
generation of edits, RPC computation, and relational loop invariant generation.

3 REPRESENTATION OF PROGRAM VERSIONS
In this section, we describe our representation of program versions as edits applied to a shared
program with holes. As shown in Figure 5, a program version Pv is a pair (Ŝ,∆) where Ŝ is a

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

165:6 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

ApplyEdit(Ŝ,∆) = S where(S, []) = Apply(Ŝ,∆)

Apply :: (Ŝ,∆) → (S,∆′)

Apply([·],S :: ∆) = (S,∆)
Apply(A,∆) = (A,∆)

Apply(Ŝ1; Ŝ2,∆) = let (S1,∆1) = Apply(Ŝ1,∆) in
let (S2,∆2) = Apply(Ŝ2,∆1) in
((S1;S2),∆2)

Apply(C ? {Ŝ1} : {Ŝ2},∆) = let (S1,∆1) = Apply(Ŝ1,∆) in
let (S2,∆2) = Apply(Ŝ2,∆1) in
(C ? {S1} : {S2},∆2)

Apply(while(C) {Ŝ},∆) = let (S,∆′) = Apply(Ŝ,∆) in
(while(C) {S},∆′)

Fig. 6. Application of edit ∆ to program with holes Ŝ.

statement with holes (i.e., missing statements) and an edit ∆ is a list of statements (without holes).
Given a program version Pv = (Ŝ,∆), we can obtain a full program P = Ŝ[∆] by applying the
edit ∆ to Ŝ according to the ApplyEdit procedure of Figure 6. Effectively, ApplyEdit traverses
the AST in depth-first order and replaces each hole with the next statement in the edit. Given n
related programs P1, . . . ,Pn , we assume the existence of a diff procedure that generates a shared
program Ŝ as well as n edits ∆1, . . . ,∆n such that ∀i ∈ [1,n]. ApplyEdit(Ŝ,∆i) = Pi . Since this diff
procedure is orthogonal to our verification algorithm, we defer the discussion of our diff procedure
until Section 6.

Since the language from Figure 5 uses standard imperative language constructs (including arrays),
we assume an operational semantics described using judgments of the form σ ⊢ S ⇓ σ ′, where σ is
a valuation that specifies the values of free variables in S. Specifically, a valuation is a mapping
from (variable, index) pairs to their corresponding values. The meaning of this judgment is that
evaluating S under σ yields a new valuation σ ′. In the rest of this paper, we also assume the
existence of a special array called out that serves as the return value of the program. Any behavior
that the programmer considers relevant (e.g., side effects or writing to the console) can be captured
by storing the relevant values into this out array.

4 SEMANTIC CONFLICT FREEDOM
In this section, we first introduce syntactic conflict-freedom, which corresponds to the criterion
used by many existing merge tools. We then explain why it falls short and formally describe the
more robust notion of semantic conflict-freedom.

Definition 4.1. (Syntactic conflict freedom) Suppose that we are given four program versions
O = (Ŝ,∆O), A = (Ŝ,∆A), B = (Ŝ,∆B),M = (Ŝ,∆M) representing the base program, the two
variants, and the merge candidate respectively. We say that the merge candidateM is syntactically
conflict free if the following conditions are satisfied for all i ∈ [0,n), where n denotes the number
of holes in Ŝ:
(1) If ∆O[i] , ∆A[i], then ∆M[i] = ∆A[i]
(2) If ∆O[i] , ∆B[i], then ∆M[i] = ∆B[i]
(3) Otherwise, ∆O[i] = ∆A[i] = ∆B[i] = ∆M[i]

Intuitively, the above definition states that the candidate mergeM makes the same syntactic
change as variant A (resp. B) whenever A (resp. B) differs from O. While this definition may
seem intuitively sensible, it does not accurately capture what it means for a merge candidate to be

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

Verified Three-Way Program Merge 165:7

correct. In particular, some incorrect merges may be conflict-free according to the above definition,
while some correct merges may be rejected.

Example 4.2. Consider Ŝ = [·]; [·];out[0] := x and the edits ∆O = [skip, skip], ∆A = [x :=
x + 1, skip], ∆B = [skip,x := x + 1], andM = [x := x + 1;x := x + 1]. These programs are
conflict-free according to the syntactic criterion given in Definition 4.1, but the merge is clearly
incorrect (both variants increment x by 1, but the merge candidate ends up incrementing x by 2).

The above example illustrates that a syntactic notion of conflict freedom is not suitable for ruling
out incorrect merges. Similarly, Definition 4.1 can also result in the rejection of perfectly valid
merge candidates.

Example 4.3. Consider the base program x > 0 ? {y := 1} : {y := 0}; out[0] := y. Suppose this
program has a bug that is caused by using the wrong predicate, so one variant fixes the bug by
swapping the then and else branches, and the other variant changes the predicate from x > 0
to x ≤ 0. Clearly, choosing either variant as the merge would be acceptable because they are
semantically equivalent. However, assuming the shared program is [·];out[0] := y, there is no
merge candidate that can satisfy Definition 4.1 because the two variants fill the hole in syntactically
conflicting ways.

Based on the shortcomings of syntactic conflict freedom, we instead propose the following
semantic variant:

Definition 4.4. (Semantic conflict freedom) Suppose that we are given four program versions
O,A,B,M representing the base program, its two variants, and the merge candidate respectively.
We say thatM is semantically conflict-free, if for all valuations σ such that:

σ ⊢ O ⇓ σO σ ⊢ A ⇓ σA σ ⊢ B ⇓ σB σ ⊢ M ⇓ σM

the following conditions hold for all i: 4

(1) If σO[(out , i)] , σA[(out , i)], then σM[(out , i)] = σA[(out , i)]
(2) If σO[(out , i)] , σB[(out , i)], then σM[(out , i)] = σB[(out , i)]
(3) Otherwise, σO[(out , i)] = σA[(out , i)] = σB[(out , i)] = σM[(out , i)]

In contrast to syntactic conflict freedom, Definition 4.4 requires agreement between the values
that are returned by the program. Specifically, it says that, if the i’th value returned by variant A
(resp. B) differs from the i’th value returned by base, then the i’th return value of the merge should
agree with A (resp. B). According to this definition, the merge candidate from Example 4.2 is not
conflict-free because it returns 2 whereas both variants return 1. Furthermore, for Example 4.3, we
can find a merge candidate (e.g., one of the variants) that satisfies semantic conflict freedom.

Discussion. Our definition of semantic conflict freedom is intended as a sufficient –rather than
necessary– condition for correctness. In particular, there may be situations where developers
consider a 3-way merge to be correct even though it does not satisfy Definition 4.4. However, since
it is not possible to make this judgement without additional input from the programmer (e.g., the
invariant that must be respected by the candidate merge), we believe that developers should be
made aware of any violation of Definition 4.4.

5 VERIFYING SEMANTIC CONFLICT FREEDOM
We now turn our attention to the verification algorithm for proving semantic conflict-freedom. The
high-level structure of this algorithm is shown in Algorithm 1. The procedure Verify takes as input
4We assume that out [i] is a special value ⊥ if (out, i) < dom(σ)

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

165:8 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

Algorithm 1 Algorithm for verifying conflict freedom

1: procedure Verify(Ŝ,∆1,∆2,∆3,∆4)

2: assume vars({Ŝ[∆1], . . . , Ŝ[∆4]}) = V
3: φ := (V1 = V2 ∧V1 = V3 ∧V1 = V4)

4: ψ := RelationalPost(Ŝ,∆1,∆2,∆3,∆4,φ)

5: χ1 := ∀i . (out1[i] , out2[i]⇒ out2[i] = out4[i])
6: χ2 := ∀i . (out1[i] , out3[i]⇒ out3[i] = out4[i])
7: χ3 := ∀i . (out1[i] = out2[i] = out3[i] = out4[i])
8: return Valid(ψ ⇒ (χ1 ∧ χ2) ∨ χ3)

a shared program (with holes) Ŝ, an edit ∆1 for the base program, edits ∆2,∆3 for the variants, and
an edit ∆4 for the merge candidate. Conceptually, the algorithm consists of three steps:

Precondition. Algorithm 1 starts by generating a pre-condition φ (line 3) stating that all variables
initially have the same value. 5 Here, V1 denotes the variables in the base program, V2,V3 denote
variables in the variants, and V4 refers to variables in the merge candidate. We use the notation
Vi = Vj as short-hand for ∀v ∈ V . vi = vj .

RPC computation. The next step of the algorithm is to compute a relational post-condition ψ
of φ with respect to the four program versions (line 4). Such a relational post-conditionψ states
relationships between variables V1,V2,V3, and V4 and has the property that it is also post-condition
of the program (Ŝ[∆1])[V1/V]; . . . ; (Ŝ[∆4])[V4/V]. We will explain the RelationalPost procedure
in detail shortly.
Checking conflict freedom. The last step of the algorithm checks whether the relational post-

condition ψ logically implies semantic conflict freedom (line 8). Specifically, observe that the
constraint (χ1 ∧ χ2) ∨ χ3 encodes precisely the three conditions from Definition 4.4, so the program
is conflict-free ifψ implies (χ1 ∧ χ2) ∨ χ3.

5.1 Computing Relational Postconditions
Since the core part of the verification algorithm is the computation of RPCs, we now describe the
RelationalPost procedure. As mentioned in Section 1, the key idea is to analyze edits in a precise
way by constructing product programs, but perform lightweight reasoning for shared program
parts using dependence analysis.

Our RPC generation engine is described in Figure 7 using judgments ∆⃗,φ ⊢ Ŝ : φ ′, ∆⃗′. Here, φ is
a precondition relating variables in different program versions, and ∆⃗ is a vector of n edits applied
to a shared base program Ŝ. The meaning of this judgment is that the following Hoare triple is
valid:

{φ} Ŝ[∆1][V1/V]; . . . ; Ŝ[∆n][Vn/V] {φ ′}
In other words, φ ′ is a sound relational post-condition of the four program versions with respect to
precondition φ. Since the edits in ∆⃗ may contain more statements than there are holes in Ŝ, we use
∆⃗′ to denote the remaining edits that were not “used” while analyzing Ŝ.
Let us now consider the rules in Figure 7 in more detail. The first rule corresponds to the case

where we encounter a hole in the shared program and need to analyze the edits. In this case, we
construct a “mini” product program S that describes the simultaneous execution of the edits. As
5Observe that this precondition also applies to local variables, not just arguments, and allows our technique to handle cases
in which one of the variants introduces a new variable.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

Verified Three-Way Program Merge 165:9

(1)
S = head(∆1)[V1/V] ⊛ . . . ⊛ head(∆4)[V4/V]

∆⃗,φ ⊢ [·] : post (S,φ), [tail(∆1), . . . , tail(∆4)]

(2)

Modifies(S) = {y1, . . . ,yn }
x⃗i = Dependencies(S,yi)

Si = (yi := Fi (x⃗i))[V1/V]; . . . ; (yi := Fi (x⃗i))[V4/V]

∆⃗,φ ⊢ S : post (S1; . . . ;Sn ,φ), ∆⃗

(3)
∆⃗,φ ⊢ Ŝ1 : φ ′, ∆⃗′ ∆⃗′,φ ′ ⊢ Ŝ2 : φ ′′, ∆⃗′′

∆⃗,φ ⊢ Ŝ1; Ŝ2 : φ ′′, ∆⃗′′

(4)

φ |=
∧
i, j C[Vi/V]↔ C[Vj/V]

∆⃗,φ ∧C[V1/V] ⊢ Ŝ1 : φ ′, ∆⃗′

∆⃗′,φ ∧ ¬C[V1/V] ⊢ Ŝ2 : φ ′′, ∆⃗′′

∆⃗,φ ⊢ C ? {Ŝ1} : {Ŝ2} : φ ′ ∨ φ ′′, ∆⃗′′

(5)

φ |= I ∆⃗,I ∧
∧
i C[Vi/V] ⊢ Ŝ : I ′, ∆⃗′ I ′ |= I

I |=
∧
i, j C[Vi/V]↔ C[Vj/V]

∆⃗,φ ⊢ while(C) Ŝ : I ∧
∧
i ¬C[Vi/V], ∆⃗′

(6)

S = (Ŝ[∆1])[V1/V] ⊛ . . . ⊛ (Ŝ[∆4])[V4/V]
∆i = (∆1

i :: ∆
2
i) (|∆1

i | = numHoles(Ŝ))

∆⃗,φ ⊢ Ŝ : post (S,φ), [∆2
1, . . . ,∆

2
4]

Fig. 7. RPC inference.

we will see in Section 5.2, an n-way product program S1 ⊛ . . . ⊛ Sn is semantically equivalent to
the sequential composition S1; . . . ;Sn but has the advantage of being easier to analyze. Given such
a “mini product” S, our RPC generation engine computes the post-condition of S in the standard
way using a post function, where post (S,φ) yields a sound post-condition of φ with respect to S.
Since S may contain loops in the general case, the computation of post may require loop invariant
generation. As we discuss in Section 5.2, the key advantage of constructing a product program is to
facilitate loop invariant generation using standard techniques.
Rule (2) corresponds to the case where we encounter a program fragment S without holes.

Since S has not been modified by any of the variants, we analyze S in a lightweight way using
dependence analysis. Specifically, for each variable yi that is modified by S, we compute the set of
variables x1, . . . ,xk that it depends on. We then summarize the behavior of S using statements
of the form yi = Fi (x1, . . . ,xk) where Fi is a fresh uninterpreted function symbol. Hence, rather
than analyzing the entire code fragment S (which could potentially be very large), we analyze its
behavior in a lightweight way by modeling it as straight-line code over uninterpreted functions. 6

Rule (3) for sequencing is similar to its corresponding proof rule in standard Hoare logic: Given
a statement Ŝ1; Ŝ2, we first compute the relational post-condition φ ′ of Ŝ1 and then use φ ′ as the
precondition for Ŝ2. Since Ŝ1 and Ŝ2 may contain edits nested inside them, this proof rule combines
reasoning about Ŝ1 and Ŝ2 in a precise, yet lightweight way, without constructing a 4-way product
for the entire program.

6There are rare cases in which this abstraction would lead to imprecision. Section 7 describes how our implementation
handles such cases.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

165:10 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

Rule (4) allows us to analyze conditionals C ? {Ŝ1} : {Ŝ2} in a modular way whenever possible.
As in the sequencing case, we would like to analyze Ŝ1 and Ŝ2 in isolation and then combine the
results. Unfortunately, such compositional reasoning is only possible if all program versions take
the same path. For instance, consider the shared program [·];x > 0 ? {y := 1} : {y := 2} and two
versions A,B given by the edits [x := y] and [x := z]. Since A could take the then branch while B
takes the else branch (or vice versa), we need to reason about all possible combinations of paths.
Hence, the first premise of this rule checks whether each C[Vi/V] can be proven to be equivalent
to all other C[Vj/V]’s under precondition φ. If this is the case, all program versions take the same
path, so we can reason compositionally. Otherwise, our analysis falls back upon the conservative,
but non-modular, proof rule (6) that we will explain shortly.

Rule (5) uses inductive relational invariants for loops that have been edited in different ways by
each program variant. Specifically, the first premise of this rule states that the relational invariant
I is implied by the loop pre-condition, and the next two premises enforce that I is preserved by
the loop body (i.e., I is inductive). Thus, assuming that all loops execute the same number of times
(checked by line 2 of rule 5), we can conclude that I ∧

∧
i ¬C[Vi/V] holds after the loop. Note that

rule (5) does not describe how to compute such relational loop invariants; it simply asserts that I
is inductive. As will be described in Section 7, our implementation uses predicate abstraction to
infer such relational loop invariants.

Rule (6) allows us to fall back upon non-modular reasoning when it is not sound to analyze edits
in a compositional way. Given a statement Ŝ with holes, rule (6) constructs the product program
(Ŝ[∆1])[V1/V] ⊛ . . . ⊛ (Ŝ[∆4])[V4/V] and computes its post-condition in the standard way. While
rule (6) is a generalization of rule (1), it is only used in cases where compositional reasoning is
unsound. In particular, since product construction can cause significant blow up in program size,
the use of modular reasoning is very important for the practicality of our approach (see Section 8).

Theorem 5.1. (Soundness of relational post-condition) 7 Let Ŝ be a shared programwith holes
and ∆⃗ be the edits such that |∆i | = numHoles(Ŝ). Letφ ′ be the result of callingRelationalPost(Ŝ, ∆⃗,φ)
(i.e., ∆⃗,φ ⊢ Ŝ : φ ′, [] according to Figure 7). Then, the following Hoare triple is valid:

{φ} (Ŝ[∆1])[V1/V]; . . . ; (Ŝ[∆n])[Vn/V] {φ ′}

5.2 Construction of Product Programs
In this section, we describe our method for constructing n-way product programs. While there are
several strategies for generating 2-way product programs in the literature (e.g., [Barthe et al. 2011,
2013]), our method generalizes these techniques to n-way products and uses a program similarity
metric to guide product construction. As a result, our method can generate verification-friendly
product programs while obviating the need to perform backtracking search over non-deterministic
product construction rules.

Before we describe our product construction technique, we first give a simple example to illustrate
how product construction facilitates relational verification:

Example 5.2. Consider the following programs S1 and S2:
S1 : i1 := 0; while(i1 < n1) {i1 := i1 ∗ x1}
S2 : i2 := 0; while(i2 < n2) {i2 := i2 ∗ x2}

and the precondition n1 = n2 ∧ x1 = x2. It is easy to see that i1 and i2 will have the same value after
executing S1 and S2. Now, consider analyzing the program S1;S2. While a static analyzer can in
principle infer this post-condition by coming up with a precise loop invariant that captures the
7 Proofs of all theorems are available in the Appendix.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

Verified Three-Way Program Merge 165:11

exact symbolic value of i1 and i2 during each iteration, this is clearly a very difficult task. To see
why product programs are useful, now consider the following program S:

(1) i1 := 0; i2 := 0;
(2) while(i1 < n1 ∧ i2 < n2) {i1 := i1 ∗ x1; i2 := i2 ∗ x2; }
(3) (i1 < n1)?{while(i1 < n1) {i1 := i1 ∗ x1}}

: {(i2 < n2)?{while(i2 < n2) {i2 := i2 ∗ x2}} : {skip}}

Here,S is equivalent toS1;S2 because it executes both loops in lockstep until one of them terminates
and then executes the remainder of the other loop. While this code may look complicated, it is
much easier to statically reason about S than S1;S2. In particular, since i1 = i2 ∧ x1 = x2 ∧ n1 = n2
is an inductive invariant of the first loop in S, we can easily prove that line (3) is dead code and
that i1 = i2 is a valid post-condition of S. As this example illustrates, product programs can make
relational verification easier by executing loops from different programs in lockstep.

Our n-way product construction method is presented in Figure 8 using inference rules that
derive judgments of the form ⊢ S1 ⊛ . . . ⊛ Sn ⇝ S where programs S1, . . . ,Sn do not share any
variables (i.e., each Si refers to variables Vi such that Vi ∩Vj = ∅ for i , j). The generated product
S is semantically equivalent to S1; . . . ;Sn but is constructed in a way that makes S easier to be
statically analyzed. Similar to prior relational verification techniques, the key idea is to synchronize
loops from different program versions as much as possible. However, our method differs from
existing techniques in that it combines different snippets of arbitrarily many programs and uses a
program similarity metric to guide this construction.

guide product construction and generalizes them to n-way products.
Notation. Before discussing the product construction algorithm summarized in Figure 8, we first
introduce some useful notation: We abbreviate S1 ⊛ . . . ⊛ Sn using the notation P⊛ , and we write P
to denote the list (S1, . . . ,Sn). Also, given a statement S, we write S[i] to denote the i’th element
in the sequence (i.e., S[0] denotes the first element).
Product construction algorithm. We are now ready to explain the product construction rules
shown in Figure 8. Rule (1) is quite simple and deals with the case where the first program starts
with an atomic statement A. Since we can always compute a precise post-condition for atomic
statements, it is not necessary to “synchronize” A with any of the statements from other programs.
Therefore, we first compute the product program S1 ⊛ P⊛ , i.e. S1 ⊛ S2 ⊛ . . . ⊛ Sn , and then
sequentially compose it with A.
Rule (2) considers the case where the first program starts with a conditional C ? {St } : {Se }. In

general, St and Se may contain loops; so, there may be an opportunity to synchronize any loops
within St and Se with loops from P = S2, . . . ,Sn . Therefore, we construct the product program as
C ? {S′} : {S′′} where S′ (resp. S′′) is the product of the then (resp. else) branch with P⊛ . Observe
that this rule can cause a blow-up in program size because we embed the continuation program
S1 inside both the then and else branches of the conditional. However, our overall verification
algorithm tries to minimize this blow-up by only constructing product programs for edited program
fragments or in cases where compositional reasoning would otherwise be unsound.
All of the remaining rules in Figure 8 deal with loops, with the goal of simplifying invariant

generation. Specifically, rule (3) considers the case where the first program starts with a loop but
there is some program Si in P = (S2, . . . ,Sn) that does not start with a loop. In this case, we
want to “get rid of” program Si by using rules (1) and (2); thus, we move Si to the beginning and
construct the product program S for Si ⊛ (P\Si)⊛ ⊛ while(C1) {SB1 };S1.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

165:12 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

(1)
⊢ S1 ⊛ P⊛ ⇝ S

⊢ A;S1 ⊛ P⊛ ⇝ A;S

(2)
⊢ St ;S1 ⊛ P⊛ ⇝ S′ ⊢ Se ;S1 ⊛ P⊛ ⇝ S′′

⊢ (C ? {St } : {Se });S1 ⊛ P⊛ ⇝ (C ? {S′} : {S′′})

(3)

∃Si ∈ P. Si [0] , while(Ci) {SBi }
⊢ Si ⊛ (P \ Si)⊛ ⊛ (while(C1) {SB1 });S1 ⇝ S

⊢ (while(C1) {SB1 });S1 ⊛ P⊛ ⇝ S

(4)

∀Si ∈ P. Si [0] = while(Ci) {SBi }
∃H ⊆ P. ∀L ⊆ P. sim(H) ≥ sim(L)

⊢ (H[0])⊛ ⇝ S′ ⊢ (H[1 . . .])⊛ ⊛ (P \ H)⊛ ⇝ S′′

P⊛ ⇝ S′;S′′

(5)

⊢ SB1 ⊛ SB2 ⇝ S
W := while(C1 ∧C2) {S}

R := C1 ? {while(C1) {SB1 }} : {(C2 ? {while(C2) {SB2 }} : {skip})}
⊢W ;R ⊛ P⊛ ⇝ S′

⊢ (while(C1) {SB1 }) ⊛ (while(C2) {SB2 }) ⊛ P
⊛ ⇝ S′

Fig. 8. Product construction. The base case is the trivial rule ⊢ S⇝ S, and we assume that every program
ends in a skip and that skip ⊛ P⊛ is the same as P⊛ .

Before we continue to the other rules, we make two important observations about rule (3).
First, this rule exploits the commutativity and associativity of the ⊛ operator 8; however, it uses
these properties in a restricted form by applying them only where they are useful. Second, after
exhaustively applying rules (1), (2), and (3) on some P⊛0 , note that we will end up with a new P⊛1
where all programs in P1 are guaranteed to start with a loop.

Rule (4) considers the case where all programs start with a loop and utilizes a similarity metric sim
to identify which loops to synchronize. 9 In particular, let H be the subset of the programs in P that
are “most similar" according to our similarity metric. Since all programs in H start with a loop, we
first construct the product program S′ of these loops. We then construct the product program S′′
for the remaining programs P\H and the remaining parts of the programs in H .
The final rule (5) defines what it means to “execute loops in lockstep as much as possible”.

Given two programs that start with loops while(C1) {S1} and while(C2) {S2}, we first construct
the product S1 ⊛ S2 and generate the synchronized loop as while(C1 ∧C2) {S1 ⊛ S2}. Since these
loops may not execute the same number of times, we still need to generate the “continuation” R,
which executes any remaining iterations of one of the loops. Thus,W ;R in rule (5) is semantically
equivalent to while(C1) {S1}; while(C2) {S2}. Now, since there may be further synchronization
opportunities betweenW ;R and the remaining programs S3, . . . ,Sn , we obtain the final product
program by computingW ;R ⊛ S3 ⊛ . . . ⊛ Sn .

Example 5.3. Consider again the programs S1 and S2 from Example 5.2. We can use rules (1)
and (5) from Figure 8 to compute the product program for S1 ⊛ S2. The resulting product is exactly
the program S shown in Example 5.2.

8Recall that different programs do not share variables
9While our product construction rules can work with any similarity metric, our implementation uses edit distance to
implement sim.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

Verified Three-Way Program Merge 165:13

Since rules (4) or (5) are both applicable when all programs start with a loop, our product
construction algorithm first applies rule (4) and then uses rule (5) when constructing the product
for (H [0])⊛ in rule (4). Thus, our method ensures that loops that are most similar to each other are
executed in lockstep, which in turn greatly facilitates verification.

Theorem 5.4. (Soundness of product) Let S1, . . . ,Sn be statements with disjoint variables, and
let ⊢ S1 ⊛ . . .⊛Sn ⇝ S according to Figure 8. Then, for all valuations σ , we have σ ⊢ S1; . . . ;Sn ⇓ σ ′
iff σ ⊢ S ⇓ σ ′.

6 EDIT GENERATION
The verification algorithm we described in Section 5 requires all program versions to be represented
as edits applied to a shared program with holes. This representation is very important because
it allows our verification algorithm to reason about modifications to different program parts in a
compositional way. In this section, we describe an n-way AST differencing algorithm that can be
used to generate the desired program representation.

Our n-way diff algorithm is presented in Algorithm 2. Procedure NDiff takes as input n programs
S1, . . . ,Sn and returns a pair (Ŝ, ∆⃗) where Ŝ is a shared program with holes and ∆⃗ is a list of
edits such that Ŝ[∆i] = Si . The loop inside the NDiff procedure maintains the key invariant
∀j . 1 ≤ j < i ⇒ Ŝ[∆j] = Sj . Thus, upon termination, NDiff guarantees that Ŝ[∆i] = Si for all
i ∈ [1,n].

The bulk of the work of the NDiff procedure is performed by the auxiliary GenEdit function,
which uses a 2-way AST differencing algorithm to extend the diff from k to k + 1 programs.
Specifically, GenEdit takes as input a new program S as well as the diff of the first k programs,
where the diff is represented as a shared program Ŝ with holes as well as edits ∆1, . . . ,∆k . The key
idea underlying GenEdit is to use a standard 2-way AST diff algorithm to compute the diff between
Ŝ and the new program S and then use the result to update the existing edits ∆1, . . . ,∆k .
In more detail, the Diff2 procedure used in GenEdit yields the 2-way diff of Ŝ and S as a triple

(Ŝ′,∆, ∆̂) such that Ŝ′[∆] = S and Ŝ′[∆̂] = Ŝ. 10 The core insight underlying GenEdit is to use ∆̂
to update the existing edits ∆1, . . . ,∆k for the first k programs. Specifically, we use a procedure
Compose to combine each existing edit ∆i with the output ∆̂ of Diff2. The Compose procedure is
defined recursively and inspects the first element of ∆̂ in each recursive call. If the first element is
a hole, we preserve the existing edit; otherwise, we use the edit from ∆̂. Thus, if Compose(∆̂,∆i)

yields ∆′i , we have Ŝ
′[∆′i] = Ŝ[∆i]. In other words, the Compose procedure allows us to update

the diff of the first k programs to generate a sound diff of k + 1 programs.

Theorem 6.1. (Soundness of NDiff) LetNDiff(S1, . . . ,Sn) be (Ŝ, ∆⃗). Then we have Ŝ[∆i] = Si
for all i ∈ [1,n].

7 IMPLEMENTATION
We implemented the techniques proposed in this paper in a tool called SafeMerge for checking
semantic conflict-freedom of Java programs. SafeMerge is written in Haskell and uses the Z3 SMT
solver [De Moura and Bjørner 2008]. In what follows, we describe relational invariant generation,
our handling of various aspects of the Java language and other implementation choices.
Relational invariant generation. The RPC computation engine from Section 5.1 requires an
inductive loop invariant relating variables from the four program versions. Our implementation

10Existing 2-way AST diff algorithms can be adapted to produce diffs in this form. We provide our Diff2 implementation
under supplementary materials.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

165:14 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

Algorithm 2 n-way AST differencing algorithm

1: procedure NDiff(S1, . . . ,Sn)
2: Ŝ ← S1; ∆⃗← []; i ← 2;
3: while i ≤ n do
4: (Ŝ, ∆⃗) ← GenEdit(Ŝ,Si , ∆⃗)

5: return (Ŝ, ∆⃗)

6: procedure GenEdit(Ŝ,S,∆1, . . . ,∆k)
7: Requires: |∆i | = numHoles(Ŝ) for all i ∈ [1, . . . ,k]
8: Ensures: |∆′i | = numHoles(Ŝ′) for i ∈ [1, . . . ,k + 1]
9: Ensures: Ŝ′[∆′k+1] = S and Ŝ′[∆′i] = Ŝ[∆i] for i ∈ [1, . . . ,k]

10: (Ŝ′,∆, ∆̂) := Diff2(S, Ŝ)
11: for i in [1,k] do
12: ∆′i := Compose(∆̂,∆i)

13: return (Ŝ′,∆′1, . . . ,∆
′
k ,∆)

14: procedure Compose(∆̂,∆)
15: Requires: |∆| = numHoles(∆̂)
16: Output: Edit ∆′
17: Ensures: |∆′ | = |∆̂|
18: Ensures: For any Ŝ s.t. numHoles(Ŝ) = |∆̂|, (Ŝ[∆̂])[∆] = Ŝ[∆′]
19: if ∆̂ = [] then return []
20: else if head(∆̂) = [·] then
21: return head(∆) :: Compose(tail(∆̂), tail(∆))
22: else return head(∆̂) :: Compose(tail(∆̂),∆)
23: procedure Diff2(S, Ŝ)
24: Input: A program S and a shared program Ŝ
25: Output: Shared program Ŝ′ and edits ∆, ∆̂
26: Ensures: |∆| = |∆̂| = numHoles(Ŝ′)
27: Ensures: numHoles(∆̂) = numHoles(Ŝ)
28: Ensures: Ŝ′[∆] = S, Ŝ′[∆̂] = Ŝ

automatically infers relational loop invariants using the Houdini framework for (monomial) predi-
cate abstraction [Flanagan and Leino 2001]. Specifically, we consider predicate templates of the
form xi = x j relating values of the same variable from different program versions, and compute the
strongest conjunct that satisfies the conditions of rule (5) of Figure 7.
Modeling the heap and collections. As standard in prior verification literature [Flanagan et al.
2002], we model each field f in the program as follows: We introduce a map f from object identifiers
to values and model reads and writes to the map using the select and update functions in the
theory of arrays. Similarly, our implementation models collections, such as ArrayList and Queue,
using arrays. Specifically, we use an array to represent the contents of the collection and use scalar
variables to model the size of the collection as well as the current position of an iterator over the
collection [Dillig et al. 2011].
Side effects of a method. Our formalization uses an out array to model all relevant side effects of
a method. Since real Java programs do not contain such a construct, our implementation checks

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

Verified Three-Way Program Merge 165:15

semantic conflict freedom on the method’s return value, the final state of the receiver object as
well as any field modified in the method.
Analysis of shared statements. Recall that our technique abstracts away shared program state-
ments using uninterpreted functions (rule (2) from Figure 7). However, because unconditional use
of such abstraction can result in false positives, our implementation checks for certain conditions
before applying rule (2) from Figure 7. Specifically, given precondition ϕ and variables V accessed
by shared statement S , our implementation applies rule (2) only when ϕ implies semantic conflict
freedom on all variables in setV ; otherwise, our implementation falls back on product construction
(i.e., rule (6) from Figure 7). While this check fails rarely in practice, it is nonetheless useful for
avoiding false positives.
7.1 Limitations
Our current prototype implementation has a few limitations:
Changes to method signature. While SafeMerge can handle renamed local variables, it cur-
rently does not automatically support renamed methods or methods with parameter reordering,
introduction, or deletion. However, these features can be supported with additional annotations
providing suitable mappings between renamed methods and parameters.
Analysis scope. SafeMerge analyzes one modified procedure at a time and assumes that external
callees invoked by that procedure are semantically conflict-free.
Concurrency, termination, and exceptions. Neither our formalism nor our prototype implemen-
tation support sound reasoning in the presence of concurrency. Our soundness claims also rely on
the assumption that none of the variants introduce non-terminating behavior. Finally, although
exceptions can be conceptually desugared in our formalism, our implementation does not handle
exceptional control flow.

8 EXPERIMENTAL EVALUATION
To assess the usefulness of the proposed method, we perform a series of three experiments. In
our first experiment, we use SafeMerge to verify semantic conflict-freedom of merges collected
from Github commit histories. In our second experiment, we run SafeMerge on erroneous merge
candidates generated by kdiff3, a widely-used textual merge tool. Finally, in our third experiment,
we assess the scalability of ourmethod and the importance of various design choices. All experiments
are performed on Quad-core Intel Xeon CPU with 2.4 GHz and 8 GB memory.

8.1 Evaluation on Github Merge Candidates
To perform our first experiment, we implemented a crawler that examines git commit histories and
extracts relevant and non-trivial verification benchmarks that can be analyzed by our tool:
• Relevance: Since our main goal is to verify the correctness of automatically generated merges,
we consider a benchmark to be irrelevant if it is known that the user overrode the automatic
merge 11.
• Non-triviality: We consider a benchmark to be trivial if we can prove it to be semantically
conflict-free using purely syntactic arguments. Specifically, we filter out benchmarks where (a) at
least one of the variants is the same as the base, or (b) both variants are syntactically the same,
or (c) the method does not involve externally visible side effects.
To see why benchmarks satisfying conditions (a)-(c) are trivially conflict-free, recall the definition

of semantic conflict freedom (i.e., Definition 4.4): For case (a), if Variant A is the same as the Base

11For this purpose, we use kdiff3 as our automatic merge tool.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

165:16 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

program, then the automatically generated merge will be the same as Variant B, ensuring that the
antecedent of condition (1) is false and that the consequent of condition (2) holds in Definition 4.4.
For case (b), if both variants are syntactically the same, then the automatically generated merge will
be the same as both, meaning that the consequents of both (1) and (2) will hold in Definition 4.4.
Finally, for case (c), all conditions vacuously hold since the out array used in Definition 4.4 is empty
if the function does not have externally visible side effects.

Running this crawler on nine popular Java applications (namely, Elasticsearch, libGDX, iosched,
kotlin, MPAndroidChart, okhttp, retrofit, RxJava, and the Spring Boot framework), we identified
a total of 52 merge instances that satisfy the relevance and non-triviality criteria above. Each
benchmark comes with a base program, two variants A and B, as well as the merge candidate that
we extracted from the Github commit history. In the following discussion, we report the results of
our evaluation on all 52 merge scenarios. Table 1. Experimental results.

ID App LOC Time (s) SafeMerge kdiff3
1 Elastic 18 0.05 ✓ ✗
2 Elastic 25 0.07 ✓ ✓
3 Elastic 101 0.20 ✓ ✓
4 Elastic 63 0.49 ✓ ✓
5 Elastic 90 4.45 ✓ ✓
6 Elastic 136 4.07 ✓ ✓
7 Elastic 15 2.09 ✓ ✓
8 Elastic 30 0.11 ✗ ✗
9 Elastic 25 0.09 ✗ ✗
10 Elastic 21 0.15 ✗ ✗
11 iosched 63 0.19 ✓ ✓
12 iosched 64 0.07 ✓ ✓
13 Kotlin 96 0.16 ✗ ✓
14 Kotlin 54 0.57 ✓ ✓
15 Kotlin 53 0.48 ✓ ✓
16 Kotlin 53 0.11 ✓ ✓
17 Kotlin 104 0.49 ✓ ✓
18 Kotlin 86 0.31 ✓ ✓
19 Kotlin 127 4.19 ✓ ✗
20 Kotlin 56 0.62 ✓ ✓
21 Kotlin 11 0.06 ✓ ✓
22 Kotlin 77 0.18 ✓ ✓
23 Kotlin 11 0.06 ✓ ✓
24 Kotlin 38 0.15 ✓ ✓
25 Kotlin 67 0.33 ✓ ✗
26 Kotlin 7 0.19 ✗ ✗
27 libGDX 30 0.12 ✓ ✓
28 libGDX 32 0.21 ✓ ✓
29 libGDX 71 0.16 ✓ ✓
30 AChart 47 0.44 ✗ ✓
31 AChart 66 0.17 ✓ ✓
32 AChart 109 0.16 ✓ ✓
33 AChart 44 0.10 ✓ ✓
34 AChart 62 0.16 ✓ ✓
35 AChart 43 0.11 ✓ ✗
36 AChart 35 0.23 ✗ ✗
37 AChart 37 0.39 ✗ ✗
38 okhttp 28 0.10 ✗ ✓
39 retrofit 66 1.67 ✓ ✓
40 retrofit 78 1.76 ✓ ✓
41 RxJava 28 0.20 ✓ ✓
42 Spring 107 0.12 ✓ ✓
43 Spring 77 0.23 ✗ ✗
44 Spring 82 0.15 ✓ ✓
45 Spring 81 0.21 ✓ ✓
46 Spring 44 0.15 ✓ ✗
47 Spring 37 0.30 ✓ ✗
48 Spring 42 0.07 ✓ ✓
49 Spring 36 0.06 ✓ ✓
50 Spring 64 0.20 ✗ ✓
51 Spring 13 0.09 ✗ ✗
52 Spring 20 0.05 ✗ ✓

Main results. The results of our evaluation are pre-
sented in Table 1. We abbreviate “Elastic Search” as
“Elastic” and “MPAndroidChart” as “AChart”. For
each benchmark, Table 1 shows the name of the
application it is taken from (column “App”), the
number of lines of code in the merge candidate
(“LOC”), the running time of SafeMerge in sec-
onds (“Time”), and the results produced by Safe-
Merge and kdiff3. Specifically, for SafeMerge, a
checkmark (✓) indicates that it was able to verify
semantic conflict-freedom, whereas ✗ means that it
produced a warning. In the case of kdiff3, a check-
mark indicates the absence of syntactic conflicts.
As we can see from Table 1, SafeMerge is able

to verify semantic conflict-freedom for 39 of the
52 benchmarks and reports a warning for the re-
maining 13. We manually inspected these thirteen
benchmarks and found eleven instances of an ac-
tual semantic conflict (i.e., the merge candidate is
indeed incorrect with respect to Definition 4.4). The
remaining two warnings are false positives caused
by imprecision in the dependence analysis andmod-
eling of collections. In all, these results indicate that
SafeMerge is quite precise, with a false positive
rate around 15%. Furthermore, this experiment also
corroborates that SafeMerge is practical, taking
an average of 0.5 second to verify each benchmark.
Next, Table 2 compares the results produced by

SafeMerge and kdiff3 on the 52 benchmarks used
in our evaluation. Note that this comparison is
very relevant because the merge candidate in these
benchmarks matches exactly the merge produced
by kdiff3 whenever it does not report a textual
conflict. As shown in Table 2, 33 benchmarks are
classified as conflict-free by both SafeMerge and
kdiff3, meaning that SafeMerge can verify the

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

Verified Three-Way Program Merge 165:17

Table 2. Summary of differences between SafeMerge and kdiff3. “Count” denotes # of instances from Table 1.

SafeMerge kdiff3 Count Implication
✓ ✓ 33 Verified textual merge
✓ ✗ 6 Verified manual merge
✗ ✓ 5 Fail to verify textual merge
✗ ✗ 8 Fail to verify manual merge

Table 3. Results of our evaluation on merges generated by kdiff3.

Name Description Time (s) Result
B1-kdiff3 Patch gets duplicated in merge 0.36 ✗

B1-manual Correct version of above 0.38 ✓

B2-kdiff3 Semantically same, syntactically different patches 0.42 ✗

B2-manual Correct version of above 0.33 ✓

B3-kdiff3 Inconsistent changes in assignment (conflict) 0.34 ✗

B4-kdiff3 Interference between refactoring and insertion (conflict) 0.31 ✗

B5-kdiff3 Interference between insertion and deletion (conflict) 0.30 ✗

B6-kdiff3 One patch supercedes the other 0.32 ✗

B6-manual Correct version of above 0.29 ✓

B7-kdiff3 Inconsistent patches due to off-by-one error (conflict) 0.29 ✗

correctness of the textual merge generated by kdiff3 in these cases. For instance, the merge with
ID 41 in Table 1 corresponds precisely to the example presented in Figure 3 from Section 2. Perhaps
more interestingly, we find five benchmarks for which kdiff3 generates a textual merge that is
semantically incorrect according to SafeMerge. Among these five instances, two correspond to
the false positives discussed earlier, leaving us with three benchmarks where the merge generated
by kdiff3 violates Definition 4.4 and should be further investigated by the developers.
As we can see from Table 2, there are fourteen benchmarks that are syntactically conflicting

according to kdiff3 and were likely resolved manually by a developer. Among these, SafeMerge
can verify the correctness of the merge candidate for six instances (spread over four different appli-
cations). Finally, there are eight cases where the manual merge cannot be verified by SafeMerge.
While these examples indeed violate semantic conflict-freedom, they do not necessarily correspond
to bugs (e.g., a developer might have intentionally discarded changes made by another developer).
For example, in the merge with ID 36 from Table 1, both variants A and B weaken a predicate in
two different ways by adding two and one additional disjuncts respectively 12. However, the merge
M only picks the weaker predicate from A, thereby effectively discarding some of the changes from
variant B.

Overall, these results demonstrate that SafeMerge can automatically verify 75% of the merge
scenarios that occur in the wild. Among the remaining 13 benchmarks that cannot be automatically
verified, only 2 bencmarks (15%) are false positives.We believe these results indicate that SafeMerge
is useful for analyzing semantic conflict-freedom in real-world merge instances.

8.2 Evaluation on Erroneous Merge Candidates
In our second experiment, we explore whether SafeMerge is able to pinpoint erroneous merges gen-
erated by kdiff3. To perform this experiment, we consider base program with ID = 25 from Table 1
and generate variants by performing various kinds of mutations to the base program. Specifically,
we design pairs of mutations that cause kdiff3 to generate buggy merge candidates.

12Merge commit https://github.com/PhilJay/MPAndroidChart/commit/9531ba69895cd64fce48038ffd8df2543eeea1d2

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

https://github.com/PhilJay/MPAndroidChart/commit/9531ba69895cd64fce48038ffd8df2543eeea1d2

165:18 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

Fig. 9. Lines of code vs. running time.
Fig. 10. Number of holes (edits) vs. running time. Lines
of code varies between 50 and 800.

The results of this experiment are summarized in Table 3, where the column labeled “Description"
summarizes the nature of the mutation. For each pair of variants that are semantically conflict-free,
the version named -kdiff3 shows the incorrect merge generated by kdiff3, where as the one
labeled -manual shows the correct merge that we generated manually. For benchmarks that are
semantically conflicting, we only provide results for the incorrect merge generated by kdiff3 since
a correct merge simply does not exist.

The results from Table 3 complement those from Section 8.1 and provide further evidence that a
widely-used merge tool like kdiff3 can generate erroneous merges and that these buggy merges
can be detected by our proposed technique. This experiment also demonstrates that SafeMerge
can verify conflict-freedom in the manually constructed correct merges.

8.3 Evaluation of Scalability and Design Choices
To assess the scalability of the proposed technique, we performed a third experiment in which we
compare the running time of SafeMerge against the number of lines of code and number of edits.
To perform this experiment, we start with an existing benchmark from the SafeMerge test suite
and increase the number of lines of code using loop unrolling. We also vary the number of edits by
injecting a modification in the loop body. This way, the number of holes in the shared program
increases with each loop unrolling.

To evaluate the benefits of the various design choices that we adopt in this paper, we also compare
SafeMerge with two variants of itself. In one variant, namely Product, we model the shared program
using a single hole, so each edit corresponds to one of the program versions. Essentially, this method
computes the product of the four program versions using the rules from Figure 8 and allows us
to assess the benefits of representing program versions as edits applied to a shared program. In
another variant called No dependence, we do not abstract away shared program fragments using
uninterpreted functions and analyze them by constructing a 4-way product. However, we still
combine reasoning from different product programs in a compositional way.
Figure 9 compares the running time of SafeMerge against these two variants as we vary the

number of lines of code but not the number of edits. Observe that the y-axis is shown in log scale.
As we can see from this plot, SafeMerge scales quite well and analyzes each benchmark in under
a second. In contrast, the running time of Product grows exponentially in the lines of code. As
expected, the No dependence variant is better than Product but significantly worse than SafeMerge.
Next, Figure 10 compares the running time of SafeMerge against Product and No dependence

as we vary both the number of lines of code and the number of edits. Specifically, a benchmark
containing n holes contains 25n lines of code, and the y-axis shows the running time of each variant

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

Verified Three-Way Program Merge 165:19

in log scale. As expected, SafeMerge is more sensitive to the number holes than it is to the number
of lines of code because it abstracts away shared program fragments. However, SafeMerge still
significantly outperforms both Product and No Dependence. In particular, for a program with 32
edits and 800 lines of code, SafeMerge can verify semantic conflict freedom in approximately 10
seconds, while No Dependence takes approximately 100 seconds and Product times out.
In summary, this experiment shows that SafeMerge scales well as we vary the lines of code

and that its running time is still feasible when program variants perform over 30 modifications to
the base program in this example. This experiments also corroborates the practical importance of
representing program versions as edits applied to a shared program as well as the advantage of
abstracting away shared program fragments using uninterpreted functions.

9 RELATEDWORK
In this section, we compare our technique with prior work on program merging and relational
verification.

Structure-aware merge. Most algorithms for program merging are textual in nature, hardly
ever formally described [Khanna et al. 2007], and without semantic guarantees. To improve on
this situation, previous work has proposed structured and semi-structured merge techniques to
better resolve merge conflicts. For example, FSTMerge [Apel et al. 2011] uses syntactic structure to
resolve conflicts between AST nodes that can be reordered (such as method definitions), but it falls
back on unstructured textual merge for other kinds of nodes. Follow-up work on JDime [Apel et al.
2012; Lebetaenich et al. 2015] improves the poor performance of structure-based merging by using
textual-based mode (fast) as long as no conflicts are detected, but switches to structure-based mode
in the presence of conflicts. Asenav et al. present another merge algorithm for better version control
of structured data [Asenov et al. 2017]. While their approach relies on line-based differencing, it
also utilizes the underlying tree structure to more accurately identify changes and synthesize a
higher-quality three-way merge. While alll of these techniques attempt to do a better job at merging
ASTs compared to purely textual merge, none of them can guarantee semantic conflict freedom.

Semantics-aware merge. Our work is inspired by earlier work on program integration, which
originatedwith theHPR algorithm [Horwitz et al. 1989] for checking non-interference and generating
valid merges. The HPR algorithm was later refined by the work of Yang et al. [Yang et al. 1990],
which is one of the first attempts to incorporate semantics for merge generation. In that context, the
notion of conflict-freedom is parameterized by a classification of nodes of the variants as unchanged
such that the backward slices of unchanged nodes in the two variants are equivalent modulo
a semantic correspondence. Thus, their classification algorithm is parameterized by a semantic
congruence relation. Our approach tackles the slightly different merge verification (rather then
merge generation) problem, but improves on these prior techniques in several dimensions: First,
we do not require annotations to map statements across the different versions — this information
is computed automatically using our edit generation algorithm (Sec 6). Second, we show how to
formulate conflict freedom directly with verification conditions and assertion checking. Finally,
our approach performs precise, compositional reasoning about edits by combining lightweight
dependence analysis with relational reasoning using product programs.

Empirical studies. There is a rich literature on empirically studying version control systems
and merge conflicts in the wild. For example, Mehdi et al. measure programmer effort required to
use various textual merge tools [Mehdi et al. 2014]. They study six open-source projects from Github
and compare scenarios where one merge technique successfully generates a candidate merge while
another one reports a conflict. In a similar vein, Brun et al. study nine open-source systems totaling
over 3 million lines of code and study the frequency of conflicts identified by textual merge tools.
Their findings show that 16% of merges require manual effort to resolve conflicts and that 33%

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

165:20 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

of textually-conflict-free merges do in fact contain semantic conflicts [Brun et al. 2013]. Recent
work by Cavalcanti et al. [Cavalcanti et al. 2017] performs a large-scale empirical study comparing
structure-aware merge tools. They study 30,000 merges from 50 open source projects and study
both false positives (i.e., spurious conflicts) as well as false negatives (i.e., unreported conflicts).

Early conflict detection. Motivated by the difficulty of fixing merge conflicts, several prior
papers propose methods for early conflict detection [Brun et al. 2013; Estler et al. 2013; Guimarães
and Silva 2012]. For example, Brun et al. introduce speculative analysis for performing version
control system operations on clones of the program in the background [Brun et al. 2013]. Similarly,
Guimaraes et al. propose continuous merging inside an integrated development environment
to enable early conflict detection and conduct an empirical study to assess the impact of this
approach [Guimarães and Silva 2012]. Estler et al. propose CloudStudio, a system that operates
continuously in the background and shares one developer’s changes with other developers [Estler
et al. 2013]. All of these techniques are intended for identifying textual conflicts early and do not
address scenarios where a bug is introduced by the automatic merge tool.

Relational verification. Verification of conflict freedom is related to a line of work on relational
program logics [Benton 2004; Sousa and Dillig 2016; Yang 2007] and product programs [Barthe et al.
2011, 2013; Lahiri et al. 2013; Zaks and Pnueli 2008]. For instance, Benton’s Relational Hoare Logic
(RHL) [Benton 2004] allows proving equivalence between a pair of structurally similar programs.
Sousa and Dillig generalize Benton’s work by developing Cartesian Hoare Logic, which is used for
proving k-safety properties that reqiure the absence of a bad interaction between different runs of
a given program [Sousa and Dillig 2016]. Barthe et al. propose another technique for relational
verification using product programs [Barthe et al. 2011, 2013] and apply their technique to relational
properties, such as equivalence and 2-safety [Terauchi and Aiken 2005]. In this work, we build on
the notion of product programs used in prior work [Barthe et al. 2011, 2013; Zaks and Pnueli 2008].
However, rather than constructing a monolithic product of the four program version, we construct
mini-products for each edit in a novel way.

Cross-version program analysis. Prior work on comparing closely related programs versions
include regression verification that checks semantic equivalence using uninterpreted function
abstraction of equivalent callees [Felsing et al. 2014; Godlin and Strichman 2008; Lahiri et al. 2012],
mutual summaries [Hawblitzel et al. 2013; Wood et al. 2017], relational invariant inference to
prove differential properties [Lahiri et al. 2013] and verification modulo versions [Logozzo et al.
2014]. Other approaches include static analysis for abstract differencing [Jackson and Ladd 1994;
Partush and Yahav 2014], symbolic execution for verifying assertion-equivalence [Ramos and
Engler 2011] and differential symbolic execution to summarize differences [Person et al. 2008]. Work
on differential assertion checking [Lahiri et al. 2013] uses interprocedural product programs and
relational invariant inference to ensure that a change preserves non-failing behaviors with respect
to a set of assertions. However, we do not require assertions and verify a more complex property
involving four different programs.

10 CONCLUSION AND FUTUREWORK
Motivated by the abundance of bugs that are introduced in the automatic merge process, we have
introduced the merge verification problem for proving that four versions of a given program satisfy
a semantic notion of conflict freedom. Even though proving semantic conflict freedom often requires
sophisticated static analysis, analysis efficiency is an important concern in this context due to
the interactive nature of automatic program merging. We address this problem by introducing an
efficient and compositional verification algorithm that leverages shared program parts between
the four versions. In particular, our method intertwines deep relational reasoning about program

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

Verified Three-Way Program Merge 165:21

σ ⊢ skip ⇓ σ
σ ⊢ e ⇓ c σ ′ = σ [(x , 0) 7→ c]

σ ⊢ x := e ⇓ σ ′

σ ⊢ e1 ⇓ c1 σ ⊢ e2 ⇓ c2
σ ′ = σ [(x , c1) 7→ c2]
σ ⊢ x[e1] := e2 ⇓ σ ′

σ [(x , 0)] = c
σ ⊢ out (x) ⇓ σ

σ ⊢ S1 ⇓ σ1
σ1 ⊢ S2 ⇓ σ2

σ ⊢ S1; S2 ⇓ σ2

σ ⊢ C ⇓ true
σ ⊢ S1 ⇓ σ1

σ ⊢ C ? {S1} : {S2} ⇓ σ1

σ ⊢ C ⇓ false
σ ⊢ S2 ⇓ σ2

σ ⊢ C ? {S1} : {S2} ⇓ σ2

σ ⊢ C ⇓ false
σ ⊢ while(C) {S } ⇓ σ

σ ⊢ C ⇓ true
σ ⊢ S ⇓ σ1

σ1 ⊢ while(C) {S } ⇓ σ2
σ ⊢ while(C) {S } ⇓ σ2

Fig. 11. Operational semantics

edits with lightweight summarization of the shared fragments to achieve a good trade-off between
analysis precision and efficiency.
We have implemented the proposed approach in a tool called SafeMerge and performed an

extensive evaluation on real-world merge scenarios obtained from Github. Our evaluation shows
the proposed approach remedies many of the shortcomings associated with existing syntactic
merge tools. Furthermore, our approach is both efficient and precise, with an overall false positive
rate of 15% across the 52 Github benchmarks.

More generally, we view this work as a first step towards precise, semantics-awaremerge synthesis.
Specifically, we plan to explore synthesis techniques that can automatically generate correct-by-
construction 3-way program merges. Since correct merge candidates should obey semantic conflict
freedom, the verification algorithm proposed in this paper is necessarily a key ingredient of such
semantics-aware merge synthesis tools.

Appendix A: Operational Semantics
Figure 11 shows the operational semantics of the language from Figure 5. Recall that σ maps
(variable, index) pairs to values, and we view scalar variables as arrays with a single valid index at
0. Since the semantics of expressions is completely standard, we do not show them here. However,
one important point worth noting is the semantics of expressions involving array reads:

σ ⊢ e ⇓ c
(a, c) ∈ dom(σ)

σ ⊢ a[e] ⇓ σ [(a, c)]

σ ⊢ e ⇓ c
(a, c) < dom(σ)

σ ⊢ a[e] ⇓ ⊥

In other words, reads from locations that have not been initialized yield a special constant ⊥.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

165:22 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

Appendix B: Soundness of Product
Here, we provide a proof of Theorem 5.4. The proof is by structural induction over the product
construction rules given in Figure 8. Since the two directions of the proof are completely symmetric,
we only prove one direction. Note that the base case is trivial because ⊢ S⇝ S.

Rule 1. Suppose σ ⊢ A ⇓ σ ′ and σ ′ ⊢ S1;S2; . . . ;Sn ⇓ σ ′′. By the premise of the proof rule and
the inductive hypothesis, we have σ ′ ⊢ S ⇓ σ ′′. Thus, σ ⊢ A;S ⇓ σ ′′.

Rule 2. Suppose σ ⊢ (C ? {St } : {Se });S1;S2; . . . ;Sn ⇓ σ ′′. Without loss of generality, suppose
σ ⊢ C ⇓ true , and suppose σ ⊢ St ;S1 ⇓ σ ′, so σ ′ ⊢ S2; . . . ;Sn ⇓ σ ′′. By the first premise of the
proof rule and the inductive hypothesis, we have σ ⊢ S′ ⇓ σ ′′. Hence, σ ⊢ C ? {S′} : {S′′} ⇓ σ ′′.

Rule 3. Let Sx = while(C1) {SB1 };S1. Suppose we have σ ⊢ Sx ;S2; . . . ;Sn ⇓ σ ′. Suppose there
is exists Si that satisfies first premise of the proof rule. Observe that S1;S2; . . . ;Sn ; is semantically
equivalent to Sn ;S2; . . . ;Sn−1;S1; as long as S1, Sn , do not share variables between them and
also with S2 . . .Sn−1. Since Sx and Si have no shared variables between them and with any other
program Sj different than Sx and Si , we have

σ ⊢ Si ;S2; . . . ;Si−1;Si+1; . . .Sn ; while(C1) {SB1 };S1 ⇓ σ
′

Then, by the premise of the proof rule and the inductive hypothesis, we have σ ⊢ S ⇓ σ ′.

Rule 4. Supposewe haveσ ⊢ S1;S2; . . . ;Sn ⇓ σ ′′where eachSi is of the formwhile(Ci) {SBi };S′i .
By the same reason as in Rule 3. we can move any loop in each Si to the beginning as they don’t
share any variable with any other Sj . That is, considering H = S1; . . . ;So be the set of programs
satisfying the second premise we have

σ ⊢ while(C1) {SB1 }; . . .while(Co) {SBo } ⇓ σ
′

and considering So+1; . . .Sn a sequence of the original programs excluding the ones in H we
have

σ ′ ⊢ S′1; . . .S
′
o ;So+1; . . .Sn ⇓ σ

′′

Then, by the last premises of the proof rule and the inductive hypothesis, we have that σ ⊢
S′;S′′ ⇓ σ ′′.

Rule 5. Suppose we have

σ ⊢ while(C1) {S1}; while(C2) {S2};S3; . . . ;Sn ⇓ σ ′

LetW ′ be the loop while(C1 ∧C2) {S1;S2}. Since C1,C2 and S1,S2 have disjoint sets of variables,
the program fragment while(C1) {S1}; while(C2) {S2} is semantically equivalent toW ′;R (where
R comes from the third line of the proof rule). Hence, we have σ ⊢ W ′;R;S3; . . . ;Sn ⇓ σ ′. By
the first premise of the proof rule and the inductive hypothesis, if σ0 ⊢ S1;S2 ⇓ σ1 for any
σ0,σ1, then σ0 ⊢ S ⇓ σ1. Thus, σ ⊢ W ′ ⇓ σ ∗ implies σ ⊢ W ⇓ σ ∗, which in turn implies
σ ⊢W ;R;S3; . . . ;Sn ⇓ σ ′. By the last premise of the proof rule and the inductive hypothesis, we
know σ ⊢ S′ : σ ′; hence, the property holds.

Appendix C: Proof of Soundness of Relational Post-conditions
The proof is by structural induction on Ŝ.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

Verified Three-Way Program Merge 165:23

Case 1. Ŝ = [·], and the edits are S1, . . . ,S4. In this case, Figure 7 constructs the relational
post-condition by first computing the product program S as S1[V1/V] ⊛ . . . ⊛ S[V4/4] and then
computing the standard post-condition of S. By Theorem 5.4, we have σ ⊢ S ⇓ σ ′ iff σ ⊢
S1[V1/V] ⊛ . . . ⊛ S[V4/4] ⇓ σ ′. Furthermore, by the correctness of post operator, we know that
{φ}S{φ ′} is a valid Hoare triple. This implies {φ}S1[V1/V]; . . . ;S4[V4/V]{φ ′} is also a valid Hoare
triple.

Case 2. Ŝ = S (i.e., Ŝ does not contain holes). By the second rule in Figure 7, we know that
{φ}S1; . . . ;Sn {φ ′} is a valid Hoare triple. Now, consider any valuation σ satisfying φ. By the
correctness of the Hoare triple, if σ ⊢ S1; . . . ;Sn ⇓ σ ′, we know that σ ′ also satisfies φ ′. Now, recall
that S1; . . . ;Sn contains uninterpreted functions, and we assume that F (x⃗) can return any value,
as long as it returns something consistent for the same input values. Let Σ represent the set of all
valuations σi such that σ ⊢ S1; . . . ;Sn ⇓ σi . By the correctness of the Hoare triple, we know that
any σi ∈ Σ satisfies φ ′. Assuming the correctness of the mod and dependence analysis, for any
valuation σ such that σ ⊢ S[V1/V]; . . . ;S[V4/V] ⇓ σ ′, we know that σ ′ ∈ Σ. Since all valuations
in Σ satisfy φ ′, this implies σ ′ also satisfies φ ′. Thus, {φ}S[V1/V]; . . . ;S[V4/V]{φ ′} is also a valid
Hoare triple.

Case 3. Ŝ = Ŝ1; Ŝ2. Let ∆⃗A denote the prefix of ∆⃗ that is used for filling holes in Ŝ1, and ∆⃗B

denote the prefix of ∆⃗1 that is used for filling holes in Ŝ2. By the premise of the third rule and
inductive hypothesis, we have

{φ}(Ŝ1[∆A1])[V1/V]); . . . ; (Ŝ1[∆A4])[V4/V]){φ1}

as well as
{φ1}(Ŝ2[∆B1])[V1/V]); . . . ; (Ŝ2[∆B4])[V4/V]){φ2}

Using these and the standard Hoare rule for composition, we can conclude:

{φ} (Ŝ1[∆A1])[V1/V]); . . . ; (Ŝ1[∆A4])[V4/V]);
(Ŝ2[∆B1])[V1/V]); . . . ; (Ŝ2[∆B4])[V4/V]) {φ2}

Since we can commute statements over different variables, this implies:

{φ} (Ŝ1[∆A1]; Ŝ2[∆B1])[V1/V]); . . . ;
(Ŝ1[∆A4]; Ŝ2[∆B4])[V4/V]) {φ2}

Next, using the fact that Ŝ[∆i] = (Ŝ1; Ŝ2)[∆i] = Ŝ1[∆Ai]; Ŝ2[∆Bi], we can conclude:

{φ}(Ŝ[∆1])[V1/V]); . . . ; (Ŝ[∆4])[V4/V]){φ2}

Case 4. Ŝ = C ? {Ŝ1} : {Ŝ2}. Let ∆⃗A, ∆⃗B denote the prefixes of ∆⃗, ∆⃗1 that is used for filling holes
in Ŝ1 and Ŝ2 respectively. Also, let Ci denote C[Vi/V]. By the first premise of rule 4 from Figure 7
and the inductive hypothesis, we have:

{φ ∧C1} (Ŝ1[∆A1])[V1/V]); . . . ; (Ŝ1[∆A4])[V4/V]) {φ1}

Now, using the second premise and the inductive hypothesis, we also have:

{φ ∧ ¬C1} (Ŝ2[∆B1])[V1/V]); . . . ; (Ŝ2[∆B4])[V4/V]) {φ2}

Using these two facts and the standard Hoare logic rule for if statements, we get:

{φ} C1?(Ŝ1[∆A1])[V1/V]); . . . ; (Ŝ1[∆A4])[V4/V]) :
(Ŝ2[∆B1])[V1/V]); . . . ; (Ŝ2[∆B4])[V4/V]) {φ1}

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

165:24 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

Now, since φ logically entails
∧

i, j Ci ↔ Cj , the statement above is equivalent to:

C1 ? {(Ŝ1[∆A1])[V1/V]} : {(Ŝ2[∆B1])[V1/V]};
. . .

C4 ? {(Ŝ1[∆A4])[V4/V]} : {(Ŝ2[∆B4])[V4/V]};

Next, using the fact that Ŝ[∆i] = (C ? {Ŝ1} : {Ŝ2})[∆i] = C ? {Ŝ1[∆Ai]} : {Ŝ2[∆⃗Bi]}, we can
conclude:

{φ} ((C1 ? {Ŝ1} : {Ŝ2})[∆1])[V1/V]; . . . ;
((C4 ? {Ŝ1} : {Ŝ2}))[∆4])[V4/V] {φ ′}

Case 5. Ŝ = while(C) {Ŝ}. As in case (4), let Ci denote C[Vi/V]. From the premise of rule (5) of
Figure 7 and the inductive hypothesis, we know:

{I} (Ŝ[∆1])[V1/V]; . . . (Ŝ[∆4])[V4/V] {I}

Since we also have φ |= I from the premise, this implies:

{φ} while(C1) {(Ŝ[∆1])[V1/V]; . . . (Ŝ[∆4])[V4/V]} {I ∧ ¬C1}

Next, since we can commute statements over different variables and I implies
∧

i j C[Vi/V] ↔
C[Vj/V], we can conclude:

{φ} while(C1) {(Ŝ[∆1])[V1/V]}; . . . ;
while(C4) {(Ŝ[∆4])[V4/V]} {I ∧ ¬C1}

Finally, because the loop while(Ci) {Ŝ[∆i]} is the same as (while(Ci) {Ŝ})[∆i], we have:

{φ} (while(C1) {Ŝ[V1/V]})[∆1]; . . . ;
(while(C4) {Ŝ[V4/V]})[∆4] {I ∧ ¬C1}

Case 6. First, assuming the soundness of the standard post operator, we have {φ}S{post (S,φ)}.
Using the premise of the proof rule and Theorem 5.4, we obtain:

{φ} (Ŝ[∆1
1])[V1/V]; . . . (Ŝ[∆1

4])[V4/V] {post (S,φ)}

Since ∆1
i is the prefix of ∆i that contains as many holes as Ŝ, we also know Ŝ[∆1

i] = Ŝ[∆i]. Thus,
we get:

{φ} (Ŝ[∆1])[V1/V]; . . . (Ŝ[∆4])[V4/V] {post (S,φ)}

Appendix D: Soundness of n-way Diff Algorithm
Theorem 6.1 follows directly from the following two lemmas:

Lemma 10.1. If |∆| = numHoles(∆̂), then Compose ensures the following post-conditions:
• |∆′ | = |∆̂|
• For any Ŝ s.t. numHoles(Ŝ) = |∆̂|, (Ŝ[∆̂])[∆] = Ŝ[∆′]

Proof. Consider the two postconditions of Compose. For the branch ∆̂ = [], it is easy to see
that ∆′ = ∆̂ = [] and thus |∆′ | = |∆̂|. For any Ŝ with 0 holes, applying any edits gets back Ŝ,
satisfying the second postcondition.

For the branch head(∆̂) = [·], we know numHoles(tail(∆̂)) = numHoles(∆̂)−1 = |tail(∆) | (given
the precondition), which satisfies the precondition of Compose at line 21. The first postcondition of
the recursive call toCompose implies that size of the return value (|∆′ |) equals |head(∆) |+|tail(∆̂) | =
1 + |∆̂| − 1 = |∆̂|. Now consider a Ŝ such that numHoles(Ŝ) = |∆̂|. Let ∆′′ be the return from

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

Verified Three-Way Program Merge 165:25

the recursive call to Compose. Then Ŝ[∆′] = Ŝ[head(∆) :: ∆′′] = (Ŝ[head(∆)])[∆′′] (by defi-
nition of applying an edit). Since numHoles(Ŝ[head(∆)]) = numHoles(Ŝ) − 1 = |tail(∆̂) |, we
know that (Ŝ[head(∆)])[∆′′] = ((Ŝ[head(∆)])[tail(∆̂)])[tail(∆)] (from the second postcondi-
tion of the recursive call). Since head(∆̂) = [·] in this branch, (Ŝ[head(∆)])[tail(∆̂)] = (Ŝ[[·] ::
tail(∆̂)])[head(∆)] = (Ŝ[∆̂])[head(∆)]. This follows from the fact that applying head(∆) to the
first hole in Ŝ followed by applying tail(∆̂) is identical to applying a hole in the first hole in Ŝ
followed by applying tail(∆̂), followed by applying head(∆) which applies it to the first hole in Ŝ.
Further, ((Ŝ[∆̂])[head(∆)])[tail(∆)] = (Ŝ[∆̂])[∆] by the rule of applying edits, which proves this
postcondition.
For the branch head(∆̂) , [·], we know numHoles(tail(∆̂)) = numHoles(∆̂). This along with

the precondition of Compose establishes the preconditon to the call to Compose at line 22. Let ∆′′
denote the return of the recursive call toCompose. The recursive call ensures that |∆′′ | = |tail(∆̂) | =
|∆̂| − 1. Thus |∆′ | = |head(∆̂) :: ∆′′ | = |∆̂|, which establishes the first postcondition. Now consider
a Ŝ such that numHoles(Ŝ) = |∆̂|. Then Ŝ[∆′] = Ŝ[head(∆̂) :: ∆′′] = (Ŝ[head(∆̂)])[∆′′]. Since
numHoles(Ŝ[head(∆̂)]) = numHoles(Ŝ) − 1 = |tail(∆̂) |, we know that (Ŝ[head(∆̂)])[∆′′] =
((Ŝ[head(∆̂])[tail(∆̂)])[∆] (from the second postcondition of the recursive call), which simplifies
to (Ŝ[head(∆̂) :: tail(∆̂)])[∆] = (Ŝ[∆̂)])[∆] by the property of applying an edit. □

Lemma 10.2. If |∆i | = numHoles(Ŝ) for all i ∈ [1, . . . ,k] and Diff2 satisfies the specification
provided in Algorithm 3, then GenEdit ensures the following post-conditions:

• |∆′i | = numHoles(Ŝ′) for i ∈ [1, . . . ,k + 1]
• Ŝ′[∆′k+1] = S and Ŝ′[∆′i] = Ŝ[∆i] for i ∈ [1, . . . ,k]

Proof. First, the precondition |∆i | = numHoles(∆̂) of Compose in line 12 is satisfied from
the precondition |∆i | = numHoles(Ŝ) of GenEdit and the second postcondition numHoles(∆̂) =
numHoles(Ŝ) of Diff2.
Now, consider the postcondition |∆′i | = numHoles(Ŝ′) for i ∈ [1, . . . ,k + 1]. From the first

postcondition of Diff2 at line 10, we know that numHoles(Ŝ′) = |∆̂|. For any i ∈ [1, . . . ,k], the first
postcondition of Compose at line 12 implies |∆̂| = |∆′i |. Together, they imply that numHoles(Ŝ′) =
|∆′i |.
The postcondition Ŝ′[∆′k+1] = Ŝ follows directly from the third postcondition of Diff2. Now

consider ∆′i for i ∈ [1, . . . ,k]. We know from the postcondition of Diff2 that numHoles(Ŝ′) = |∆̂|.
Therefore, from the postcondition of Compose at line 18 (where we substitute Ŝ′ for the bound
variable Ŝ), we know that (Ŝ′[∆̂])[∆i] = Ŝ′[∆′i]. From the postconditon of Diff2 at line 10, we
know Ŝ′[∆̂] = Ŝ. Together, they imply Ŝ[∆i] = Ŝ′[∆′i]. □

Appendix E: Example of 4-way diff
We illustrate the 4-way diff using a simple example:

O � c ? {x := 1} : {y := 2}; z := 3
A � c ? {x := 2} : {y := 2};
B � c ? {x := 1} : {y := 3}; z := 3
M � c ? {x := 2} : {y := 3};

According to Algorithm 2, we start out with the shared program Ŝ = O and ∆O = [].
Now consider the first call to GenEdit(Ŝ,A,∆O). After invoking Diff2(A, Ŝ) at line 10, it returns

the tuple (Ŝ′,∆, ∆̂) where Ŝ′ � c ? {[·]} : {y := 2}; [·], ∆ � [x := 2, skip] and ∆̂ � [x := 1, z := 3].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

165:26 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

The reader can verify that Ŝ′[∆] = A and Ŝ′[∆̂] = Ŝ = O . Next, consider the call toCompose(∆̂,∆1)

where ∆1 = []. Therefore, the call to GenEdit returns the tuple (Ŝ′, [x := 1, z := 3], [x := 2, skip]),
which constitutes Ŝ,∆O ,∆A for the next call to GenEdit.

The next call toGenEdit(Ŝ,B,∆O ,∆A) callsDiff2(B, c ? {[·]} : {y := 2}; [·]) and returns (Ŝ′,∆, ∆̂),
where Ŝ′ � c ? {[·]} : {[·]}; [·] and ∆ � [x := 1,y := 2, z := 3] (which becomes ∆B) and
∆̂ � [[·],y := 2, [·]]. The reader can verify that Ŝ′[∆] = B and Ŝ′[∆̂] = Ŝ. The loop at line 11
updates ∆O and ∆A — we only describe the latter. The return of Compose(∆̂,∆A) updates ∆A to
[x := 2,y := 2, skip] by walking the first argument and replacing [·] with corresponding entry from
∆A . Similarly, the ∆O is updated by Compose(∆̂,∆O) to [x := 1,y := 2, z := 3].
The final call to GenEdit(Ŝ,M,∆O ,∆A ,∆B) returns the tuple (Ŝ,∆O ,∆A ,∆B ,∆M), where

Ŝ,∆O ,∆A ,∆B remain unchanged (since Ŝ already contains holes at all the changed locations), and
∆M is assigned [x := 2,y := 3, skip]. The reader can verify that Ŝ[∆O] = O, Ŝ[∆A] = A, Ŝ[∆B] =
B, Ŝ[∆M] = M .

Appendix F: An abstract implementation of Diff2

Algorithm 3 Algorithm for 2-way AST Diff

1: procedure Diff2(S, Ŝ)
2: Input: A program S and a shared program Ŝ
3: Output: Shared program Ŝ′ and edits ∆, ∆̂
4: Ensures: |∆| = |∆̂| = numHoles(Ŝ′)
5: Ensures: numHoles(∆̂) = numHoles(Ŝ)
6: Ensures: Ŝ′[∆] = S, Ŝ′[∆̂] = Ŝ
7: if Ŝ = [·] then return ([·], [S], [Ŝ])
8: else if Ŝ = S then return (S, [], [])
9: else if * then return Diff2(S; skip, Ŝ) ▷ Non-deterministic skip introduction
10: else if * then return Diff2(skip;S, Ŝ) ▷ Non-deterministic skip introduction
11: else if * then return Diff2(S, Ŝ; skip) ▷ Non-deterministic skip introduction
12: else if * then return Diff2(S, skip; Ŝ) ▷ Non-deterministic skip introduction
13: else if S = S1;S2 and Ŝ = Ŝ1; Ŝ2 then
14: (Ŝ′1,∆1, ∆̂1) := Diff2(S1, Ŝ1)
15: (Ŝ′2,∆2, ∆̂2) := Diff2(S2, Ŝ2)
16: return (Ŝ′1; Ŝ

′
2,∆1 :: ∆2, ∆̂1 :: ∆̂2)

17: else if S = C ? {S1} : {S2} and Ŝ = C ′ ? {Ŝ1} : {Ŝ2} and C = C ′ then
18: (Ŝ′1,∆1, ∆̂1) := Diff2(S1, Ŝ1)
19: (Ŝ′2,∆2, ∆̂2) := Diff2(S2, Ŝ2)
20: return (C ? {Ŝ′1} : {Ŝ

′
2},∆1 :: ∆2, ∆̂1 :: ∆̂2)

21: else if S = while(C) {S1} and Ŝ = while(C ′) {Ŝ1} and C = C ′ then
22: (Ŝ′1,∆1, ∆̂1) := Diff2(S1, Ŝ1)
23: return (while(C) {Ŝ′1},∆1, ∆̂1)
24: else
25: return ([·], [S], [Ŝ])

Algorithm 3 describes Diff2 algorithm for computing the 2-way diff. It takes as input a program
S and a program with holes Ŝ and returns the shared program with holes Ŝ′ and edits ∆ and ∆̂,

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

Verified Three-Way Program Merge 165:27

such that Ŝ′[∆] = S and Ŝ′[∆̂] = Ŝ. Since Ŝ may contain holes, the edit ∆̂ may contain holes.
The algorithm recursively descends down the structure of the two programs and tries to identify
the common program and generate respective edits for the differences. We use non-deterministic
conditional to abstract from actual heuristics to match parts of the two ASTs. For example, when
matching S with Ŝ1; Ŝ2, a heuristic may decide to match S with Ŝ1 and create a shared program
[·]; [·] and edits ∆ = [S, skip], ∆̂ = [Ŝ1, Ŝ2]; it may also choose to match S with Ŝ2 and create a
shared program [·]; [·] and edits ∆ = [skip,S], [Ŝ1, Ŝ2]. The decision is often based on algorithms
based on variants of longest-common-subsequence [Hirschberg 1977]. However, these decisions
only help maximize the size of the shared program, and do not affect the soundness of the edit
generation. Lines 9 to 12 allow us to model all such heuristics by non-deterministically inserting
skip statemnets before or after a statement. Line 24 ensures that the diff procedure can always
return by constructing the trivial shared program [·] and S and Ŝ as the respective edits. Line 7
checks if Ŝ is a hole, then the shared program is a hole [·] and the two edits contain S and Ŝ
respectively. Line 8 is the case when S equals Ŝ. We use = to denote the syntactic equality of the
two syntax trees. The remaining rules are standard and recurse down the AST structure and match
the subtrees.

11 ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their constructive feedback and useful
suggestions. We would also like to thank Thomas Dillig and members of the UToPiA group for
their comments on previous versions of this paper. We also gratefully acknowledge support from a
Google Fellowship to the first author and from the National Science Foundation for supporting the
second author on NSF Award CCF-1712067. The second author was also supported in part by AFRL
Award #8750-14-2-0270. Finally, we would like thank Thomas Ball and James Larus for several
discussions around the problem.

REFERENCES
Sven Apel, Olaf Lessenich, and Christian Lengauer. 2012. Structured Merge with Auto-tuning: Balancing Precision and

Performance. In Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering (ASE
2012).

Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian Kästner. 2011. Semistructured Merge: Rethinking
Merge in Revision Control Systems. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering (ESEC/FSE ’11).

Dimitar Asenov, Balz Guenat, Peter Müller, and Martin Otth. 2017. Precise version control of trees with line-based version
control systems. In International Conference on Fundamental Approaches to Software Engineering. Springer, 152–169.

Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational verification using product programs. In FM 2011:
Formal Methods. Springer, 200–214.

Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2013. Beyond 2-safety: Asymmetric product programs for relational
program verification. In Logical Foundations of Computer Science. Springer, 29–43.

Nick Benton. 2004. Simple relational correctness proofs for static analyses and program transformations. In ACM SIGPLAN
Notices, Vol. 39. ACM, 14–25.

Yuriy Brun, Reid Holmes, Michael D Ernst, and David Notkin. 2013. Early detection of collaboration conflicts and risks.
IEEE Transactions on Software Engineering 39, 10 (2013), 1358–1375.

Guilherme Cavalcanti, Paulo Borba, and Paola R. G. Accioly. 2017. Evaluating and improving semistructured merge. PACMPL
1, OOPSLA (2017), 59:1–59:27.

David Wheeler. 2017. The Apple goto fail vulnerability: lessons learned. http://www.dwheeler.com/essays/apple-goto-fail.
html. (2017).

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 337–340.

Isil Dillig, Thomas Dillig, and Alex Aiken. 2011. Precise reasoning for programs using containers. In ACM SIGPLAN Notices,
Vol. 46. ACM, 187–200.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

http://www.dwheeler.com/essays/apple-goto-fail.html
http://www.dwheeler.com/essays/apple-goto-fail.html

165:28 Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri

H Christian Estler, Martin Nordio, Carlo A Furia, and Bertrand Meyer. 2013. Unifying configuration management with
merge conflict detection and awareness systems. In Software Engineering Conference (ASWEC), 2013 22nd Australian.
IEEE, 201–210.

Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and Mattias Ulbrich. 2014. Automating regression
verification. In ACM/IEEE International Conference on Automated Software Engineering, ASE ’14, Vasteras, Sweden -
September 15 - 19, 2014. 349–360.

Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini, an Annotation Assistant for ESC/Java. In FME 2001: Formal
Methods for Increasing Software Productivity, International Symposium of Formal Methods Europe, Berlin, Germany, March
12-16, 2001, Proceedings. 500–517.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata. 2002. Extended
Static Checking for Java. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation (PLDI ’02). ACM, New York, NY, USA, 234–245. https://doi.org/10.1145/512529.512558

Fowler, Martin. 2011. Semantic Conflict. https://martinfowler.com/bliki/SemanticConflict.html. (2011).
Benny Godlin and Ofer Strichman. 2008. Inference rules for proving the equivalence of recursive procedures. Acta Inf. 45, 6

(2008), 403–439.
Mário Luís Guimarães and António Rito Silva. 2012. Improving early detection of software merge conflicts. In Proceedings of

the 34th International Conference on Software Engineering. IEEE Press, 342–352.
Chris Hawblitzel, Ming Kawaguchi, Shuvendu K. Lahiri, and Henrique Rebêlo. 2013. Towards Modularly Comparing

Programs Using Automated Theorem Provers. In Automated Deduction - CADE-24 - 24th International Conference on
Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings (Lecture Notes in Computer Science), Vol. 7898.
Springer, 282–299.

Daniel S. Hirschberg. 1977. Algorithms for the Longest Common Subsequence Problem. J. ACM 24, 4 (1977), 664–675.
Susan Horwitz, Jan Prins, and Thomas Reps. 1989. Integrating noninterfering versions of programs. ACM Transactions on

Programming Languages and Systems (TOPLAS) 11, 3 (1989), 345–387.
Daniel Jackson and David A. Ladd. 1994. Semantic Diff: A Tool for Summarizing the Effects of Modifications. In Proceedings

of the International Conference on Software Maintenance, ICSM 1994, Victoria, BC, Canada, September 1994. IEEE Computer
Society, 243–252.

John Gruber. 2014. On the Timing of iOS’s SSL Vulnerability. https://daringfireball.net/2014/02/apple_prism. (2014).
Sanjeev Khanna, Keshav Kunal, and Benjamin C Pierce. 2007. A formal investigation of diff3. In FSTTCS 2007: Foundations

of Software Technology and Theoretical Computer Science. Springer, 485–496.
Knoy, Gabriel. 2012. How Often Does Gitmerge make mistakes? https://news.ycombinator.com/item?id=9871042. (2012).
Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo. 2012. SYMDIFF: A Language-agnostic

Semantic Diff Tool for Imperative Programs. In Proceedings of the 24th International Conference on Computer Aided
Verification (CAV’12).

Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris Hawblitzel. 2013. Differential assertion checking. In
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013. ACM, 345–355.

Olaf Lebetaenich, Sven Apel, and Christian Lengauer. 2015. Balancing Precision and Performance in Structured Merge.
Automated Software Engg. 22, 3 (Sept. 2015).

Lee, TK. 2012. The Problem of Automatic Code Merging. http://www.personal.psu.edu/txl20/blogs/tks_tech_notes/2012/03/
the-problem-of-automatic-code-merging.html. (2012).

Lenski, Dan. 2015. Is it possible for Git merging to make a mistake without detecting a conflict? https://www.quora.com/
Is-it-possible-for-Git-merging-to-make-a-mistake-without-detecting-a-conflict. (2015).

Francesco Logozzo, Shuvendu K. Lahiri, Manuel Fähndrich, and Sam Blackshear. 2014. Verification modulo versions:
towards usable verification. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, Edinburgh, United Kingdom - June 09 - 11, 2014. ACM, 32.

Lutton, Mark. 2014. Infinite Loop Caused by Git Merge. https://stackoverflow.com/questions/23523713/
how-can-i-trust-git-merge. (2014).

Ahmed-Nacer Mehdi, Pascal Urso, and François Charoy. 2014. Evaluating software merge quality. In Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineering. ACM, 9.

Nimrod Partush and Eran Yahav. 2014. Abstract semantic differencing via speculative correlation. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland, OR, USA, October 20-24, 2014. ACM, 811–828.

Suzette Person, Matthew B. Dwyer, Sebastian G. Elbaum, and Corina S. Pasareanu. 2008. Differential symbolic execution. In
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2008, Atlanta,
Georgia, USA, November 9-14, 2008. ACM, 226–237.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

https://doi.org/10.1145/512529.512558
https://martinfowler.com/bliki/SemanticConflict.html
https://daringfireball.net/2014/02/apple_prism
https://news.ycombinator.com/item?id=9871042
http://www.personal.psu.edu/txl20/blogs/tks_tech_notes/2012/03/the-problem-of-automatic-code-merging.html
http://www.personal.psu.edu/txl20/blogs/tks_tech_notes/2012/03/the-problem-of-automatic-code-merging.html
https://www.quora.com/Is-it-possible-for-Git-merging-to-make-a-mistake-without-detecting-a-conflict
https://www.quora.com/Is-it-possible-for-Git-merging-to-make-a-mistake-without-detecting-a-conflict
https://stackoverflow.com/questions/23523713/how-can-i-trust-git-merge
https://stackoverflow.com/questions/23523713/how-can-i-trust-git-merge

Verified Three-Way Program Merge 165:29

David A. Ramos and Dawson R. Engler. 2011. Practical, Low-Effort Equivalence Verification of Real Code. In Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. 669–685.

Reddit. 2017a. Automatic Merge Mistakes. https://www.reddit.com/r/git/comments/5bssjv/automatic_merge_mistakes/.
(2017).

Reddit. 2017b. How Do you Deal with Auto Merge? https://www.reddit.com/r/git/comments/5hn80k/how_do_you_deal_
with_auto_merge/. (2017).

Rostedt, Steven. 2011. Fix Bug Caused by Git Merge. http://lkml.iu.edu/hypermail/linux/kernel/1106.0/00645.html. (2011).
SlashDot. 2014. Apple SSL Bug In iOS Also Affects OS X. http://apple.slashdot.org/story/14/02/22/2143224/

apple-ssl-bug-in-ios-also-affects-os-x. (2014).
Marcelo Sousa and Isil Dillig. 2016. Cartesian Hoare logic for verifying k-safety properties. In Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implementation. ACM, 57–69.
Tachio Terauchi and Alex Aiken. 2005. Secure information flow as a safety problem. Springer.
Tim Wood, Sophia Drossopoulou, Shuvendu K. Lahiri, and Susan Eisenbach. 2017. Modular Verification of Procedure

Equivalence in the Presence of Memory Allocation. In Programming Languages and Systems - 26th European Symposium
on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. 937–963.

Hongseok Yang. 2007. Relational separation logic. Theoretical Computer Science 375, 1 (2007), 308–334.
Wuu Yang, Susan Horwitz, and Thomas Reps. 1990. A Program Integration Algorithm That Accommodates Semantics-

preserving Transformations. SIGSOFT Softw. Eng. Notes 15, 6 (Oct. 1990), 133–143.
Anna Zaks and Amir Pnueli. 2008. Covac: Compiler validation by program analysis of the cross-product. In FM 2008: Formal

Methods. Springer, 35–51.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 165. Publication date: November 2018.

https://www.reddit.com/r/git/comments/5bssjv/automatic_merge_mistakes/
https://www.reddit.com/r/git/comments/5hn80k/how_do_you_deal_with_auto_merge/
https://www.reddit.com/r/git/comments/5hn80k/how_do_you_deal_with_auto_merge/
http://lkml.iu.edu/hypermail/linux/kernel/1106.0/00645.html
http://apple.slashdot.org/story/14/02/22/2143224/apple-ssl-bug-in-ios-also-affects-os-x
http://apple.slashdot.org/story/14/02/22/2143224/apple-ssl-bug-in-ios-also-affects-os-x

	Abstract
	1 Introduction
	2 Overview
	3 Representation of Program Versions
	4 Semantic Conflict Freedom
	5 Verifying Semantic Conflict Freedom
	5.1 Computing Relational Postconditions
	5.2 Construction of Product Programs

	6 Edit Generation
	7 Implementation
	7.1 Limitations

	8 Experimental Evaluation
	8.1 Evaluation on Github Merge Candidates
	8.2 Evaluation on Erroneous Merge Candidates
	8.3 Evaluation of Scalability and Design Choices

	9 Related Work
	10 Conclusion and Future Work
	11 Acknowledgements

