
NUDGING NEURAL CONVERSATIONAL MODEL WITH DOMAIN KNOWLEDGE

Sungjin Lee

Microsoft Research, Redmond, WA, USA

ABSTRACT

Neural conversation models are attractive because one can
train a model directly on dialog examples with minimal label-
ing. With a small amount of data, however, they often fail to
generalize over test data since they tend to capture spurious
features instead of semantically meaningful domain knowl-
edge. To address this issue, we propose a novel approach that
allows any human teachers to transfer their domain knowl-
edge to the conversation model in the form of natural lan-
guage rules. We tested our method with three different dia-
log datasets. The improved performance across all domains
demonstrates the efficacy of our proposed method.

Index Terms— conversational agents, domain knowl-
edge, natural language rule, neural conversational model

1. INTRODUCTION

Recently, conversational systems have been increasingly
adopting neural approaches [1, 2, 3, 4, 5, 6, 7]. Neural ap-
proaches are attractive because they allow us to directly train
a model on dialog examples with minimal labeling, which
significantly reduces the development complexity compared
to traditional approaches [8, 9]. Now neural networks are at
the center of services like Conversation Learner 1 and Rasa 2

which allow developers to interactively build bots with much
less hand-crafted features. For task-oriented conversational
systems, however, neural approaches still have many chal-
lenges to overcome. Particularly, the overfitting problem of
neural approaches can be severe when there is an insufficient
amount of dialog examples available. It is mainly because the
model over-optimize on training data by capturing spurious
features instead of learning actually meaningful features for
the task.

In this work, we address this problem with a new paradigm,
so-called, machine teaching [10]. In machine teaching, the
role of the teacher is to transfer knowledge to the learning
machine so that it can generate a useful model. With their
domain knowledge, the teachers can divine some features
that are immune to overfitting because they are created inde-
pendently of the training data. In Table 1, for example, the
learning machine might pick the previous system response,

1https://labs.cognitive.microsoft.com/en-us/project-conversation-learner
2http://rasa.com/

...
System: I’m on it
User: Actually I would prefer for two people
System: Sure, is there anything else to update?
...
System: I’m on it
User: Actually I want French food
System: Sure, is there anything else to update?

Table 1. Example dialogs in a restaurant finding domain

i.e. I’m on it, as a key feature in making predictions on
next response because it consistently shows up in the limited
set of dialogs. But such spurious regularities won’t last long
as more dialogs become available. In contrast, any human
teacher can tell that the user inputs should instead be the key
feature despite their varying surface forms. Thus, if there
is an easy way to transfer such knowledge, one can bias the
model to rely more on semantically robust features.

As a first step toward this goal, we propose a novel
conversational model which allows one to express domain
knowledge in the form of Natural Language Rules (NLRs). 3

Specifically, our method takes as input two sets of rules, u-
rules and s-rules. With u-rules, one can suggest what the
system should say upon a particular user input, e.g, ‘Actu-
ally I want $cusine food’ → ‘Sure, is there anything else to
update?’. 4 Whereas, with s-rules, one can encourage the
system to follow a typical ordering of system actions, e.g.,
‘what kind of food would you like?’ → ‘what area of town
should I search?’. With the NLR inferencer (introduced in
Section 2.2), we perform inference based on NLRs. The in-
ference result is passed to the overall conversational model as
features to give it a nudge to consider domain knowledge.

The rest of this paper is organized as follows. In Section 2
we describe our conversational model with an NLR inference
module. In Section 3 we discuss our experiments and results.
We finish with conclusions and future work in Section 4.

3We think the use of natural language for knowledge description is im-
portant for a wide adoption because representing knowledge with formal lan-
guages is a non-trivial skill to master.

4In this example, we delexicalized the utterance by substituting the actual
value (e.g. French) with its category.

Fig. 1. The overall operational loop. Trapezoids refer to programmatic code provided by the software developer, and shaded boxes are
trainable components.

2. CONVERSATION MODEL WITH NATURAL
LANGUAGE RULES

In this section, we describe our task-oriented conversation
model that makes use of domain-specific rules that are ex-
pressed in natural language.

2.1. Overall Architecture

Our conversational model builds upon the Hybrid Code Net-
work (HCN) [6] which servers as a key component for the
recent interactive bot development technologies such as Con-
versation Learner and Rasa. At a high level, our model have
five components: sentence RNNs; a context RNN; domain-
specific software; domain-specific action templates; and a
conventional entity extraction module for identifying entity
mentions in text. We use a pre-trained sentence encoder
obtained from [11] which encodes a sentence with 4 layer
LSTM models [12] with 1,000 hidden units for each layer.
We take the hidden state from the top layer at the end of the
sentence as the sentence representation. We call this sentence
encoder Neurocon and use it for all sentence RNNs. Both the
context RNN and the developer code maintain state. Each ac-
tion template can be a textual communicative action or an API
call. Figure 1 shows the overall operational loop. The cycle
begins when the user provides an utterance, as text (step 1).
Second, an utterance embedding is formed, using the sentence
RNN (step 2). Third, an entity extraction module identifies
entity mentions (step 3), for example, identifying “Seattle”
as a 〈city〉 entity. The text and entity mentions are then
passed to “Entity tracking” code provided by the developer

(step 4), which grounds and maintains entities, for example,
mapping the text “Seattle” to a specific row in a database.
This code can optionally return “context features” which are
features the developer thinks will be useful for distinguishing
among actions, such as which entities are currently present
and which are absent. An embedding for the previous sys-
tem’s action is generated (step 5). Then, we feed the NLR
inferencer with the user utterance embedding, system action
embedding and the two sets of NLRs, u-rules and s-rules.
The NLR inferencer performs inference to yield a vector that
represents a soft preference over the set of action templates
based on the domain knowledge encoded in the NLRs (step
6). The feature components from steps 1-6 are concatenated
to form a feature vector (step 7). This vector is passed to
the context RNN. The context RNN computes a hidden state
(step 8), which is retained for the next timestep (step 9), and
passed to a bilinear layer which projects the hidden state to
the response space (step 10), yielding a response embedding.
A set of embeddings for each distinct system action template
are generated, using the sentence RNN (step 11). This set
of embeddings get ranked according to the similarity to the
response embedding (step 12). With a softmax, a probabil-
ity distribution over action templates is generated (step 13).
From the resulting distribution (step 14), the best action is se-
lected (step 15). The selected action is next passed to “Entity
output” developer code that can substitute in entities (step 16)
and produce a fully-formed action, for example, mapping the
template “〈city〉, right?” to “Seattle, right?”. In step 17, con-
trol branches depending on the type of the action: if it is an
API action, the corresponding API call in the developer code
is invoked (step 18), for example, to render rich content to

Fig. 2. Natural Language Rule-based inference process

the user. APIs can act as sensors and return features relevant
to the dialog, so these can be added to the feature vector in
the next timestep (step 19). If the action is text, it is rendered
to the user (step 20), and cycle then repeats. Note that there
are a few improvements in our model compared to the HCN
model, we encode system actions using RNNs rather than
just featurizing the system action taken with a binary vector
which is all zero values except for the index of the taken
action; we rank a set of candidate system actions by matching
them with the context rather than performing classification
without looking into the actions.

2.2. Natural Language Rule Inferencer

The Figure 2 depicts the entire process of NLR inference.
There are two sets of rules s-rules and u-rules. A rule is a
tuple of (pre-condition, post-condition) – specifically, the pre-
condition and post-condition for s-rules (u-rules) are “pre-
vious system action” and “system action” (“user input” and
“system action”), respectively. For each rule set, we store
pre-condition embeddings and post-condition embeddings in
the pre-condition memory and post-condition memory, re-
spectively. We use the sentence RNNs (in Section 2.1) to
encode pre/post-conditions. Then, we match the inferencer
input, which is either the previous system action or the current
user input depending on the rule set, against the pre-condition
embeddings to generate a vector of matching scores, µ (red
vector in Figure 2). This indicates how relevant each rule is
given the inferencer input. At the same time, we match each
of the post-condition embeddings against all candidate action
templates to generate a matrix of matching scores, ν (blue ma-
trix). Each element of this matrix represents how relevant a
candidate action template is when the corresponding rule gets
matched. Thus, the element-wise product of µ and ν yields a
weighted matrix such that the summation of it over the rows
(i.e., rules), results in a vector, α (blue vector), that represents
how relevant a candidate action template is based on the infer-

encer input and the rules. Finally, we produce output vectors
es and eu based on s-rules and u-rules, respectively by taking
a weighted average over the set of candidate action template
embeddings with the weight being α. 5 Then, the NLR in-
ferencer yields the final vector by concatenating es and eu.
For the matcher, we first measure cosine similarities and nor-
malize them to probabilities through the softmax operation:
m = softmax(cosine(a, b)/λ), where λ is a scalar to adjust
the sharpness of the resulting probability distribution m.

3. EXPERIMENTS

3.1. Data

We use three dialog datasets — Weather, Navigate, and
Schedule. Basic statistics of the datasets are shown in Ta-
ble 2 and Table 3. The datasets are three distinct domains of
the recently released Stanford dialog data for an in-car assis-
tant: weather information retrieval, point-of-interest naviga-
tion, and calendar scheduling, respectively [13]. Dialogs were
collected through Amazon Mechanical Turk using a Wizard-
of-Oz scheme. To create datasets that are appropriate for
training and testing models, we first delexicalized the datasets
based on dialog act annotations and performed random nega-
tive sampling from the set of distinct action temples to gener-
ate 9 distractors for the true action template for each turn. We
created a small number of simple rules, spending time less
than a half hour for each domain: 20 rules for Weather, 16
for Navigate, and 17 for Schedule. 6

5Due to the limited coverage of rules, it is possible that there is no en-
try in the pre-condition memory (or post-condition memory) matching the
inferencer input (or candidate action templates). To handle such cases, we
introduce two “no match” bias parameters for each matching process and ex-
tend the set of candidate embeddings with a zero vector. When we compute
the weighted average, the zero vector gets multiplied by the probabilities as-
signed to the bias terms.

6The rules are made available at https://www.dropbox.com/s/
qz6wgxngtzm0dzp/rules.zip?dl=0.

Domain Train Dev Test
Weather 797 99 100
Navigate 800 100 100
Schedule 828 103 104

Table 2. The size of datasets

Metric Weather Nav. Sch.
Avg. turns per dialog 5.40 6.56 7.32
Avg. tokens per user turn 5.51 7.06 10.06
Avg. tokens per system turn 5.70 7.88 16.14
distinct action templates 187 259 158

Table 3. Data statistics. Nav. and Sch. stand for Navigation
and Schedule, respectively.

3.2. Results

To evaluate our proposed model, we conducted ablation tests
in Table. 4 – NLR: the proposed model, NLR-S: without s-
rules, NLR-U: without u-rules, NLR-SU: no NLR inference.
A more detailed description on the model parameters and
training process can be found in Section 3.3. The proposed
model outperforms the baseline, NLR-SU, by about 6% -
20% in terms of Recall@1. Across all the domains, the per-
formance consistently increases as more domain knowledge
gets added. To investigate how much sample complexity is
reduced by incorporating domain knowledge, we plot perfor-
mance curves depending on the training data size in Figure 3.
NLR reaches about the same performance with only 100 -
300 dialogs that the baseline model, NLR-SU, achieves with
full training data (around 800 dialogs). Finally, as the compu-
tation of cosine similarity in the NLR inferencer depends on
the quality of sentence embeddings, we report performance
with different sentence encoders in Table 5 – NC: Neurocon,
ST: Skip-Thoughts [14], WE: we train sentence RNNs with
pre-trained word embeddings, SC: we train both sentence
RNNs and word embeddings from scratch. The performance
consistently increases as we use more pre-trained compo-
nents. Although NC and ST both are pre-trained sentence
encoders, the performance gap between between NC and ST
indicates that, for conversational models, a sentence encoder
trained on conversation data is better than one trained on plain
text like books.

3.3. Training Details

For the sentence RNNs that we trained for the WE and SC
models, we use a bidirectional LSTM-RNN with 100 hid-
den units for each direction. For the SC model, the word
embedding weight matrix was initialized with the GloVe
embeddings with 100 dimension [15]. For the ST model,
we obtained the Skip-Thoughts model [14] at the author’s
repository 7 which was trained on the BookCorpus data.

7https://github.com/ryankiros/skip-thoughts

Domain NLR NLR-S NLR-U NLR-SU
Weather 71.96 61.62 67.90 52.77
Navigate 62.69 57.80 59.94 48.62
Schedule 66.17 63.68 61.69 58.21

Table 4. Ablation test results in Recall@1.

Fig. 3. Performance curves

Domain NC ST WE SC
Weather 71.96 52.77 45.76 42.07
Navigate 62.69 51.99 41.90 35.19
Schedule 66.17 46.77 46.77 38.31

Table 5. Experimental results with different encoders.

Specifically, we used the uni-skip model which uses a GRU-
RNN [16] encoder with 2,400 hidden units. For the context
encoder, we use an LSTM-RNN with 200 hidden units. We
initialized all the weights of the LSTM-RNN using the Xavier
uniform distribution [17]. For the matcher, we initialized λ
to 0.1. We use the Adam optimizer [18], with gradients
computed on mini-batches of size 1 and clipped with norm
value 5. The learning rate was set to 1 × 10−3 throughout
the training and all the other hyperparameters were left as
suggested in [18]. We performed early stopping based on the
performance of the evaluation data to avoid overfitting.

4. CONCLUSION

We have presented a novel approach to improve the data-
intensiveness problem of neural conversational models. We
tackled the problem with the NLR inferencer that allows one
to transfer domain knowledge in the form of natural language
rules. We tested our method with multiple dialog datasets.
The improved performance across all domains demonstrates
the efficacy of our proposed method.

5. REFERENCES

[1] Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun Nie,
Jianfeng Gao, and Bill Dolan, “A neural network ap-
proach to context-sensitive generation of conversational
responses,” arXiv preprint arXiv:1506.06714, 2015.

[2] Oriol Vinyals and Quoc Le, “A neural conversational
model,” arXiv preprint arXiv:1506.05869, 2015.

[3] Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C Courville, and Joelle Pineau, “Building
end-to-end dialogue systems using generative hierarchi-
cal neural network models.,” in AAAI, 2016, pp. 3776–
3784.

[4] Tsung-Hsien Wen, David Vandyke, Nikola Mrksic, Mil-
ica Gasic, Lina M Rojas-Barahona, Pei-Hao Su, Stefan
Ultes, and Steve Young, “A network-based end-to-end
trainable task-oriented dialogue system,” arXiv preprint
arXiv:1604.04562, 2016.

[5] Antoine Bordes and Jason Weston, “Learning
end-to-end goal-oriented dialog,” arXiv preprint
arXiv:1605.07683, 2016.

[6] Jason D Williams, Kavosh Asadi, and Geoffrey Zweig,
“Hybrid code networks: practical and efficient end-to-
end dialog control with supervised and reinforcement
learning,” arXiv preprint arXiv:1702.03274, 2017.

[7] Tiancheng Zhao, Allen Lu, Kyusong Lee, and Maxine
Eskenazi, “Generative encoder-decoder models for task-
oriented spoken dialog systems with chatting capabil-
ity,” in Proceedings of the 18th Annual SIGdial Meeting
on Discourse and Dialogue, 2017, pp. 27–36.

[8] Kristiina Jokinen and Michael McTear, “Spoken dia-
logue systems,” Synthesis Lectures on Human Language
Technologies, vol. 2, no. 1, pp. 1–151, 2009.

[9] Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D Williams, “Pomdp-based statistical spoken dialog
systems: A review,” Proceedings of the IEEE, vol. 101,
no. 5, pp. 1160–1179, 2013.

[10] Patrice Y Simard, Saleema Amershi, David M Chicker-
ing, Alicia Edelman Pelton, Soroush Ghorashi, Christo-
pher Meek, Gonzalo Ramos, Jina Suh, Johan Verwey,
Mo Wang, et al., “Machine teaching: A new paradigm
for building machine learning systems,” arXiv preprint
arXiv:1707.06742, 2017.

[11] Jiwei Li, Michel Galley, Chris Brockett, Georgios P Sp-
ithourakis, Jianfeng Gao, and Bill Dolan, “A persona-
based neural conversation model,” arXiv preprint
arXiv:1603.06155, 2016.

[12] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[13] Mihail Eric and Christopher D Manning, “Key-value
retrieval networks for task-oriented dialogue,” arXiv
preprint arXiv:1705.05414, 2017.

[14] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler, “Skip-thought vectors,” in Advances in
neural information processing systems, 2015, pp. 3294–
3302.

[15] Jeffrey Pennington, Richard Socher, and Christopher D
Manning, “Glove: Global vectors for word representa-
tion,” Proceedings of the Empiricial Methods in Nat-
ural Language Processing (EMNLP 2014), vol. 12, pp.
1532–1543, 2014.

[16] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio, “Learning phrase rep-
resentations using rnn encoder-decoder for statistical
machine translation,” arXiv preprint arXiv:1406.1078,
2014.

[17] Xavier Glorot and Yoshua Bengio, “Understanding the
difficulty of training deep feedforward neural networks,”
in Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, 2010, pp.
249–256.

[18] Diederik Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” The International Conference
on Learning Representations (ICLR)., 2015.

