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Abstract
We introduce two new “degree of complementarity” measures: supermodular width and superad-
ditive width. Both are formulated based on natural witnesses of complementarity. We show that
both measures are robust by proving that they, respectively, characterize the gap of monotone
set functions from being submodular and subadditive. Thus, they define two new hierarchies
over monotone set functions, which we will refer to as Supermodular Width (SMW) hierarchy
and Superadditive Width (SAW) hierarchy, with foundations — i.e. level 0 of the hierarchies —
resting exactly on submodular and subadditive functions, respectively.

We present a comprehensive comparative analysis of the SMW hierarchy and the Supermod-
ular Degree (SD) hierarchy, defined by Feige and Izsak. We prove that the SMW hierarchy is
strictly more expressive than the SD hierarchy: Every monotone set function of supermodular
degree d has supermodular width at most d, and there exists a supermodular-width-1 function
over a ground set of m elements whose supermodular degree is m − 1. We show that previous
results regarding approximation guarantees for welfare and constrained maximization as well
as regarding the Price of Anarchy (PoA) of simple auctions can be extended without any loss
from the supermodular degree to the supermodular width. We also establish almost matching
information-theoretical lower bounds for these two well-studied fundamental maximization prob-
lems over set functions. The combination of these approximation and hardness results illustrate
that the SMW hierarchy provides not only a natural notion of complementarity, but also an ac-
curate characterization of “near submodularity” needed for maximization approximation. While
SD and SMW hierarchies support nontrivial bounds on the PoA of simple auctions, we show that
our SAW hierarchy seems to capture more intrinsic properties needed to realize the efficiency of
simple auctions. So far, the SAW hierarchy provides the best dependency for the PoA of Single-
bid Auction, and is nearly as competitive as the Maximum over Positive Hypergraphs (MPH)
hierarchy for Simultaneous Item First Price Auction (SIA). We also provide almost tight lower
bounds for the PoA of both auctions with respect to the SAW hierarchy.
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1 Introduction

For a ground set X = [m] = {1, 2, . . . ,m}, a set function f : 2X → R assigns each subset
S ⊆ X a real value.4 Function f is monotone if f(T ) ≥ f(S),∀S ⊆ T ⊆ X, and normalized
if f(∅) = 0. In this paper, we will focus on normalized monotone set functions, which by
definition are non-negative.

Like graphs to network analysis, set functions provide the mathematical language for
many applications, ranging from combinatorial auctions (economics) to coalition formation
(cooperative game theory; political science) [25, 26] to influence maximization (viral mar-
keting) [24, 17]. Because of its exponential dimensionality, set functions — which are as
rich as weighted hypergraphs — are far more expressive mathematically and challenging
algorithmically than graphs [28]. However, when monotone set functions are submodular
[22, 29], or — more generally — complement-free [8], algorithms with remarkable performance
guarantees have been developed for various optimization, social influence, economic, and
learning tasks [2, 17, 20, 3, 23].

In this paper, we study two new degree-of-complementarity measures of monotone set
functions, and demonstrate their usefulness for several optimization and economic tasks.
We prove that our complementarity measures — which are based on natural witnesses of
complementarity — introduce hierarchies (over monotone set functions) that smoothly move
beyond submodularity and subadditivity.

1.1 Witnesses to Complementarity: Supermodular Sets and
Superadditive Sets

For any sets S, T ⊆ X, let f(S|T ) := f(S ∪ T )− f(T ) be the margin of S given T . Recall
that f is subadditive if f(S ∪ T ) ≤ f(S) + f(T ), ∀S, T ⊆ X, and submodular if for all S, T
and v ∈ X \ T , f(v|S ∪ T ) ≤ f(v|S). It is well known that every submodular set function
is also subadditive. If there are sets S, T ⊆ V such that f(S ∪ T ) > f(S) + f(T ), then one
may say that (S, T ) is a witness to complementarity in f . Motivated by a line of recent work
[1, 14, 10, 9, 11, 6], we consider the following fundamental question about set functions:

Are there other natural, and preferably more general, forms of witnesses to comple-
mentarity that have algorithmic consequences?

The supermodular degree of Feige and Izsak [10] is among the first measures of complemen-
tarity that are connected with algorithmic solutions to monotone-set-function maximization
and combinatorial auctions. The supermodular degree is defined based on a notion of positive
dependency between elements: u ∈ X positively depends on v ∈ X \ {u} (denoted by
u→+ v), if there exists S ⊆ X such that f(u|S) > f(u|S \ {v}).

4 Throughout the paper we use m to denote the number of elements in the ground set.
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I Definition 1.1 (Supermodular Degree). The supermodular degree of a set function f : 2X →
R+, SD(f), is defined to be SD(f) = maxu∈X |Dep+

f (u)|, where Dep+
f (u) = {v|u→+ v}.

Although supermodular degree has been shown useful in a number of settings, it is not
clear whether it provides the tightest possible characterization of supermodularity. For
example, consider a customer who wants any two or more items out of m items, but not zero
or one item. That is, the customer has a valuation function, where any subset of [m] of size
at least 2 provides utility 1, and any subset of size at most 1 provides utility 0. For this
function, according to Feige and Izsak’s definition, any two items depend positively on each
other. In particular, any item depends positively on all other items, so the supermodular
degree of this valuation function is m − 1 — the largest degree possible. This seems to
contradict the intuition that there is only very limited complementarity.

Below, we will provide two perspectives, with the first highlighting supermodularity and
the second highlighting superadditivity. We will then study how these two complementarity
measures can be used to capture the performance of basic computational solutions in
optimization and auction settings where the utilities are modeled by monotone set functions.
In particular, our measure of supermodularity refines supermodular degree, and avoids the
kind of overestimation discussed above. Our first definition focuses on modularity:

I Definition 1.2 (Supermodular Set). Given a normalized monotone set function f over a
ground set X, a set T ⊆ X is supermodular w.r.t. f if:

∃S ⊆ X and v ∈ X \ T, such that: f(v|S ∪ T ) > max
T ′(T

f(v|S ∪ T ′). (1)

Note that if f is submodular, then f(v|S ∪ T ) ≤ f(v|S ∪ T ′),∀T ′ ( T , implying f has no
supermodular set. Thus, if a set function f has a supermodular set, then it is not submodular.
We say that such a set T (in Definition 1.2) complements item v given S, where S provides
the setting that demonstrates the complementarity between v and T . In the “customer
example” given after Definition 1.1, we can check that any singleton is a supermodular set,
but any set with size at least two is not a supermodular set, because any single item in the
set already provides all the complementarity for any other single item. A supermodular set
behaves similarly to the typical example of complements, namely complementary bundles,5
in the sense that the set as a whole provides more complement to a single item than any of
its strict subsets. However, supermodular sets have richer structures while preserving the
strong complementarity of such bundles, making them potentially more challenging to deal
with mathematically/algorithmically than complementary bundles of a similar size.

Our next definition focuses on additivity:

I Definition 1.3 (Superadditive Set). Given a normalized monotone set function f over a
ground set X, a set T ⊆ X is superadditive w.r.t. f if:

∃S ⊆ X \ T such that: f(S|T ) > max
T ′(T

f(S|T ′). (2)

In Definition 1.3, we say such a set T complements set S. Note that if f is subadditive, then for
T ′ = ∅, f(S|T ) = f(S∪T )−f(T ) ≤ (f(S) +f(T ))−f(T ) = f(S) = f(S)−f(T ′) = f(S|T ′),
implying f does not have a superadditive set. In other words, if f has any superadditive set,
then it is not subadditive.

Supermodular/superadditive sets correspond to witnesses that exhibit different kinds of
complementarity. Supermodular sets are sensitive to the presence of an environment, and

5 S is a complementary bundle if f(S) > 0 and maxS′(S f(S′) = 0.
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superadditive sets model complements to sets instead of items. The cardinality of the largest
supermodular sets or superadditive sets provides a measure of the “level of complementarity”,
similar to the supermodular degree ([10]), the size of the largest bundle, and the hyperedge
size ([9]) (also see Definition 1.16) in previous work.

I Definition 1.4 (Supermodular Width). The supermodular width of a set function f is:

SMW(f) := max{|T | | T is a supermodular set w.r.t. f}. (3)

I Definition 1.5 (Superadditive Width). The superadditive width of a set function f is:

SAW(f) := max{|T | | T is a superadditive set w.r.t. f}. (4)

Each measure classifies monotone set functions into a hierarchy of m levels:

I Definition 1.6 (Supermodular Width Hierarchy (SMW-d)). For any integer d ∈ {0, . . . ,m−
1}, a set function f : 2[m] → R belongs to the first d-levels of the supermodular width
hierarchy, denoted by f ∈ SMW-d, if and only if SMW(f) ≤ d.

I Definition 1.7 (Superadditive Width Hierarchy (SAW-d)). For any integer d ∈ {0, . . . ,m−1},
a set function f : 2[m] → R belongs to the first d levels of the superadditive width hierarchy,
denoted by f ∈ SAW-d, if and only if SAW(f) ≤ d.

We will show that functions at level 0 of the above two hierarchies, respectively, are pre-
cisely the families of submodular and subadditive functions. In both hierarchies, SMW-(m−1)
and SAW-(m− 1) contains all monotone set functions over m elements. Coming back again
to the customer example, we see that the utility of the customer has supermodular width of
1. Comparing to its supermodular degree of m− 1, our hierarchy characterizes this utility
function at a much lower level, which matches our intuition that the complementarity of this
customer’s utility function should be limited. We will further show below that this difference
also has significant algorithmic implications.

1.2 Our Results and Related Work
We now summarize the technical results of this paper. Structurally, we provide strong
evidence that our definitions of supermodular/superadditive sets are natural and robust. We
show that they — respectively — capture a set-theoretical gap of monotone set functions to
submodularity and subadditivity. Algorithmically, we prove that our characterization based
on supermodular width is strictly stronger than that of Feige-Izsak’s based on supermodular
degree, by establishing the following:
1. For every set function f : 2[m] → R, SD(f) ≤ SMW(f), and there exists a function whose

supermodular degree is much larger than its supermodular width.
2. The SMW hierarchy offers the same level of algorithmic guarantees in the maximization

and auction settings as the SD hierarchy.
We will also compare both hierarchies with the MPH hierarchy of [9].

1.2.1 Robustness: Capturing the Set-Theoretical Gap to
Submodularity/Subadditivity

We interpret the level of complementarity in our formulation of supermodular and superaddi-
tive sets from a dual perspective: We prove that they characterize the gaps from a monotone
set function to submodularity and subadditivity, respectively. Our characterization uses the
following definition.
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I Definition 1.8 (d-Scopic Submodularity). For integer d ≥ 0, a normalized monotone set
function f is d-scopic submodular if and only if:

f(v|T ) ≤ max
T ′:T ′⊆T,|T ′|≤d

f(v|S ∪ T ′), ∀S, T ⊆ X, v ∈ X satisfying S ⊆ T, v /∈ T (5)

In Condition (5), {S ∪ T ′|T ′ ⊆ T, |T ′| ≤ d} defines a set-theoretical neighborhood around
S. The d-scopic submodularity means that even if the submodular condition f(v|T ) ≤ f(v|S)
may not hold for some S ⊆ T , it holds for some set in S’s d-neighborhood inside T . Thus,
the parameter d provides a set-theoretical scope for examining submodularity. Similarly:

I Definition 1.9 (d-scopic Subadditivity). For integer d ≥ 0, a set function f is d-scopic
subadditive if and only if:

f(S|T ) ≤ max
T ′:T ′⊆T, |T ′|≤d

f(S|T ′), ∀S, T ⊆ X satisfying S ∩ T = ∅. (6)

In Section 2, we prove the following two theorems.

I Theorem 1.10 (Set-Theoretical Characterization of the SMW Hierarchy). For any integer
d ≥ 0 and set function f : 2X → R, f is d-scopic submodular if and only if SMW(f) ≤ d.

I Theorem 1.11 (Set-Theoretical Characterization of the SAW Hierarchy). For any integer
d ≥ 0 and set function f : 2X → R, f is d-scopic subadditive if and only if SAW(f) ≤ d.

With matching supermodularity/submodularity and superadditivity/subadditivity char-
acterization, Theorems 1.10 and 1.11 illustrate that our definitions of supermodular/super-
additive sets are both natural and robust. While monotone submodular functions are all
subadditive, some d-scopic submodular functions are not d-scopic subadditive. In fact, these
two hierarchies are not comparable (Propositions 2.4 and 2.5): They model different aspects
of complementarity that can be utilized in diverse algorithmic and economic settings.

1.2.2 Expressiveness: Strengthening Supermodular Degree
Supermodular sets extend positive dependency (as used in supermodular degree), which —
in essence — can be viewed as a graphical approximation of supermodular sets. Thus, our
characterization based on supermodular width strengthens Feige-Izsak’s the characterization
based on supermodular degree [10].

I Theorem 1.12. Every monotone set function f with supermodular degree d has supermod-
ular width at most d (i.e., it is d-scopic submodular). Moreover, there exists a monotone set
function f : 2[m] → R+ with SMW(f) = 1 and SD(f) = m− 1.

In other words, the SMW hierarchy strictly dominates the SD hierarchy. 6

1.2.3 Usefulness: Algorithmic and Economic Applications
We then show, algorithmically, the SMW hierarchy — while being more expressive than
the SD hierarchy — provides a complexity classification as effective as the latter (Theo-
rems 3.2, 3.5 and 4.14). We will illustrate the usefulness of our hierarchies in algorithm
and auction design with two archetypal classes of problems, set function maximization and

6 Formally, when comparing two set-function hierarchies, say with name {Yd}d∈[0,m−1] and {Zd}d∈[0,m−1],
we say Y dominates Z, if for all d ∈ [0, m− 1] and f , f ∈ Zd implies f ∈ Yd.
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combinatorial auctions, which traditionally involve measures of complementarity. Moti-
vated by previous work [10, 14, 11, 9], we will characterize the approximation guarantee
of polynomial-time set-function maximization algorithms and efficiency of simple auction
protocols in terms of the complementarity level in our hierarchies. In these settings, we will
compare our hierarchies with two most commonly cited complementarity hierarchies: the
supermodular degree (SD) hierarchy and the Maximum over Positive Hypergraphs (MPH)
hierarchy.

Set-Function Maximization: We will consider both constrained and welfare maximization.
The former aims to find a set of a given cardinality with maximum function value. The
latter aims to allocate a set of items to n agents, 7 with potentially different valuations,
such that the total value of all agents is maximized. As a set function has exponential
dimensions in m, in both maximization problems, we assume that the input set functions
are given by their value oracles.
Combinatorial Auctions and Simple Auction Protocols: We will consider two well-studied
simple combinatorial auction protocols: Single-bid Auction and Simultaneous Item First
Price Auction (SIA). In both settings, there are multiple agents, each of which has
a (potentially different) valuation function over subsets of items. The former auction
protocol proceeds by asking each bidder to bid a single price, and letting bidders, in
descending order of their bids, buy any available set of items paying their bid for each
item. The latter simply runs first-price auctions simultaneously for all items.

1.2.4 Approximation Guarantees According to Supermodular Widths
We will prove that the elegant approximability results for constrained maximization by
[14] and for welfare maximization by [10] can be extended from supermodular degree to
supermodular width. We obtain the same dependency (see Theorems 3.2 and 3.5) — that is,
1−e−1/(d+1) and 1

d+2 respectively — on the supermodular width d as what the supermodular
degree previously provides for these problems.

Because our SMW hierarchy is strictly more expressive, our upper bounds for SMW-d
cover strictly more monotone set functions than previous results for SD-d. We will also
complement our algorithmic results with nearly matching information theoretical lower
bounds (see Theorems 3.3 and 3.6), for these two well-studied fundamental maximization
problems. Our approximation and hardness results illustrate that the SMW hierarchy not only
captures a natural notion of complementarity, but also provides an accurate characterization
of the “nearly submodular property” needed by approximate maximization problems.

1.2.5 Efficiency of Simple Auctions According to
Superadditive/Supermodular Width

Next, we will analyze the efficiency of two well-known simple auction protocols in terms of
superadditive width. To state our results and compare them with previous work, we first
recall a notation from [9]:

I Definition 1.13 (Closure under Maximization). For any family of set functions F over X,
the closure of F under maximization, denoted by max(F), is the following family of set

7 Throughout the paper we use n to denote the number of agents (whenever applicable) unless otherwise
specified.
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functions: f ∈ max(F) if and only if:

∃k ∈ N, f1, . . . , fk ∈ F , s.t. f(S) = max
i∈[k]

fi(S),∀S ⊆ X. (7)

We will prove the following nearly tight upper and lower bounds:

I Theorem 1.14. Single-bid Auction and SIA are approximately efficient for valuation
functions in max(SAW(d)), with Price of Anarchy (PoA) O(d logm). In addition, for any
d > 0, there is an instance with SAW-d valuations, where the Price of Stability (PoS) of
Single-bid Auction is at least d+ 1− ε for any ε > 0, and the PoA of SIA is at least d.

Although supermodular width strictly strengthens supermodular degree, superadditive
width is not comparable with supermodular degree. Nevertheless, our PoA bound of
O(d logm) is a factor of d tighter than the O(d2 logm) supermodular-degree based bound of
[11] for Single-bid Auction. This improvement of dependency on d, together with the nearly
matching lower bound, suggests that the SAW hierarchy might be more capable in capturing
the smooth transition of efficiency of simple auctions. Furthermore, as a byproduct of our
efficiency results for the SAW hierarchy, we also obtain similar results, but with a worse
dependency on d, for the SMW hierarchy.

I Theorem 1.15. Single-bid auction and SIA are approximately efficient for valuations in
max(SMW-d ∩ SUPADD) — with PoA O(d2 logm) — where SUPADD denotes the class of
monotone superadditive set functions.

For Single-bid Auction, this result strengthens the central efficiency result of [11] by
replacing the supermodular degree with the more inclusive supermodular width. For the
PoA analysis of SIA, the the Maximum over Positive Hypergraphs (MPH) hierarchy of [9]
remains the gold standard, by providing asymptotically matching upper and lower bounds.
MPH is defined based on the following hypergraph characterization of set functions: Every
normalized monotone set function over ground set X can be uniquely expressed by another
set function h such that f(S) =

∑
T⊆S h(T ),∀S ⊆ X, where h(T ) for each T is called the

weight of hyperedge T .

I Definition 1.16 (Maximum over Positive Hypergraphs [9]). Let PH-d be the class of set
functions whose hypergraph representation h satisfies: (1) h(S) ≥ 0 for all S, and (2)
h(S) > 0 only if |S| ≤ d. The d-th level of the MPH hierarchy is: MPH-d = max(PH-d).

MPH provides the best characterization to the efficiency of SIA as well as ties with SD
and SMW regarding the approximation ratio of welfare maximization (although it requires
access to the much stronger demand oracles). However, it remains open whether it can be
used to analyze constrained set function maximization and Single-bid Auction. See Table 1
for a comparison. We will prove the following theorem which states that, in general, the
SAW hierarchy is not comparable with MPH.

I Theorem 1.17. There is a subadditive function that lives in an upper (i.e. ≥ m/2) MPH
level. On the other direction, there is a function on level 2 of MPH, whose superadditive and
supermodular widths are both m− 1.

It remains open whether MPH-(d+ 1) — which subsumes SD-d as a subset — contains
SMW-d. In particular, the proof that SD-d ⊆ MPH-(d + 1) in [9] does not appear easily
applicable to SMW-d.

ITCS 2019
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SD-d MPH-(d + 1) SMW-d SAW-d
constrained
maximization 1− e1/(d+1) [14] ? 1− e1/(d+1)

(Thm 3.2) ?

welfare
maximization 1/(d + 2) [10] 1/(d + 2) [9] 1/(d + 2)

(Thm 3.5) ?

PoA of Single-bid
Auction O(d2 log m) [11] ? O(d2 log m)

(Thm 4.13)
O(d log m)
(Thm 4.8)

PoA of SIA O(d) [9] O(d) [9] O(d2 log m)
(Thm 4.14)

O(d log m)
(Thm 4.9)

Table 1 Comparison of hierarchies of complementarity. Note that the O(d) bound for PoA of
SIA with SD-d valuations follows from the fact that SD-d ⊆ MPH-(d + 1), which is not clearly
comparable with the PoA bound of SIA with SMW-d valuations. See corresponding references and
theorems for more accurate statements.

1.2.6 Other Related Work
Set Function Maximization: There is a rich body of research focusing on set function
maximization with complement-free functions, e.g. [22, 29, 8]. Various information/complexity
theoretical lower bounds have been established for both problems, e.g. [21, 7, 20, 18].
Efficiency of Simple Auctions: Single-bid Auction with subadditive valuations has a
PoA of O(logm) [5]. SIA with subadditive valuations has a constant PoA [12]. Posted price
auctions with XOS valuations give a constant factor approximate welfare guarantee [13].
Other Measures of Complementarity: Some other useful measures include Positive
Hypergraph (PH) [1] and Positive Lower Envelop (PLE) [9]. Eden et al. recently introduce
an extensive measure which ranges from 1 to 2m to capture the smooth transition of revenue
approximation guarantee [6].

2 Expressiveness of the New Hierarchies

2.1 Characterization of Supermodular/Superadditive Widths
We first prove Theorems 1.10 and 1.11, which characterize supermodular/superadditive
widths with d-scopic submodular/subadditive functions.

Proof of Theorem 1.10. We now show SMW(f) ≤ d iff f is d-scopic submodular. First,
suppose SMW(f) ≤ d. Consider any triple (T, S, v) such that S ⊆ T ⊆ X and v 6∈ T . To
show f is d-scopic submodular, we prove by induction on the size of T , that

f(v|T ) ≤ max
T ′:T ′⊆T,|T ′|≤d

f(v|S ∪ T ′). (8)

As the base case, when |T | ≤ d, the inequality of (8) trivially holds because if T ′ = T \ S,
then |T ′| ≤ d and f(v|S∪T ′) = f(v|T ). Inductively, assume that the statement is true for all
{V ⊆ X : |V | ≤ k} for some k ≥ d. Now consider any set T with |T | = k+ 1 > d. Because T
is not supermodular, there is T ′′ ( T , such that f(v|T ) ≤ f(v|T ′′). Applying the inductive
hypothesis on (T ′′, S, v), we have:

f(v|T ′′) ≤ max
T ′:T ′⊆T ′′, |T ′|≤d

f(v|S ∪ T ′) ≤ max
T ′:T ′⊆T, |T ′|≤d

f(v|S ∪ T ′).

Thus, f(v|T ) ≤ f(v|T ′′) ≤ maxT ′:T ′⊆T, |T ′|≤d f(v|S ∪ T ′), and we have demonstrated that f
is d-scopic submodular. For the other direction, we assume f is d-scopic submodular. There
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is no supermodular set of size larger than d, because for any S, T , v /∈ T where |T | > d,
there is some T ′ ⊆ T where |T ′| ≤ d, such that f(v|S ∪ T ) ≤ f(v|S ∪ T ′), i.e. T is not
supermodular. Therefore SMW(f) ≤ d. J

I Corollary 2.1. f is submodular iff SMW(f) = 0 (i.e., f has no supermodular set).

Proof of Theorem 1.11. We prove SAW(f) ≤ d iff f is d-scopic subadditive. Suppose
SAW(f) ≤ d. Consider S and T where S ∩ T = ∅. We show d-scopic subadditivity by
induction on the size of T . When |T | ≤ d, the statement trivially holds. Suppose d-scopic
subadditivity holds for |T | ≤ k where k ≥ d. For |T | = k+1 > d, since T is not superadditive,
there is T ′′ ( T , such that f(S|T ) ≤ f(S|T ′′). Applying inductive hypothesis on S, T ′′ gives
f(S|T ) ≤ f(S|T ′′) ≤ maxT ′:T ′⊆T, |T ′|≤d f(S|T ′), i.e. f is d-scopic subadditive.

Now assume d-scopic subadditivity. There is no superadditive set with size larger than d,
because for any S and T where |T | > d and S ∩ T = ∅, there is some T ′ ⊆ T where |T ′| ≤ d,
such that f(S|T ) ≤ f(S|T ′), i.e. T is not superadditive. J

I Corollary 2.2. f is subadditive iff SAW(f) = 0 (i.e., f has no superadditive set).

2.2 Supermodular Width vs Supermodular Degree

The following two propositions establish Theorem 1.12, showing supermodular width strictly
dominates supermodular degree.

I Proposition 2.1. For any set function f , SD(f) ≤ SMW(f).

Proof. Fix f . Let T be a supermodular set of size SMW(f), and S, v be such that f(v|T ∪
S) > f(v|T ′∪S), ∀T ′ ( T . Clearly for any t ∈ T , f(v|{t}∪ (T \{t})∪S) > f(v|(T \{t})∪S).
In other words, v →+ t for all t ∈ T , so SD(f) ≥ deg+(v) ≥ |T | = SMW(f). J

I Proposition 2.2. There is a monotone set function f with SMW(f) = 1 and SD(f) = m− 1.

Proof. Consider a symmetric8 f over a ground set X = [m], where f(S) = 0 if |S| ≤ 1,
and f(S) = 1 otherwise. Observe that for any u 6= v, 1 = f(u|{v}) > f(u|∅) = f(u) = 0,
so u →+ v, and SD(f) = |Dep+

f (u)| = m − 1. On the other hand, consider any T where
|T | ≥ 2. For any v, S, we have |S ∪ T | ≥ 2, so 0 = f(v|S ∪ T ) ≤ f(v|S). Thus, T is not
supermodular. Since there is no supermodular set with size larger than 1 and f is not
submodular, SMW(f) = 1. J

While the SAW hierarchy does not subsume the MPH hierarchy (see Proposition 2.6),
we show that there is a monotone set function in the lowest layer of the SAW hierarchy (i.e.
a subadditive function) and a notably high layer of the MPH hierarchy.

I Proposition 2.3. There is a monotone set function f with SAW(f) = 0 and MPH(f) = m/2.

Proof. The proposition is a direct corollary of Proposition L.2 in [9]. J

8 f is symmetric if f(S) depends only on |S|.
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2.3 Further Comparisons between Hierarchies
I Proposition 2.4. There is a monotone set function f with SMW(f) = 1 and SAW(f) = m/2.

Proof. Let hT (S) = I[T ⊆ S]. Consider f : 2X → R+ where X = [2t] and f(S) =∑
i∈[t] h{i,i+t}(S). Because the only complement set to any item i ∈ [t] is i+ t, SMW(f) = 1.

Note also T = {t+ 1, . . . , 2t} is a complement set to S = [t], so SAW(f) = t = m/2. J

I Proposition 2.5. There is a monotone set function f with SAW(f) = 0 and SMW(f) = m−1.

Proof. Consider a symmetric f : 2X → R+, where f(∅) = 0, f(X) = 2 and f(S) = 1
otherwise. f is subadditive so SAW(f) = 0. On the other hand, X \ {u} for any u is a
complement set to u, so SMW(f) = m− 1. J

I Proposition 2.6. There exists a monotone set function f with MPH(f) = 2 and SMW(f) =
SAW(f) = m− 1.

Proof. Let hT (S) = I[T ⊆ S]. Consider function f : 2X → R+ where f(S) =
∑
u 6=v h{u,v}(S).

Note that f is in MPH-2 since its hypergraph representation consists of only hyperedges of
size 2. Now consider any u and T = X \{u}. For any T ′ ( T , f(u|T ) = |T | > |T ′| = f(u|T ′).
Thus, T is both supermodular and superadditive, and SMW(f) = SAW(f) = m− 1. J

3 Expanding Approximation Guarantees for Classic Maximization

In this section, we focus on the connection between supermodular width and two classi-
cal optimization problems: the constrained and welfare set-function maximization. For
submodular functions, greedy algorithms provide tight approximation guarantees for both
problems [22, 29]. Here, simple modifications to these greedy algorithms can effectively
utilize the mathematical structure underlying the gap to submodularity in any set function
f . These extensions achieve approximation ratios parametrized by the supermodular width
with the same dependency as the supermodular degree provides [14, 10]. We complement
our approximation results by nearly tight information-theoretical lower bounds.

3.1 Constrained Maximization
We first focus on cardinality constrained maximization, a problem at the center of resource
allocation and network influence [24, 17, 22, 29]. Formally:

I Definition 3.1 (Cardinality Constrained Maximization). Given a monotone set function
f : 2X → R+ ∪ {0} and integer k > 0, compute a set S ⊆ X with |S| ≤ k that maximizes
f(S).

We will analyze an algorithm which performs batched greedy selection, — see Algorithm 1
below — where the batch size is a function of the supermodular width of f . In particular,
for an input set function, the batched greedy algorithm chooses a set of size not exceeding
SMW(f) + 1 which maximizes marginal gain, till all k elements are chosen.

Below, we show that this simple greedy algorithm provides strong approximation guaran-
tees in terms of the supermodular width of the input function.

I Theorem 3.2 (Extending [14]). For any monotone set function f over [m], Algorithm 1
achieves

(
1− e−1/(SMW(f)+1))-approximation for constrained maximization problem after

making O
(
mSMW(f)+1) value queries.
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ALGORITHM 1: Batched Greedy Selection for Constrained Maximization (f, k)
let S0 ← ∅; i = 0;
while |Si| < k do

Let i = i + 1; Ti ← argmaxT ′⊆[m],|T ′|≤s f(T ′|Si) where s = min{SMW(f) + 1, k − |Si−1|};
let Si ← Si−1 ∪ Ti; ;

end
return SBatchedGreedy := Si;

Proof. The proof uses similar ideas to those in [14], which are originally from [22]. Let
d = SMW(f) and (w.l.o.g.) let S∗ = [k] = {1, . . . , k} be an optimal solution.

f(S∗)− f(Si) ≤ f(S∗ ∪ Si)− f(Si) (9)

≤ f(S∗|Si) = f([k]|Si) =
∑
j∈[k]

f(j|[j − 1] ∪ Si) ≤ kmax
j
f(j|[j − 1] ∪ Si)

≤ kmax
j

max
Uj :Uj⊆[j−1], |Uj |≤d

f(j|Uj ∪ Si) (10)

≤ kmax
j

max
Uj :Uj⊆[j−1], |Uj |≤d

f({j} ∪ Uj |Si) (11)

≤ kf(Si+1|Si) (12)
= k(f(Si+1)− f(Si))

where (9) is by the monotonicity of f , (10) is by the equivalent d-scopic submodularity of
f , (11) is again by the monotonicity of f , and (12) is by the greedy property: f(Si+1|Si) =
maxS:|S|≤d+1 f(S|Si).

Now we have

f(S∗)− f(Si) ≤
k − 1
k

(f(S∗)− f(Si−1)) ≤
(
k − 1
k

)i
(f(S∗)− f(S0))

=
(
k − 1
k

)i
f(S∗) ≤ e−i/kf(S∗).

Because f is monotone, we have |Ti| = d+ 1, for all intermediate steps, i.e., i < d k
SMW(f)+1e.

Thus, Algorithm 1 takes exactly t := d k
SMW(f)+1e steps to terminate. The function value of

its output f(SBatchedGreedy) := f(St) ≥
(
1− e−1/(SMW(f)+1)) f(S∗). J

While in general, Theorem 3.2 establishes a tighter approximation guarantee for the SMW
hierarchy than that for the SD hierarchy, we note that in case of submodular degree, if the
positive dependency graph is given, the running times are often of the form poly(n) ·2O(SD(f)),
which can be significantly better than nO(SMW(f)) even if the submodular width SMW(f) is
much smaller than the submodular degree SD(f).

We now provide a nearly-matching information-theoretical lower bound, suggesting that
our approximation guarantee is essentially optimal. In the theorem below, the exponent
k0.99 can be replaced by any function of k in o(k).

I Theorem 3.3. For any d ∈ N, ε > 0, and a large enough integer k, there exists a set
function f : 2[m] → R+, with SMW(f) = d, such that any (possibly randomized) algorithm
that produces a (1/(d+ 1) + ε)-approximation (with a constant probability if randomized) for
the k-constrained maximization problem makes at least Ω

(
(m/2k)k0.99

)
value queries.
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Proof. The proof is based on similar high-level ideas to those in [20], but the detailed
construction and key properties used are different. Consider a ground set X of m elements,
which contains a subset R of r “special” elements. We will specify r below. We now construct
a “hard-to-distinguish” function fR such that for any S ⊆ X, fR(S) = gR(|S|, I[R ⊆ S]) for
a function gR : N × {0, 1} → R. In other words, fR depends on the cardinality of S and
whether or not S completely contains R. For discussion below, let D = d+ 1, and let c1 and
c2 be two integers to be determined later. We set |R| = r = c1 ·D + 1. We define fR as
follows:

fR(S) =



b|S|/Dc, |S| ≤ c1D

b(|S| − c1D)/Dc+ c1, c1D < |S| ≤ (c1 + c2)D, R 6⊆ S
|S| − c1(D − 1), c1D < |S| ≤ (c1 + c2)D, R ⊆ S
|S| − (c1 + c2)(D − 1), (c1 + c2)D < |S| ≤ (c1 + c2)D + c2(D − 1), R 6⊆ S
c1 + c2D, (c1 + c2)D < |S| ≤ (c1 + c2)D + c2(D − 1), R ⊆ S
c1 + c2D, (c1 + c2)D + c2(D − 1) < |S| ≤ m

.

We will use the following three properties of fR:
Whenever |S| mod D = D − 1, for any v /∈ S, fR(v|S) = 1. Consequently, SMW(fR) ≤
d, ∀R ⊆ X with |R| = r. In fact, this property ensures that fR(v|S ∪ T ′) ≥ fR(v|S ∪ T ),
for any v ∈ X, S, T ⊆ X with |T | ≥ D = d + 1, and any proper subset T ′ of T with
|S ∪ T ′| mod D = D − 1. Note that such a subset T ′ always exists.
max {fR(S) | |S| = (c1 + c2)D} = c1 + c2D. The maximum is achieved whenever R ⊆ S.
For any S ⊆ X satisfying |S| = c1 + c2D and R 6⊆ S, fR(S) = c1 + c2.

First, consider k = (c1 + c2)D. We have, for any S with |S| = k:

fR(S) =
{
c1 + c2D if R ⊆ S
c1 + c2 otherwise.

Suppose c1 = o(c2). To obtain an approximation ratio better than (c1 +c2)/(c1 +c2D)→ 1/D
for k-constrained maximization of fR, any algorithm must find a set with size k that contains
all special elements in R.

For our lower bound, we will analyze the following slightly relaxed variation of the problem:
Let K = (c1 + c2)D + c2(D − 1)− 1 > k. Find a set of size K which contains R as a subset.
Note that K is the largest number where fR(S) — for |S| = K — depends on whether or not
S contains R. In this case, note that the algorithm has no incentive to make queries of fR(S)
for |S| < K or |S| > K, because the former reveals no more information than querying any
of its supersets of size K, and the latter simply does not give any information.

We first focus on the query complexity of any deterministic optimization algorithm.
Assume the algorithm makes T queries regarding S1, . . . , ST , where |Si| = K,∀i ∈ [T ], which
are deterministically chosen when the algorithm is fixed. We now establish a condition on T
such that there is a subset R such that R 6⊂ Si,∀i ∈ [T ]. Consider the distribution where the
r elements are selected uniformly at random. Let Ci be the event that Si contains R. Then,

Pr[C1 ∪ · · · ∪ CT ] ≤
∑
i

Pr[Ci] <
∑
i

(
|Si|
m

)r
= T

(
(c1 + c2)D + (D − 1)c2 − 1

m

)c1D+1
≤ T

(
2c2D

m

)c1D

.

So, if T ≤ [m/(2c2D)]c1D then Pr[C1 ∪ · · · ∪ CT ] < 1. In other words, for any selections
S1, . . . , ST ⊆ X with |Si| = K, there is a subset R, such that R 6⊂ Si,∀i ∈ [T ], implying
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ALGORITHM 2: Batched Greedy for Welfare Maximization (f1, . . . , fn)
for j ∈ [n] do

let Xj,0 ← ∅;
end
Let d = maxj{SMW(fj)}; let i = 0;
while ∪jXj,i 6= X do

Let i = i + 1; let
(Ti, j∗i ) = argmax(T ′,j): |T ′|≤s,j∈[n] fj (T ′|Xj,i−1) where s = min

{
d + 1, n−

∑
j
|Xj,i−1|

}
;

Let Xj∗
i

,i ← Xj∗
i

,i−1 ∪ Ti;
for j ∈ [n] \ {j∗i } do

let Xj,i ← Xj,i−1;
end
return XBatchedGreedy

j := Xj,i for every agent j;
end

the deterministic algorithm with querying set S1, . . . , ST will not find a good approximation
to fR. Let c2 = 1

2c
1.01
1 , so k0.99 = ((c1 + c2)D)0.99 ≤ (c1.01

1 D)0.99 ≤ c1D. We have
(m/2c2D)c1D ≥ (m/2k)k

0.99
. Thus, we conclude that any (1/(d + 1) + ε)-approximation

deterministic algorithm must make at least (m/2k)k0.99 value queries.
Now consider a randomized optimization algorithm. Conditioned on the random bits

of the algorithm, the above argument still works. Taking expectation of the probability
of success, we see that the overall probability of success is at most T (2k/m)k0.99 . Thus, a
constant probability of success requires T = Ω

(
(m/2k)k0.99

)
. J

3.2 Welfare Maximization
We now turn our attention to welfare maximization. Formally:

I Definition 3.4 (Welfare Maximization). Given n monotone set functions f1, . . . , fn over
2[m], compute n disjoint sets X1, . . . , Xn that maximizes

∑
i∈[n] fi(Xi).

Because f1, . . . , fn are monotone, the optimal solution to welfare maximization is a
partition of X = [m]. Thus, welfare maximization can also be viewed as a generalized
clustering or multiway partitioning problem.

We will analyze the following greedy algorithm — see Algorithm 2 below — which
repeatedly assigns groups of elements to agents. At each step, the algorithm picks a set
of size not exceeding maxi SMW(fi) + 1 — as opposed to one — that provides the largest
possible marginal gain to some agent and assigns the set to that agent.

We now prove the following approximation guarantee in terms of supermodular width.

I Theorem 3.5 (Extending [10]). For any collection of monotone set functions f1, . . . , fn over
X = [m], Algorithm 2 achieves 1

2+maxi{SMW(fi)} -approximation for welfare maximization,
after making O

(
nmmaxi{SMW(fi)}+1) value queries.

The proof uses similar ideas to those in [10], which are originally from [16]. Due to space
limit, we relegate the proof to the full version of the paper [4].

To show that our algorithm is nearly optimal, we prove the following information-
theoretical lower bound: Similar to Theorem 3.3, the exponent (m/n)0.99 in the theorem
below, can be replaced by any function of m/n in o(m/n).
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I Theorem 3.6. For any d ∈ N, ε > 0, there is a family of function f1, . . . , fn : 2[m] → R+

with SMW(fi) = d,∀i ∈ [n], such that any (possibly randomized) algorithm that produces
a (1/(d + 1) + ε)-approximation (with constant probability if randomized) for the n-agent
welfare maximization problem makes at least Ω

(
(n/2D)(m/n)0.99

)
value queries.

The proof follows from a similar argument as the proof for Theorem 3.3. Due to space limit,
we relegate the proof to the full version of the paper.

4 Efficiency of Simple Auctions

In this section, we study the connection between the SAW hierarchy and efficiency of auctions.
We will draw extensively on previous work in this area, particularly on the characterization
based on the CH hierarchy — see definition below — which is arguably the most simple class
of set functions with complementarity.

I Definition 4.1 (d-Constraint Homogeneous Functions [11]). A set function f over ground
set X is d-constraint homogeneous (CH-d) if there exists a value f̂ , and disjoint sets
Q1, . . . , Qh ⊆ X with |Qi| ≤ d,∀i ∈ [h], such that (1) f(Qi) = f̂ · |Qi|,∀i ∈ [h], and
(2) the value of every set S ⊆ [m] is simply the sum of values of contained Qi’s, i.e.,
f(S) =

∑
Qi⊆S f(Qi) = f̂ ·

∑
Qi⊆S |Qi|.

We will show that previous characterization of auction efficiency [11] can be approximately
extended from the CH hierarchy to the SAW hierarchy.

4.1 Backgrounds: Related Definitions and Results
We first restate a useful definition and a lemma for analyzing the efficiency of auction
mechanisms.

I Definition 4.2 ([27]). An auction mechanismM is (λ, µ)-smooth for a class of valuations
F = ×iFi if for any valuation profile f ∈ F , there exists a (possibly randomized) action
profile a∗i (f) such that for every action profile a:∑

i

Ea′
i
∼a∗

i
(f)[ui(a′i, a−i; fi)] ≥ λ ·OPT(f)− µ

∑
i

Pi(a),

where ui(a′i; fi) is the utility of i given action profile (a′i, a−i), OPT(f) is the optimum social
welfare given valuation profile f , and Pi(a) is the payment of i given action profile a.

I Lemma 4.3 ([27]). If a mechanism is (λ, µ)-smooth then the price of anarchy w.r.t. coarse
correlated equilibria is at most max{1, µ}/λ.

For Single-bid Auction and Simultaneous Item First Price Auction (SIA), we will derive
our results from the following results for CH-d and MPH-d.

I Theorem 4.4 (Smoothness of Single-bid Auction with CH-d Valuations [11]). Single-bid
Auction is a ((1− e−d)/d, 1)-smooth mechanism when agents have CH-d valuations. Con-
sequently, Single-bid Auction has a PoA of (1− e−d)/d with CH-d valuations w.r.t. coarse
correlated equilibria.

I Theorem 4.5 (Smoothness of SIA with MPH-d Valuations [9]). For SIA, when bidders have
MPH-d valuations, both the correlated price of anarchy and the Bayes-Nash price of anarchy
are at most 2d. The bound follows from a smoothness argument.
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A key concept to extend these results to other valuation classes is the following notion of
pointwise approximation defined in [5].

I Definition 4.6 (Pointwise Approximation [5]). A class of set functions F over ground set X
is pointwise β-approximated by another class F ′ of set functions over X if ∀f ∈ F , S ⊆ X,
∃f ′S ∈ F ′ such that (1) βf ′S(S) ≥ f(S) and (2) ∀T ⊆ X, f ′S(T ) ≤ f(T ).

For example:
I Proposition 4.1 ([11]). The class max(F) is pointwise 1-approximated by the class F .

We say a function f ′ : 2X → R pointwise β-approximates f : 2X → R (at X), if (1)
βf ′(X) ≥ f(X), and (2) ∀T ⊆ X, f ′(T ) ≤ f(T ).

The following lemma of [5] provides a way to translate PoA bounds between classes via
pointwise approximation.

I Lemma 4.7 (Extension Lemma [5]). If a mechanism for a combinatorial auction setting
is (λ, µ)-smooth for the class of set functions F ′, and F is pointwise β-approximated by F ′,
then it is

(
λ
β , µ

)
-smooth for the class F . And as a result, if a mechanism for a combinatorial

auction setting has a PoA of α given by a smoothness argument for the class F ′, and F is
pointwise β-approximated by F ′, then it has a PoA of αβ for the class F .

4.2 Efficiency of Simple Auctions Parametrized by SAW
Applying Lemma 4.7, we are able to translate Theorems 4.4 and 4.5 to the SAW hierarchy.

I Theorem 4.8 (Efficiency of Single-bid Auction with SAW-d Valuations). When agents have
valuations f1, . . . , fn ∈ max(SAW-d), Single-bid Auction has a price of anarchy of at most

2d
1−e−2d ·Hm

2d
w.r.t. coarse correlated equilibria.

I Theorem 4.9 (Efficiency of SIA with SAW-d Valuations). When agents have valuations
f1, . . . , fn ∈ max(SAW-d), SIA has a price of anarchy of at most 8d · Hm

2d
w.r.t. coarse

correlated equilibria.

Formally, Theorems 4.8 and 4.9 follow from Theorems 4.4 and 4.5 respectively, with the
help of Lemma 4.7, Proposition 4.1, and the technical lemma (Lemma 4.10) that we will
establish below, showing that for any d ∈ N, functions in SAW-d can be approximated by
CH-2d functions. In particular, Lemma 4.10 establishes the approximation of SAW hierarchy
by CH hierarchy with a loss of factor O(logm).

I Lemma 4.10 (Pointwise Approximation of SAW Hierarchy by CH-Hierarchy). For any d ∈ N,
SAW-d is pointwise 2Hm

2d
-approximated by CH-2d, where Hi =

∑
k∈[i]

1
k is the i-th harmonic

number.

Proof. Our proof is inspired by the constructions of [5] and [11].
For any f ∈ SAW-d over X = [m], we first apply the following greedy construction to

obtain a partition Q = {Qi}i∈[q] of [m] into sets of size not exceeding 2d: At step i, we select
a new set Qi ⊆ [m] \ (Q1 ∪ · · · ∪Qi−1), with maximum f(Qi), among all sets of size at most
2d.

We first prove by contradiction that there exists a function g in CH-2d which 2Hm
2d
-

approximates f at [m]. That is, (1) 2Hm
2d
g([m]) ≥ f([m]) and (2) ∀T ⊆ [m], g(T ) ≤ f(T ).

Suppose this statement is not true. Let

hQ(T ) = f([m])
β · | ∪i Qi|

∑
Qi⊆T

|Qi|.
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Note that hQ ∈ CH-2d because |Qi| ≤ 2d,∀Qi ∈ Q. We now construct a series of functions
based on hQ, and prove that for any β > 0, if there is no g among these functions that is a
β-approximation of f at [m] — that is, there is no g such that (1) βg([m]) ≥ f([m]) and (2)
∀T ⊆ [m], g(T ) ≤ f(T ), (below we will refer to this condition as Assumption (*)) — then
β < 2Hm

2d
.

First consider hQ. Note that βhQ([m]) = β f([m])
β ≥ f([m]), because Q is a partition of

[m]. Assumption (*) then implies there is a T1 such that hQ(T1) > f(T1). W.l.o.g. assume
T1 is a union of sets from Q (such T1 exists because f is monotone).

Let S1 = [m]. We now iteratively define Si = Si−1 \ Ti−1, and construct its associated
Ti. The construction maintains the following invariant: Both Si and Ti are unions of sets
from Q. The former follows directly from the iterative property that Si−1 and Ti−1 are both
unions of sets from Q. Our construction below will ensure the latter.

Let QSi = {Q ∈ Q | Q ⊆ Si}. Let

hQSi
= f([m])
β · | ∪j:Qj∈QSi

Qj |
∑

j:Qj∈QSi

|Qj |.

Again, hQSi
∈ CH-2d, and hQSi

([m]) = f([m])
β . Assumption (*) then implies there is a Ti

such that hQSi
(Ti) > f(Ti). Again, w.l.o.g. assume Ti is a union of sets from Q (such Ti

exists because f is monotone). This iterative process terminates, producing a partition
{Ti}i∈[t] of [m], which satisfies:∑

i

f(Ti) <
∑
i

hQSi
(Ti) = f([m])

β

∑
i

|Ti|
|Si|
≤ f([m])

β

∑
i∈[t]

1
i
≤ f([m])

β
Hm

2d
.

We now show that
∑
i f(Ti) ≥ 1

2f([m]). Recall that each member in partition {Ti}i is
a unions of sets from Q. We renumber {Ti}i, in a way that for any i < j, there is some
Ti ⊇ Qk ∈ Q, such that for any Tj ⊇ Ql ∈ Q, k < l. That is, the smallest index k where
Qk ∈ Ti is smaller than the smallest index l where Ql ∈ Tj , as long as i < j.

Since (T1, . . . , Tt) is a partition of [m], we have:

f([m]) =
∑
i

f(Ti|Ti+1 ∪ · · · ∪ Tt)

≤
∑
i

max{f(Ti|Ui) | Ui ⊆ Ti+1 ∪ · · · ∪ Tt, |Ui| ≤ d} (13)

≤
∑
i

max{f(Ti ∪ Ui) | Ui ⊆ Ti+1 ∪ · · · ∪ Tt, |Ui| ≤ d} (14)

=
∑
i

max{(f(Ui|Ti) + f(Ti)) | Ui ⊆ Ti+1 ∪ · · · ∪ Tt, |Ui| ≤ d}

≤
∑
i

max{(f(Ui|Vi) + f(Ti)) | Ui ⊆ Ti+1 ∪ · · · ∪ Tt, |Ui| ≤ d, Vi ⊆ Ti, |Vi| ≤ d}

(15)

≤
∑
i

max{(f(Ui ∪ Vi) + f(Ti)) | Ui ⊆ Ti+1 ∪ · · · ∪ Tt, |Ui| ≤ d, Vi ⊆ Ti, |Vi| ≤ d}

(16)

≤
∑
i

(f(Qki
) + f(Ti)), where ki = min{k | Ti ⊇ Qk ∈ Q} (17)

≤
∑
i

2f(Ti), (18)
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where (13) and (15) follow from d-scopic subadditivity of f , (14), (16) and (18) follow from
monotonicity of f , and (17) holds because, according to the construction of {Ql}l, Qki

maximizes f among all sets of size 2d contained in Qki
∪ · · · ∪ Qq ⊇ Ti ∪ · · · ∪ Tt, and in

particular Ui ∪ Vi ⊆ Ti ∪ · · · ∪ Tt.
Consequently, it follows from

∑
i f(Ti) ≥ 1

2f([m]) that:

Hm
2d
f([m])
β

>
∑
i

f(Ti) ≥
1
2f([m])⇒ β < 2Hm

2d
.

Thus, Assumption (*) with β ≥ 2Hm
2d

leads to a contradiction. Therefore, we have established
that there exists a CH-2d function g such that (1) g([m]) ≥ 2Hm

2d
f([m]) and (2) ∀T ⊆ [m],

g(T ) ≤ f(T ).
As in [11], the above proof can be simply extended to prove for any S ⊆ X, there exists

a CH-2d function g such that (1) g(S) ≥ 2Hm
2d
f([m]) and (2) ∀T ⊆ [m], g(T ) ≤ f(T ).

Essentially, we restrict the function f to 2S , apply the argument above, and then span the
obtained function back to 2X .

Therefore, SAW-d is pointwise 2Hm
2d
-approximated by CH-2d. J

We further analyze previously known hard instances to both auctions, and show that
they provide almost matching lower bounds to the above two efficiency upper bounds.

I Theorem 4.11. There is an instance with SAW-d valuations for any d, where the PoS of
Single-bid Auction is at least d+ 1− ε/d for any ε > 0.

I Theorem 4.12. There is an instance with SAW-d valuations for any d, where the PoA of
SIA is at least d+ 1/(d+ 1).

We defer the proofs to the full version of the paper.

4.3 Efficiency of Simple Auctions Parametrized by SMW
As a byproduct of our efficiency results for the SAW hierarchy, we prove similar, but slightly
weaker, results for the SMW hierarchy. We note that these bounds extend a central result in
[11], which states that when agents have valuations in max(SD-d ∩ SUPADD), Single-bid
Auction has a PoA of O(d2 logm).

I Theorem 4.13 (Extending [11]). When agents have valuations f1, . . . , fn ∈ max(SMW-d∩
SUPADD), Single-bid Auction has a price of anarchy of at most (d+1)2

1−e−(d+1) ·H m
d+1

w.r.t. coarse
correlated equilibria.

I Theorem 4.14. When agents have valuations f1, . . . , fn ∈ max(SMW-d∩ SUPADD), SIA
has a price of anarchy of at most 2(d+ 1)2 ·H m

d+1
w.r.t. coarse correlated equilibria.

Due to space limit, we relegate the proofs to the full version of the paper.

5 Remarks

5.1 Further Comparative Analysis
As observed by Eden et al. [6], the right measure of complementarity often varies from
application to application. This seems to be true even with the supermodular vs superadditive
widths. We note that while the SD and SMW hierarchies give nontrivial bounds on the PoA

ITCS 2019
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Figure 1 Relationship between hierarchies.

of simple auctions, SAW hierarchy seems to capture the intrinsic property needed by efficiency
guarantees for simple auctions. It provides tighter characterization of PoA with a gap of
logm (instead of d logm) between upper and lower bounds. On the other hand, while SMW
hierarchy captures the intrinsic property needed by the constrained/welfare maximization, it
remains open whether a small superadditive width provides any approximation guarantee for
the two optimization problems.

The MPH hierarchy takes a different approach from ours — it relies on a syntactic
definition which provides elegant and intuitive structures. In contrast, both SMW and SAW
hierarchies — like the SD hierarchy before it — are built on concrete natural concepts of
witnesses and semantic intuition of complementarity. In the current definition, the MPH
hierarchy is not an extension to submodularity or subadditivity. Rather — as shown in
[9] — MPH can be considered as an extension to the fractionally subadditive (or XOS)
class proposed in [19]. We therefore consider SMW, MPH and SAW parallel measures of
complementarity, just like submodularity, fractional subadditivity and subadditivity in the
complement-free case. One key difference is that the three hierarchies seem to diverge at
higher levels of complementarity, as opposed to the fact that submodular functions are all
fractionally subadditive, and fractionally subadditive functions are all subadditive. This
phenomenon provides further evidence that the three hierarchies are likely to capture different
aspects of complementarity. See Figure 1 for a comparison.

We also note that all upper bounds supported by our hierarchies are accompanied by
almost matching lower bounds, which we consider as a justification of our definitions — they
manage to categorize set functions roughly according to their “hardness” in different settings
(i.e. optimization for SMW and efficiency for SAW). In contrast, while the less inclusive
supermodular degree hierarchy supports a number of upper bounds, to our knowledge, none
of those results are proven tight.

5.2 Final Remarks and Open Problems

Our SMW and SAW hierarchies may be applied to other problem settings. For example,
for the online secretary problem based on supermodular degree [15], we believe that with a
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slight modification of the algorithms and the analysis, we could replace supermodular degree
with supermodular width as well for this problem; also, SMW-d functions are efficiently
PAC-learnable under product distributions [30]. It may be possible to look into other venues
where SMW and SAW hierarchies are applicable.

There are also a few technical questions to be answered:
Does MPH-(d+ 1) — which subsumes SD-d — include all SMW-d functions?
Can we improve the SAW-based efficiency characterization of Single-bid Auction and SIA
to O(d)?
Can the MPH hierarchy be used to characterize constrained set function maximization?
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