An Issue in the Martingale Analysis of
the Influence Maximization Algorithm IMM

Wei Chen

Microsoft Research, Beijing, China
weic@microsoft.com

Abstract. This paper explains a subtle issue in the martingale analysis
of the IMM algorithm, a state-of-the-art influence maximization algo-
rithm. Two workarounds are proposed to fix the issue, both requiring
minor changes on the algorithm and incurring a slight penalty on the
running time of the algorithm.

1 Introduction

Tang et al. design a scalable influence maximization algorithm IMM (Influence
Maximization with Martingales) in [17], and apply martingale inequalities to the
analysis. In this paper, we describe a subtle issue in their martingale-based anal-
ysis. The consequence is that the current proof showing that the IMM algorithm
guarantees (1 — 1/e —) approximation with high probability is technically in-
correct. We provide a detailed explanation about the issue, and further propose
two possible workarounds to address the issue, but both workarounds require
minor changes to the algorithm with a slight penalty on running time. Xiaokui
Xiao, one of the authors of [17], has acknowledged the issue pointed out in this

paper.

1.1 Background and Related Work

Influence maximization is the problem of given a social network G = (V, E),
a stochastic diffusion model with parameters on the network, and a budget of
k seeds, finding the optimal k£ seeds S C V such that the influence spread of
the seeds S, denoted as o(S) and defined as the expected number of nodes
activated based on diffusion model starting from S, is maximized. The influ-
ence maximization is originally formulated as a discrete optimization prob-
lem by Kempe et al. [13], and has been extensively studied in the literature
(cf. [3] for a survey). One important direction is scalable influence maximiza-
tion [6,5,7,10,12,1,9,18,17,15], which focuses on improving the efficiency of run-
ning influence maximization algorithms on large-scale networks. The early stud-
ies on this direction are heuristics based on graph algorithms [6,5,7,10,12] or
sketch-based algorithms [9]. Borgs et al. propose the novel reverse influence
sampling (RIS) approach, which achieves theoretical guarantees on both the ap-
proximation ratio and near-linear expected running time [1]. The RIS approach

2 Wei Chen

is further improved in [18,17,15] to achieve scalable performance on networks
with billions of nodes and edges. The IMM algorithm we discuss in this pa-
per is from [17], which uses the martingales to improve the performance, and
is considered as one of the state-of-the-art influence maximization algorithms.
However, we show in this paper that the algorithm has a subtle issue that affects
its correctness. The IMM algorithm has been used in later studies as a compo-
nent (e.g. [19,4,16]), so it is worth to point out the issue and the workarounds
for the correct usage of the IMM algorithm. The SSA/D-SSA algorithm of [15]
is another state-of-the-art influence maximization algorithm, but the original
publication also contains several analytical issues, which have been pointed out
in [11].

2 Description of the Issue

2.1 Brief Description of the RIS Approach

At the core of the RIS approach is the concept of reverse-reachable (RR) sets.
Given a network G = (V, E) and a diffusion model, an RR set R C V' is sampled
by first randomly selecting a node v € V' and then reverse simulating the diffusion
process and adding all nodes reached by the reverse simulation into R. Such
reverse simulation can be carried out efficiently for a large class of diffusion
models called the triggering model (see [13,17] for model details). Intuitively,
each node u € R if acting as a seed would activate v in the corresponding
forward propagation, and based on this intuition the key relationship o(S) =
n - E[I{S N R # 0}] is established, where ¢ (S) is the influence spread, n = |V],
and I is the indicator function. The RIS approach is to collect enough number
of RR sets R = {R1, Rs, ..., Ry}, so that ¢(S) can be approximated by 6(5) =
n-Zle I{R;NS # (0}/6. We call R;NS # 0 as S covering R;. Thus, the original
influence maximization problem is converted to finding k seeds S that can cover
the most number of RR sets in R. This is a k-max coverage problem, and a
greedy algorithm (referred to as the NodeSelection procedure in IMM [17]) can
be applied to solve it with a 1 — 1/e approximation ratio.

Implementations of the RIS approach differ in their estimation of the number
of RR sets needed. IMM algorithm [17] iteratively doubles the number of RR
sets until it obtains a reasonable estimate LB as the lower bound of the optimal
solution OPT, and then apply a formula § = A*/LB, where * is a constant
dependent on the problem instance, to get the final number of RR sets needed
(See Fig. 1 for the reprint of the Sampling procedure of IMM).

2.2 Summary of the Issue

The main issue of the IMM analysis in [17] is at its correctness claim of Theorem
4, which shows that the output of IMM gives a 1 — 1/e — & approximate solution
with probability at least 1 —1/n’. The proof of this part is very brief, containing
only one sentence as excerpted below, which combines the result from Theorem

An Issue in the Martingale Analysis of IMM 3

1 and Theorem 2.

“By combining Theorems 1 and 2, we obtain that Algorithm 8 returns a
(1 —1/e — ¢)-approzimate solution with at least 1 — 1/n’ (probability).”

At the high level, Theorem 1 claims that if NodeSelection procedure is fed
with an RR set sequence of length at least § > A*/OPT, then with probability at
least 1—1/n*, NodeSelection outputs a seed set that is a 1 —1/e — ¢ approximate
solution. Then Theorem 2 claims that the Sampling procedure outputs an RR
set sequence of length at least */ OPT with probability at least 1—1/n’. It may
appear that we could use a simple union bound to combine the two theorems
to show that IMM achieves the 1 — 1/e — ¢ approximation with probability at
least 1 — 2/n’. Finally, we just need to reset £ = £ + log2/logn to change the
probability from 1 —2/n’ to 1 — 1/n*.!

However, with a closer inspection, Theorem 1 is true only for each fixed
length 6 > */OPT, but the Sampling procedure returns an RR set sequence
of random length. Henceforth, to make the distinction explicit, we use 6 to
denote the random length returned by the Sampling procedure. Technically, this
fisa stopping time, a concept frequently used in martingale processes [14]. Thus,
what Theorem 2 actually claims is Pr{f > */OPT} > 1 — 1/n. Due to this
discrepancy between fixed length and random length in RR set sequences, we
cannot directly combine Theorem 1 and Theorem 2 to obtain Theorem 4 as in
the paper. This is the main issue of the analysis in the IMM paper [17].

In the next two subsections, we will provide more detailed discussion to
illustrate the above issue. In Section 2.3, we first make it explicit what is the
exact probability space we use for the analysis of the IMM algorithm. Then in
Section 2.4, we go through lemma by lemma on the original analysis to make the
distinction between the fixed length # and the random stopping time 0 explicit,
so that the issue summarized above is more clearly illustrated.

2.3 Treatment on the Probability Space

For the following discussion, we will frequently refer to certain details in the
Sampling procedure of IMM, namely Algorithm 2 of IMM in [17] (see Fig. 1).
To clearly understand the random stopping time 9~, we first clarify the prob-
ability space upon which 6 is defined. We first note that from the algorithm, the
maximum possible number of RR sets the algorithm could generate is [A*] (de-
fined in Eq.(6)). Thus we view the probability space as the space of all [A*] RR
set sequences Ry, R, ..., Ry\-), where each R; is generated i.i.d. We denote this
space as {2. Then in one run of the IMM algorithm, one such RR set sequence
Ry is drawn from the probability space (2. In the i-th iteration of the Sampling
procedure, the algorithm gets the prefix of the first 6; (6; is defined in line 5 of
Algorithm 2) RR sets in the above sequence Ry, and based on certain condition

! The original paper has a typo here. It says to reset £ to £(1 + log2/logn), but this
is not necessary. Only resetting ¢ to ¢ 4+ log2/logn is enough.

4 Wei Chen

Fig. 1. Algorithm 2 (Sampling procedure) of IMM as in the original paper [17].

Algorithm 2: Sampling (G, k, &, £)

1 Initialize a set R = 0 and an integer LB = 1;

2 Lete! =2 ¢;

3 fori=1rlogon—1do

4 Let = n/2%;

3 Let 8; = X' /z, where A’ is as defined in Equation 9;
6 while [R| < 0; do

7 Select a node v from G uniformly at random;

8 Generate an RR set for v, and insert it into R;

9 Let S; = NodeSelection(R):

10 ifn-Fr(S;) > (1+¢'): xthen
11 LB=n-Fr(S))/(1+<):
12 break;

13 Let @ = A* /LB, where A* is as defined in Equation 6;
14 while |R| < ¢ do

15 Select a node v from G uniformly at random;
16 Generate an RR set for v, and insert it into R;
17 return R

about this prefix the algorithm decides whether to continue the iteration or stop;
and when it stops, it determines the final number 6 = */LB of RR sets needed,
and retrieves the prefix of 8 RR sets from Ry. Note that 6 here is the 6 used
in line 13 of Algorithm 2, but we explicitly use 6 to denote that it is a random
variable (because LB is a random variable), and its value is determined by the
prefix of RR sets in Ry, Ro,.... In contrast, for a fixed 6 such as the 6 used in
Theorem 1, it simply corresponds to the 8 RR sets in the sequence sample Ry.
For convenience, we use R[] to denote the prefix of Ry of fixed length 6, and
£2[0] to be the subspace of all RR set sequences of length 6. Note that we use {2
and 2[6] to refer to both the set of sequences and their distribution.

2.4 Detailed Discussion by Revisiting All Lemmas and Theorems

Hopefully we clarify the distinction between the fixed-length sequence R;, Ro,
..., Ry and the actual sequence R1, Rs, ..., Rj generated by the sampling phase
with a random stopping time 6. We now revisit the technical lemmas and the
theorems of the paper to explicitly distinguish between the usage of fixed length
6 and random length 6.

First and foremost, the martingale inequalities summarized in Corollaries 1
and 2 should only work for a fixed constant 8, not for a random stopping time,
because they come from standard martingale inequalities as summarized in [§],
which deals with martingales of fixed length. However, the authors introduce
these inequalities in the context of RR set sequence generated by the Sampling
procedure (see the first sentence in Section 3.1 of [17]). As we explained, the
RR set sequence generated by the Sampling procedure has random length €, so

An Issue in the Martingale Analysis of IMM 5

Corollaries 1 and 2 should not be applied to such random length sequences. This
is the source of confusion leading to the incorrectness of the proof of Theorem
4. Henceforth, we should clearly remember that Corollaries 1 and 2 only work
for fixed length 6.

Next, for Lemmas 3 and 4, the 6 there should refer to a fixed number, because
their proofs rely on the martingale inequalities in Corollary 1 and 2, which are
correct only for a fixed 6.

For Theorem 1, same as discussed above, if we view 0 as a fixed constant, then
Theorem 1 is correct. We need to remark here that Theorem 1 talks about the
node selection phase, so its exact meaning is that if we feed the NodeSelection
procedure with an RR set sequence of fixed length 6, randomly drawn from the
space {2[0], then the node selection phase would return an approximate solution.
Therefore, it is not applicable when the NodeSelection procedure is fed with the
RR set sequence generated from the Sampling procedure, since this sequence has
a random length and is not drawn from the space £2[0] for a fixed 6.

Lemma 5 and Corollary 3 are still correct, since they are not related to the
application of martingale inequality. For Lemmas 6 and 7, again they are correct
when 0 is a fixed number satisfying inequality (8).

For Theorem 2, as already mentioned in Section 2.2, it is about the RR
set sequence R = {R1, Ry, ..., R;} generated by the Sampling procedure, with
random length 6, and its technical claim is

~ A 1

where the probability is taken from the probability space {2, the random sample
Ro of which determines the actual random length of output §. The proof of
Theorem 2 uses Lemma 6 and Lemma 7. When it uses Lemma 6 and Lemma 7,
it is in the context of the Sampling procedure, and the € used for Lemma 6 and
Lemma 7 in this context is exactly the 6; = X' /z; defined in line 5 of algorithm,
where) is a constant defined in Eq.(9), and z; = n/2¢, and i refers to the i-th
iteration in the Sampling procedure. Therefore, #; indeed is a constant that does
not depend on the generated RR sets, and the applications of Lemmas 6 and
7 is in general appropriate. However, the original proof of Theorem 2 is brief,
and there is a subtle point that may not be clear from the proof, and thus some
extra clarification is deserved here.

The subtlety is that, Lemmas 6 and 7 are correct when the NodeSelection
procedure is fed with a fixed length RR set sequence sampled from (2[6]. However,
in the i-th iteration of the Sampling procedure, the actual RR set sequence fed
into NodeSelection is not sampled from the space §2[6;]. This is because the fact
that the algorithm enters the i-th iteration implies that the previous RR set
sequence failed the coverage condition check in line 10 in the previous iterations,
and thus the actual sequence fed into NodeSelection in the i-th iteration is a
biased sample. This subtlety makes the rigorous proof of Theorem 2 longer,
but does not invalidate the Theorem. Intuitively, for a random sample Rq[6;]
drawn from £2[6;], even if Ry[f;] would not make the algorithm survive to the

6 Wei Chen

i-th iteration, we could still treat it as if it is fed to NodeSelection in the i-th
iteration, and use Lemmas 6 and 7 to argue that some event & only occurs
with a small probability d3. Then the event that both algorithm enters the i-th
iteration and &; occurs must be also smaller than d3. For completeness, in [2], we
provide a more rigorous technical proof of Theorem 2 applying the above idea.

Continuing to Lemmas 8 and 9, similar to Lemma 6 and Lemma 7, it is
correct when we treat 6 as a constant. For Lemma 9, it uses Lemma 8, and if we
treat the application of Lemma 8 in the same way as we treat the application of
Lemmas 6 and 7 in the proof of Theorem 2, then Lemma 9 is correct. Lemma
10 and Theorem 3 are independent of the application of martingale inequalities
and are correct.

Finally, we investigate the proof of Theorem 4, in particular the part on the
correctness of the IMM algorithm. As outlined in Section 2.2, a direct combi-
nation of Theorem 1 and Theorem 2 is problematic. We now discuss this point
with more technical details.

For Theorem 1, based on our above discussion, it works for a fixed value of 6.
More precisely, when we use the setting discussed after Theorem 1, what it really
says is that, for all fixed § > */OPT, if we use a random sample Ry[6] drawn
from distribution §2[f], then when we feed the NodeSelection procedure with
Ro[f], the probability that NodeSelection returns a seed set that isa (1—1/e—¢)
approximate solution is at least 1 — 1/nf. To make it more explicit, let S;(R)
be the seed set returned by NodeSelection under input RR set sequence R. Let
Y (S) be an indicator, and it is 1 when seed set S is a (1 —1/e — ¢) approximate
solution, and it is 0 otherwise. Then, what Theorem 1 says is,

1
VO > */OPT P Y(S;(Rol0]) =1} >1— —. 2
> XJOPT, | P {Y(S{Rolo)) =1} > 1- = 2)

Next, as discussed above, what Theorem 2 really says is given in Eq. (1).
Also to make it more precise and use the same base sample from the probability
space, let Ry be the sample drawn from 2, and let R(Ro) = {Ry1, Rz, ..., R;} be
the sequence generated by the Sampling procedure, and 5(720) denote its length.
Thus by definition, R(Ry) is the first #(Ro) RR sets of Ro. Then Theorem 2
(and Eq. (1)) is restated as

~ A* 1
P 0(Ry) > >1-—. 3
Rofn{ (O)_OPT}_ nt ®)
For Theorem 4, we want to bound the probability that using the Sampling
procedure output R(Rg) to feed into NodeSelection, its output fails to provide
the 1 — 1/e — e approximation ratio, that is,

Pr (Y (SHR(Ro)) = 0} < . (4)

The following derivation further separates the left-hand side of Eq. (4) into
two parts by the union bound:

An Issue in the Martingale Analysis of IMM 7

P (Y (Si(R(R0)) =0

*

OPT

*

A
OPT

. _
< RE’NYQ {Q(Ro) <

< Pr {é(RO) <X } + P {é(RO) > X V(S R(R))) = o}

v (0Ro) = G AY(SERR) =0) |

Rom~i2 OPT OPT
1 ~ A " _
< Lo e fimn) > 2o A visiRmRO) =0},)

where the last inequality is by Theorem 2 (Eq. (3)). To continue, we want to
bound

Pr, {0R0) 2 G AY(SE(RRa)) =0} < 1 (6)

Ro~12 OPT — nt

However, the above inequality is incompatible with Inequality (2), because In-
equality (2) holds for each fixed 6 > %, but Inequality (6) is for all 8(Ry) >
O/\T;T‘ This is where the direct combination of Theorem 1 and Theorem 2 would

fail to produce the correctness part of Theorem 4.

3 Possible Workarounds for the Issue

It is unclear if the analysis could be fixed without changing any aspect of the
algorithm. In this section, we propose two possible workarounds, both of which
require at least some change to the algorithm and incur some running time
penalty.

3.1 Workaround 1: Regenerating New RR Sets

One simple workaround is that in the IMM algorithm, after determining the
final length 6 of the RR set sequence, regenerate the entire RR set sequence of
length 6 from scratch, and use the newly generated sequence as the output of
the Sampling algorithm and feed it into the final call to NodeSelection. That is,
after line 13 of Algorithm 2, regenerate 0 RR sets instead of lines 14-16.

Intuitively, this would feed the final call of NodeSelection with an unbiased
RR set sequence so that Theorem 1 can be applied. We represent this new
unbiased sequence as a new independent sample Rj, from the probability space
02, and then taking the prefix of Rj with §(Ro) RR sets, where (Rg) is the
number of RR sets determined from sequence Ry that is needed for the final call
of NodeSelection. Thus we use the notation R{[0(Rg)] to represent the RR set
sequence that is fed into the final call of NodeSelection. The correctness can be
rigorously proved as follows. First, Eq. (4) for Theorem 4 is changed to:

2

bt VSRR =0} < (7

8 Wei Chen

To show the above inequality, following a similar derivation as in Eq. (5), what
we need to show is the following instead of Eq. (6):

~ A ~ 1
> * (1 _ <4
R0~(123,§26~(z {Q(RO) = OPT AY (S5 (Rol0(Ro)])) 0} Y, (8)
This can be achieved by the following derivation:
~ A* -
>_Z * / _
nglz),gzgwn {Q(RO) o7 " Y (Sp(Rol0(Ro)])) 0}
1)
= — * li _
= el o) V(R = OAY(SERGBR)]) = 0
0= gpr
[A"]) ~
< — * (13! _ .
< Y P {0R0) =0 AV(SURYARYD) =0} {union bound)
0= Spr
[A"] 3
= P — Y(S* / _
0[2;* Romi2 R~ 02 {Q(RO) 0 NY (S;(Rol0))) 0}
=[3pr

A"

= Z RPrQ{é(RO) =0}- R/Prn {Y (S5 (Ry[0])) =0} {independence of Ry and R} }

DN
9_|— OPT

)
]

_ 0 _ . * I _
= Z* L 0(Ro) =0} R,ﬂwlfgmel{Y(Sk(Ro[ﬂ)) 0}
0= gpr
] i 1
< Z* P (0(Re) =0} — {Eq. (2) of Theorem 1}
0= 351
1
ot

The key step is Eq. (9), where because Rj, is independent of R (we regenerate
a new RR set sequence for the last call to NodeSelection), we can represent

the probability Prr,~o r;~0 {G(RO) =0NY(SE(Ryl0))) = 0} as the product
of two separate factors. Therefore, the correctness part of Theorem 4 now holds.
Note that within the Sampling procedure, we do not need to regenerate RR set
sequences from scratch (before line 9 of Algorithm 2), because by our detailed
discussion in Section 2.4, even without regenerating RR sets, Theorem 2 still
holds with a more careful argument.

In terms of the running time, this workaround at most doubles the number
of RR sets generated, and thus its running time only adds a multiplicative factor
of 2 to the original result. Therefore, the asymptotic running time remains as
O((k + €)(n +m)logn/e?) in expectation.

An Issue in the Martingale Analysis of IMM 9

3.2 Workaround 2: Apply Union Bounding with Larger ¢

The second workaround is by directly bounding Eq. (6) by a union bound, as
shown in the derivation below.

Pr {é(R0)> A Y(SEHR(R)) o}

Ro~$2 - OPT
T
= warn M | 0(Ro) =0 N Y (S (R(Ro))) =0
0=[5pr

[A7]
< X P {0Re) =0 AY(SE(R(Ry)) = 0
0=[Spr
])
= > P {0Ro) =6 A Y (Sp(Ralo)) = 0}
0=[Gpr]|
[A"]
< Y P (YV(Si(Ro[A)) = 0} (10)

X
0= [OPT

[A"]
= Y P V(SR =0}

Rol0]~2[6
o= o[0]~£2[6]
A"
1
< Z p; {by Theorem 1, Eq. (2)}
o=I 35
(11)
A1
<7 (12)

Comparing the above derivation with the similar one for workaround 1, the
key difference is between Eq. (9) and Eq. (10). In Eq. (9), we could keep
Prr,~o{0(Ro) = 0} because the event {§(Ro) = 0} is independent, of the event
{Y(S{(R410])) = 0} in the second term. But in Eq. (10), we cannot extract
Prr,~a{0(Ro) = 0} because the event {#(Ry) = 0} is correlated with the event
{Y'(S{(Ro[])) = 0} in the second term. Thus we have to simply drop the event
{8(Ro) = 6}, causing the bound to be inflated by a factor of [A*].

Using Inequality (12), our second workaround is to enlarge ¢ to ¢/ so that
[A*]/n® < 1/n’. However, * is also dependent on £. To make it clear, we write
it as A*(£). What we want is to set ¢ = £ + v, such that

A _ A+

nt ntt

1
< —. 13
< (13)

10 Wei Chen

This means we want [A*(¢+)] < n7. From Egs.(5) and (6) in [17], we have

2

)*(2):2n~<(1—1/e)- Elogn+log2+\/(1—1/e)-(log(2)+€10gn+log2)> o2

<8n(k+ L+ 1)logn-e2—1,

where the relaxation in the inequality above is loose, involving relaxing the first
square root term to the second one, relaxing (1 — 1/e) to 1, relaxing (Z) to nk,
relaxing log 2 to logn, and thus the —1 above can be certainly compensated by
the relaxation, and it is used for relaxing the [A*(¢ +)] next. Thus, to achieve
[A*(£47)] < n7, we just need 8n(k+ £+~ +1)logn-e~2 < n?. Asymptotically,
v > 1 would be fine for large enough n. For a conservative bound, it is very
reasonable to assume that e~! < n, k + ¢ + v+ 1 < n, then we just need
8logn < n?~* which means setting v > 4 + log(8logn)/logn is enough. Thus
v is essentially a small constant.

In practice, v could be computed by a binary search once the parameters n, k,
£ and ¢ of the problem instance are given. Then we can set £ = {+1log2/logn+-y
in the algorithm. By increasing ¢ with a small constant v (e.g. v = 2.5), the
running time increases from O(k + ¢)(m + n)logn/e?) to O(k + £ + v)(m +
n)logn/e?), so the running time penalty is likely to be smaller than that of the
first workaround. Our experimental results below validate this point.

3.3 Experimental Evaluation

We evaluate the two workarounds and compare them against the original IMM
algorithm on two real world datasets: (a) NetHEPT, a coauthorship network
with 15233 nodes and 31373 edges, mined from arxiv.org high energy physics
section, and (b) DBLP, another coauthorship network with 655K nodes and
1990K edges, mined from dblp.uni-trier.de. We use independent cascade model
with edge probabilities set by the weighted cascade method [13]: edge (u,v)’s
probability is 1/d, where d, is the in-degree of v. These datasets are frequently
used in other influence maximization studies such as [5,17,4].

We use IMM, IMM-W1, and IMM-W2 to denote the original IMM, the IMM
with the first and the second workarounds, respectively. For IMM-W2, we use
binary search to find an estimate of v satisfying [A*(£ +)] < n". We set
parameters ¢ = 0.1, £ = 1, and influence spread is the average of 10000 simulation
runs. We test the algorithms in seed set sizes & = 50, 100, ...,500. The code is
written in C4++ and compiled by Visual Studio 2013, and is run on a Surface
Pro 4 with dual core 2.20GHz CPU and 16GB memory.

The influence spread and running time results are shown in Figure 2. As
expected, all three algorithms achieve indistinguishable influence spread, since
the two workarounds are to fix the theoretical issue on the dependency of RR sets,
and should not affect much on the actual performance of the IMM algorithm. In
terms of running time, also as expected, IMM-W1 has the worst running time,
but is within twice of running time of the IMM algorithm. IMM-W2 has much

An Issue in the Martingale Analysis of IMM 11

4000

—— ——
300 —— i 350 | —e—mmwn
—H— IMM-W2 —— IMM-W2
3000 3
3 3
© 2500 025
by %
8 2000 8 2
B B
1000 1
500 05
100 200 300 400 500 100 200 300 400 500
seed set size seed set size
(a) influence spread, NetHEPT (b) influence spread, DBLP
B 500
——IMM 450 —+—IMM
& —e— IMMWT | —— IMMWI
—E— IMM-W2 400 —— IMM-W2
\é}i i \é}i 350
= w30
]]
pec) s 280
w w
g £ m
£.5 | 2
g 5 130
- :
100
| i
50
o)
o 100 200 300 400 500 o 100 200 300 400 500
seed set size seed set size
(c) running time, NetHEPT (d) running time, DBLP

Fig. 2. Influence spread and running time results.

closer running time to IMM, though is still in general slower. We further observe
that the v value used for IMM-W2 is within 2.5 for the NetHEPT dataset and
within 2 for the DBLP dataset. Therefore, it looks like that we can use the
second workaround to provide a rigorous theoretical guarantee while achieving
similar running time as the original IMM.

4 Conclusion

In this paper, we explain the issue in the original analysis of the IMM algo-
rithm [17]. Two workarounds are proposed, both of which require some minor
changes to the algorithm and both incur a slight penalty in running time. Since
the IMM algorithm as a state-of-the-art influence maximization algorithm pro-
vides both strong theoretical guarantee and good practical performance, many
follow-up studies in influence maximization use IMM algorithms as a template.
Thus, it is worth to point out this issue so that subsequent follow-ups will cor-
rectly use the algorithm, especially if they want to provide theoretical guarantee.
It remains an open question if the issue can be fixed without changing the origi-
nal algorithm, or if a workaround with an even less impact to the algorithm and
its running time can be found.

12

Wei Chen

Acknowledgment

The author would like to thank Jian Li for helpful discussions and verification
on the issue explained in the paper.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maxi-
mizing social influence in nearly optimal time. In SODA, 2014.

Wei Chen. An issue in the martingale analysis of the influence maximization
algorithm IMM. Technical Report arXiv:1808.09363, 2018.

Wei Chen, Laks VS Lakshmanan, and Carlos Castillo. Information and Influence
Propagation in Social Networks. Morgan & Claypool Publishers, 2013.

Wei Chen and Shang-Hua Teng. Interplay between social influence and network
centrality: A comparative study on shapley centrality and single-node-influence
centrality. In WWW, pages 967-976, 2017.

Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for preva-
lent viral marketing in large-scale social networks. In KDD, 2010.

Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social
networks. In KDD, 2009.

Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social
networks under the linear threshold model. In ICDM, 2010.

Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequali-
ties: A survey. Internet Mathematics, 3(1):79-127, 2006.

Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck. Sketch-based
influence maximization and computation: Scaling up with guarantees. In CIKM,
pages 629-638, 2014.

Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. SIMPATH: An Efficient Algo-
rithm for Influence Maximization under the Linear Threshold Model. In ICDM,
2011.

Keke Huang, Sibo Wang, Glenn S. Bevilacqua, Xiaokui Xiao, and Laks V. S.
Lakshmanan. Revisiting the stop-and-stare algorithms for influence maximization.
PVLDB, 10(9):913-924, 2017.

Kyomin Jung, Wooram Heo, and Wei Chen. IRIE: Scalable and Robust Influence
Maximization in Social Networks. In ICDM, 2012.

David Kempe, Jon M. Kleinberg, and Eva Tardos. Maximizing the spread of
influence through a social network. In KDD, 2003.

Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge
University Press, 2005.

Hung T. Nguyen, My T. Thai, and Thang N. Dinh. Stop-and-stare: Optimal
sampling algorithms for viral marketing in billion-scale networks. In SIGMOD,
pages 695-710, 2016.

Lichao Sun, Weiran Huang, Philip Yu, and Wei Chen. Multi-round influence max-
imization. In KDD, 2018.

Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-linear
time: a martingale approach. In SIGMOD, 2015.

Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization: near-optimal
time complexity meets practical efficiency. In SIGMOD, 2014.

Yu Yang, Xiangbo Mao, Jian Pei, and Xiaofei He. Continuous influence maxi-
mization: What discounts should we offer to social network users? In SIGMOD,
2016.

	An Issue in the Martingale Analysis of the Influence Maximization Algorithm IMM

