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ABSTRACT

With the rise of machine learning, there is a great deal of interest in

treating programs as data to be fed to learning algorithms. However,

programs do not start off in a form that is immediately amenable

to most off-the-shelf learning techniques. Instead, it is necessary to

transform the program to a suitable representation before a learning

technique can be applied.

In this paper, we use abstractions of traces obtained from sym-

bolic execution of a program as a representation for learning word

embeddings. We trained a variety of word embeddings under hun-

dreds of parameterizations, and evaluated each learned embedding

on a suite of different tasks. In our evaluation, we obtain 93% top-1

accuracy on a benchmark consisting of over 19,000 API-usage analo-

gies extracted from the Linux kernel. In addition, we show that

embeddings learned from (mainly) semantic abstractions provide

nearly triple the accuracy of those learned from (mainly) syntactic

abstractions.
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1 INTRODUCTION

Computer science has a long history of considering programs as

data objects [13, 16]. With the rise of machine learning, there has

been renewed interest in treating programs as data to be fed to

learning algorithms [3]. However, programs have special charac-

teristics, including several layers of structure, such as a program’s

context-free syntactic structure, non-context-free name and type

constraints, and the program’s semantics. Consequently, programs

do not start off in a form that is immediately amenable to most

off-the-shelf learning techniques. Instead, it is necessary to trans-

form the program to a suitable representation before a learning

technique can be applied.

This paper contributes to the study of such representations in the

context of word embeddings. Word embeddings are a well-studied

method for converting a corpus of natural-language text to vector

representations of words embedded into a low-dimensional space.

These techniques have been applied successfully to programs be-

fore [17, 37, 43], but different encodings of programs into word

sequences are possible, and some encodings may be more appropri-

ate than others as the input to a word-vector learner.

The high-level goals of our work can be stated as follows:

Devise a parametric encoding of programs into word sequences

that (i) can be tuned to capture different representation choices

on the spectrum from (mainly) syntactic to (mainly) semantic,

(ii) is amenable to word-vector-learning techniques, and (iii)

can be obtained from programs efficiently.

We also wish to understand the advantages and disadvantages of

our encoding method. ğ5śğ8 summarize the experiments that we

performed to provide insight on high-level goal (ii).

We satisfy high-level goals (i) and (iii) by basing the encoding

on a lightweight form of intraprocedural symbolic execution.

• We base our technique on symbolic execution due to the

gap between syntax (e.g., tokens or abstract syntax trees

(ASTs)) and the semantics of a procedure in a program. In

particular, token-based techniques impose a heavy burden on

the embedding learner. For instance, it is difficult to encode

the difference between constructions such as a == b and

!(a != b) via a learned, low-dimensional embedding [5].

• Our method is intraprocedural so that different procedures

can be processed in parallel.
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• Our method is parametric in the sense that we introduce a

level of mapping from symbolic-execution traces to the word

sequences that are input to the word-vector learner. (We call

these abstraction mappings or abstractions, although strictly

speaking they are not abstractions in the sense of abstract

interpretation [11].) Different abstraction mappings can be

used to extract different word sequences that are in different

positions on the spectrum of (mainly) syntactic to (mainly)

semantic.

We have developed a highly parallelizable toolchain that is capable

of producing a parametric encoding of programs to word sequences.

For instance, we can process 311,670 procedures in the Linux kernel1

in 4 hours,2 using a 64-core workstation (4 CPUs each clocked at

2.3 GHz) running CentOS 7.4 with 252 GB of RAM.

After we present our infrastructure for generating parametric

encodings of programs as word sequences (ğ2), there are a number

of natural research questions that we consider.

First, we explore the utility of embeddings learned from our

toolchain:

Research Question 1: Are vectors learned from abstracted

symbolic traces encoding useful information?

Judging utility is a difficult endeavor. Natural-language embed-

dings have the advantage of being compatible with several canon-

ical benchmarks for word-similarity prediction or analogy solv-

ing [14, 20, 27, 30, 47, 48, 52]. In the domain of program understand-

ing, no such canonical benchmarks exist. Therefore, we designed a

suite of over nineteen thousand code analogies to aid in the evalua-

tion of our learned vectors.

Next, we examine the impact of different parameterizations of

our toolchain by performing an ablation study. The purpose of this

study is to answer the following question:

ResearchQuestion 2: Which abstractions produce the best

program encodings for word-vector learning?

There are several examples of learning from syntactic artifacts,

such as ASTs or tokens. The success of such techniques raises the

question of whether adding a symbolic-execution engine to the

toolchain improves the quality of our learned representations.

ResearchQuestion 3: Do abstracted symbolic traces at the

semantic end of the spectrum provide more utility as the input

to a word-vector-learning technique compared to ones at the

syntactic end of the spectrum?

Because our suite of analogies is only a proxy for utility in more

complex downstream tasks that use learned embeddings, we pose

one more question:

1Specifically, we used a prerelease of Linux 4.3 corresponding to commit
fd7cd061adcf5f7503515ba52b6a724642a839c8 in the GitHub Linux kernel
repository.
2During trace generation, we exclude only vhash_update , from crypto/vmac.c,

due to its size.

Research Question 4: Can we use pre-trained word-vector

embeddings on a downstream task?

The contributions of our work can be summarized as follows:

We created a toolchain for taking a program or corpus of pro-

grams and producing intraprocedural symbolic traces. The toolchain

is based on Docker containers, is parametric, and operates in a mas-

sively parallel manner. Our symbolic-execution engine prioritizes

the amount of data generated over the precision of the analysis: in

particular, no feasibility checking is performed, and no memory

model is used during symbolic execution.

We generated several datasets of abstracted symbolic traces

from the Linux kernel. These datasets feature different parame-

terizations (abstractions), and are stored in a format suitable for

off-the-shelf word-vector learners.

Wecreated a benchmark suite of over 19,000 API-usage analo-

gies.

We report on several experiments using these datasets:

• In ğ5, we achieve 93% top-1 accuracy on a suite of over 19,000

analogies.

• In ğ6, we perform an ablation study to assess the effects of

different abstractions on the learned vectors.

• In ğ7, we demonstrate how vectors learned from (mainly)

semantic abstractions can provide nearly triple the accuracy

of vectors learned from (mainly) syntactic abstractions.

• In ğ8, we learn a model of a specific program behavior (which

error a trace is likely to return), and apply the model in a

case study to confirm actual bugs found via traditional static

analysis.

Our toolchain, pre-trained word embeddings, and code-analogy

suite are all available as part of the artifact accompanying this

paper; details are given in ğ11.

Organization. The remainder of the paper is organized as follows:

ğ2 provides an overview of our toolchain and applications. ğ3 details

the parametric aspect of our toolchain and the abstractions we

use throughout the remainder of the paper. ğ4 briefly describes

word-vector learning. ğ5śğ8 address our four research questions.

ğ9 considers threats to the validity of our approach. ğ10 discusses

related work. ğ11 describes supporting materials that are intended

to help others build on our work. ğ12 concludes.

2 OVERVIEW

Our toolchain consists of three phases: transformation, abstraction,

and learning. As input, the toolchain expects a corpus of buildable

C projects, a description of abstractions to use, and a word-vector

learner. As output, the toolchain produces an embedding of abstract

tokens to double-precision vectors with a fixed, user-supplied, di-

mension. We illustrate this process as applied to the example in

Fig. 1.

Phase I: Transformation. The first phase of the toolchain enu-

merates all paths in each source procedure. We begin by unrolling

(and truncating) each loop so that its body is executed zero or one

time, thereby making each procedure loop-free at the cost of dis-

carding many feasible traces. We then apply an intraprocedural
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int example () {

buf = alloc (12);

if (buf != 0) {

bar(buf);

free(buf);

return 0;

} else {

return -ENOMEM;

}

}

Figure 1: An example procedure

call alloc (12);

assume alloc (12) != 0;

call bar(alloc (12));

call free(alloc (12));

return 0;

(a) Trace 1

call alloc (12);

assume alloc (12) == 0;

return -ENOMEM;

(b) Trace 2

Figure 2: Traces from the symbolic execution of the proce-

dure in Fig. 1

Called(alloc)

RetNeq(alloc , 0)

Called(bar)

Called(free)

(a) Abstracted Trace 1

Called(alloc)

RetEq(alloc , 0)

RetError(ENOMEM)

(b) Abstracted Trace 2

Figure 3: Result of abstracting the two traces in Fig. 2b

symbolic executor to each procedure. Fig. 2 shows the results of

this process as applied to the example code in Fig. 1.

Phase II: Abstraction. Given a user-defined set of abstractions,

the second phase of our toolchain leverages the information gleaned

from symbolic execution to generate abstracted traces. One key

advantage of performing some kind of abstraction is a drastic re-

duction in the number of possible tokens that appear in the traces.

Consider the transformed trace in Fig. 2b. If we want to understand

the relationship between allocators and certain error codes, then

we might abstract procedure calls as parameterized tokens of the

form Called(callee); comparisons of returned values to constants

as parameterized RetEq(callee, value) tokens; and returned error

codes as parameterized RetError(code) tokens. Fig. 3 shows the

result of applying these abstractions to the traces from Fig. 2.

Phase III: Learning. Our abstracted representation discards ir-

relevant details, flattens control flows into sequential traces, and

exposes key properties in the form of parameterized tokens that

capture domain information such as Linux error codes. These qual-

ities make abstracted traces suitable for use with a word-vector

learner. Word-vector learners place words that appear in similar

contexts close together in an embedding space. When applied to

natural language, learned embeddings can answer questions such

as łking is to queen as man is to what?ž (Answer: woman.) Our

goal is to learn embeddings that can answer questions such as:

• If a lock acquired by calling spin_lock is released by call-

ing spin_unlock, then how should I release a lock acquired

by calling mutex_lock_nested? That is, Called(spin_lock) is

to Called(spin_unlock) as Called(mutex_lock_nested) is to

what? (Answer: Called(mutex_unlock).)

• Which error code is most commonly used to report allocation

failures? That is, which RetError(code) is most related to

RetEq(alloc, 0)? (Answer: RetError(ENOMEM).)

• Which procedures and checks are most related to alloc?

(Answers: Called(free), RetNeq(alloc, 0), etc.)

The remainder of the paper describes a framework of abstrac-

tions and a methodology of learning embeddings that can effec-

tively solve these problems. Along the way, we detail the challenges

that arise in applying word embeddings to abstract path-sensitive

artifacts.

3 ABSTRACTIONS

One difference between learning from programs and learning from

natural language is the size of the vocabulary in each domain. In

natural language, vocabulary size is bounded (e.g., by the words

in a dictionary, ignoring issues like misspellings). In programs, the

vocabulary is essentially unlimited: due to identifier names, there

are a huge number of distinct words that can occur in a program.

To address the issue of vocabulary size, we perform an abstraction

operation on symbolic traces, so that we work with abstracted

symbolic traces when learning word vectors from programs.

3.1 Abstracted Symbolic Traces

We now introduce the set of abstractions that we use to cre-

ate abstracted symbolic traces. Selected abstractions appear in

the conclusions of the deduction rules shown in Fig. 4. The ab-

stractions fall into a few simple categories. The Called(callee) and

AccessPathStore(path) abstractions can be thought of as łeventsž

that occur during a trace. Abstractions like RetEq(callee, value) and

Error serve to encode the łstatusž of the current trace: they pro-

vide contextual information that can modify the meaning of an

łeventž observed later in the trace. Near the end of the trace, the

RetError(code), RetConst(value), and PropRet(callee) abstractions

provide information about the result returned at the end of the

trace. Taken together, these different pieces of information abstract

the trace; however, the abstracted trace is still a relatively rich digest

of the trace’s behavior.

With the abstractions described above, we found that the learned

vectors were sub-optimal. Our investigation revealed that some of

the properties we hoped would be learned required leveraging

contextual information that was outside the łwindowž that a word-

vector learner was capable of observing. For example, to understand

the relationship between a pair of functions like lock and unlock, a

word-vector learner must be able to cope with an arbitrary number

of words occurring between the functions of interest. Such distances

are a problem, because lengthening the history given to a word-

vector learner also increases the computational resources necessary

to learn good vectors.
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call foo()

Called(foo)

call bar(foo())

ParamTo(bar, foo)

call foo(obj)

call bar(obj)

ParamShare(bar, foo)

assume foo() == 0

RetEq(foo, 0)

obj->foo.bar = baz

AccessPathStore(->foo.bar)

return -C ∧ C ∈ ERR_CODES

RetError(ERR_CODES[C]), Error

return C ∧ C < ERR_CODES

RetConst(C)

return foo()

PropRet(foo)

PropRet(PTR_ERR)

Error

Figure 4: Example derivations for selected abstractions

// 1,2 FunctionStart

lock(&obj ->lock); // 1,2 Call(lock)

foo = alloc (12); // 1,2 Call(alloc)

if (foo != 0) { // 1 RetNeq(alloc , 0)

obj ->baz = // 1 AccessPathStore(->baz)

bar(foo); // 1 ParamTo(bar , alloc)

// 1 Call(bar)

} else { // 2 RetEq(alloc , 0)

unlock( // 2 ParamShare(unlock , lock)

&obj ->lock); // 2 Call(unlock)

return -ENOMEM; // 2 RetError(ENOMEM)

// 2 Error

} // 2 FunctionEnd

unlock( // 1 ParamShare(unlock , lock)

&obj ->lock); // 1 Call(unlock)

return 0; // 1 RetConst (0)

// 1 FunctionEnd

Figure 5: Sample procedure with generated abstractions

shown as comments

Due to the impracticality of increasing the context given to a

word-vector learner, we introduced two additional abstractions:

ParamTo and ParamShare. These abstractions encode the flow of data

in the trace to make relevant contextual information available with-

out the need for arbitrarily large contexts. As shown in ğ6, the

abstractions that encode semantic information, such as dataflow

facts, end up adding the most utility to our corpus of abstracted

traces. This observation is in line with the results of Allamanis

et al. [4], who found that dataflow edges positively impact the

performance of a learned model on downstream tasks.

We augment the abstractions shown in Fig. 4, with the following

additional abstractions, which are similar to the ones discussed

above:

• RetNeq(callee, value), RetLessThan(callee, value), and others

are variants of the RetEq(callee, value) abstraction shown in

Fig. 4.

• FunctionStart and FunctionEnd are abstractions introduced

at the beginning and end of each abstracted trace.

• AccessPathSensitive(path) is similar to AccessPathStore; it

encodes any complex field and array accesses that occur in

assume statements.

3.2 Encoding Abstractions as Words

We now turn to how the encoding of these abstractions as words

and sentences (to form our trace corpus) can impact the utility

of learned vectors. To aid the reader’s understanding, we use a

sample procedure and describe an end-to-end application of our

abstractions and encodings.

Fig. 5 shows a sample procedure along with its corresponding

abstractions. The number(s) before each abstraction signify which

of the two paths through the procedure the abstraction belongs to.

To encode these abstractions as words, we need to make careful

choices as to what pieces of information are worthy of being repre-

sented as words, and how this delineation affects the questions we

can answer using the learned vectors.

For instance, consider the RetNeq(alloc, 0) abstraction. There

are several simple ways to encode this information as a sequence

of words:

(1) RetNeq(alloc, 0) =⇒ alloc , $NEQ , 0

(2) RetNeq(alloc, 0) =⇒ alloc , $NEQ_0

(3) RetNeq(alloc, 0) =⇒ alloc_$NEQ , 0

(4) RetNeq(alloc, 0) =⇒ alloc_$NEQ_0

Each of these four encodings comes with a different trade-off.

The first encoding splits the abstraction into several fine-grained

words, which, in turn, reduces the size of the overall vocabulary.

This approach may benefit the learned vectors because smaller

vocabularies can be easier to work with. On the other hand, splitting

the information encoded in this abstraction into several words

makes some questions more difficult to ask. For example, it is much

easier to ask what is most related to alloc being not equal to zero

when we have just a single word, alloc_$NEQ_0 , to capture such

a scenario.

In our implementation, we use the fourth option. It proved diffi-

cult to ask interesting questions when the abstractions were broken

down into fine-grained words. This decision did come with the cost

of a larger vocabulary.3 Encodings for the rest of our abstractions

are shown in Fig. 6.4 The sentences generated by applying these

encodings to Fig. 5 are shown in Fig. 7.

4 WORD2VEC

Word2Vec is a popular method for taking words and embedding

them into a low-dimensional vector space [30]. Instead of using a

one-hot encodingÐwhere each element of a vector is associated

with exactly one wordÐword2vec learns a denser representation

3We mitigate the increase in vocabulary size from constructions like alloc_$NEQ_0

by restricting the constants we look for. Our final implementation only looks for
comparisons to constants in the set {−2, −1, 0, 1, 2, 3, 4, 8, 16, 32, 64}.
4Because it is not possible to have ParamShare(X, Y) or ParamTo(X, Y)
without a Called(X) following them, the abstractions ParamShare(X, Y) and

ParamTo(X, Y) are encoded as Y to avoid duplicating X .
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match abstraction with

| Called (x) -> x

| ParamTo (_,x) -> x

| ParamShare (_,x) -> x

| RetEq (x,c) -> x ^ "_$EQ_" ^ c

| RetNeq (x,c) -> x ^ "_$NEQ_" ^ c

(* ... *)

| PropRet (x) -> "$RET_" ^ x

| RetConst (c) -> "$RET_" ^ c

| RetError (e) -> "$RET_" ^ ERR_CODES[e]

| FunctionStart -> "$START"

| FunctionEnd -> "$END"

| Error -> "$ERR"

| AccessPathStore (p) -> "!" ^ p

| AccessPathSensitive (p) -> "?" ^ p

Figure 6: Encoding of abstractions

$START lock alloc alloc_$NEQ_0 !->baz

alloc bar lock unlock $RET_0 $END

(a) Trace 1

$START lock alloc alloc_$EQ_0 lock

unlock $ERR $RET_ENOMEM $END

(b) Trace 2

Figure 7: Traces for Fig. 5 generated by the encoding from

Fig. 6

that captures meaningful syntactic and semantic regularities, and

encodes them in the cosine distance between words.

For our experiments, we used GloVe [41] due to its favorable per-

formance characteristics. GloVe works by leveraging the intuition

that word-word co-occurrence probabilities encode some form of

meaning. A classic example is the relationship between the word

pair łicež and łsteamž and the word pair łsolidž and łgas.ž Gas and

steam occur in the same sentence relatively frequently, compared

to the frequency with which the words gas and ice occur in the

same sentence. Consequently, the following ratio is significantly

less than 1:

Pr(gas | ice)

Pr(gas | steam)

If, instead, we look at the frequency of sentences with both solid

and ice compared to the frequency of sentences with both solid and

steam, we find the opposite. The ratio

Pr(solid | ice)

Pr(solid | steam)

is much greater than 1. This signal is encoded into a large co-

occurrence matrix. GloVe then attempts to learn word vectors for

which the dot-product of two vectors is close to the logarithm of

their probability of co-occurrence.

5 RQ1: ARE LEARNED VECTORS USEFUL?

Research Question 1 asked whether vectors learned from abstracted

symbolic traces encode useful information. We assess utility via

three experiments over word vectors. Each of the following subsec-

tions describes and interprets one experiment in detail.

5.1 Experiment 1: Code Analogies

An interesting aspect of word vectors is their ability to express

relationships between analogous words using simple math and

cosine distance. Encoding analogies is an intriguing byproduct of a

łgoodž embedding and, as such, analogies have become a common

proxy for the overall quality of learned word vectors.

No standard test suite for code analogies exists, so we cre-

ated such a test suite using a combination of manual in-

spection and automated search. The test suite consists of

twenty different categories, each of which has some number

of function pairs that have been determined to be analogous.

For example, consider mutex_lock_nested/mutex_unlock and

spin_lock/spin_unlock ; these are two pairs from the łlock /

unlockž category given in Tab. 1. We can construct an analogy by

taking these two pairs and concatenating them to form the analogy

ł mutex_lock_nested is to mutex_unlock as spin_lock is to

spin_unlock .ž By identifying high-level patterns of behavior, and

finding several pairs of functions that express this behavior, we

created a suite that contains 19,042 code analogies.

Tab. 1 lists our categories and the counts of available pairs, along

with a representative pair from each category. Tab. 1 also provides

accuracy metrics generated using the vectors learned from what we

will refer to as the łbaseline configuration,ž5 which abstracts sym-

bolic traces using all of the abstractions described in in ğ3. We used

a grid-search over hundreds of parameterizations to pick hyper-

parameters for our word-vector learner. For the results described

in this section, we used vectors of dimension 300, a symmetric

window size of 50, and a vocabulary-minimum threshold of 1,000

to ensure that the word-vector learner only learns embeddings for

words that occur a reasonable number of times in the corpus of

traces. We trained for 2,000 iterations to give GloVe ample time to

find good vectors.

In each category, we assume that any two pairs of functions are

sufficiently similar to be made into an analogy. More precisely, we

form a test by selecting two distinct pairs of functions (A,B) and

(C,D) from the same category, and creating the triple (A,B,C) to

give to an analogy solver that is equipped with our learned vectors.

The analogy solver returns a vector D ′, and we consider the test

passed if D ′
= D and failed otherwise. Levy and Goldberg [25]

present the following objective to use when solving analogies with

word-vectors:

D ′
= argmax

d ∈V \{A,B,C}

cos(d,B ) − cos(d,A ) + cos(d,C )

Results. The łAccuracyž column of Tab. 1 shows that overall ac-

curacy on the analogy suite is excellent. Our embeddings achieve

5The baseline configuration is described in more detail in ğ6, where it is also called
configuration (1).
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Table 1: Analogy Suite Details

Type Category Representative Pair # of Pairs Passing Tests Total Tests Accuracy

Calls 16 / 32 store16/store32 18 246 306 80.39%

Calls Add / Remove ntb_list_add/ntb_list_rm 9 72 72 100.0%

Calls Create / Destroy device_create/device_destroy 19 302 342 88.30%

Calls Enable / Disable nv_enable_irq/nv_disable_irq 62 3,577 3,782 94.58%

Calls Enter / Exit otp_enter/otp_exit 12 122 132 92.42%

Calls In / Out add_in_dtd/add_out_dtd 5 20 20 100.0%

Calls Inc / Dec cifs_in_send_inc/cifs_in_send_dec 10 88 90 97.78%

Calls Input / Output ivtv_get_input/ivtv_get_output 5 20 20 100.0%

Calls Join / Leave handle_join_req/handle_leave_req 4 8 12 66.67%

Calls Lock / Unlock mutex_lock_nested/mutex_unlock 53 2,504 2,756 90.86%

Calls On / Off b43_led_turn_on/b43_led_turn_off 19 303 342 88.60%

Calls Read / Write memory_read/memory_write 64 3,950 4,032 97.97%

Calls Set / Get set_arg/get_arg 22 404 462 87.45%

Calls Start / Stop nv_start_tx/nv_stop_tx 31 838 930 90.11%

Calls Up / Down ixgbevf_up/ixgbevf_down 24 495 552 89.67%

Complex Ret Check / Call kzalloc_$NEQ_0/kzalloc 21 252 420 60.00%

Complex Ret Error / Prop write_bbt_$LT_0/$RET_write_bbt 25 600 600 100.0%

Fields Check / Check ?->dmaops/?->dmaops->altera_dtype 50 2,424 2,450 98.94%

Fields Next / Prev !.task_list.next/!.task_list.prev 16 240 240 100.0%

Fields Test / Set ?->at_current/!->at_current 39 1,425 1,482 96.15%

Totals: 508 17,890 19,042 93.95%

greater than 90% top-1 accuracy on thirteen out of the twenty cate-

gories. The learned vectors do the worst on the łRet Check / Callž

category where the top-1 accuracy is only 60%. This category is

meant to relate the checking of the return value of a call with the call

itself. However, we often find that one function allocates memory,

while a different function checks for allocation success or failure.

For example, a wrapper function may allocate complex objects, but

leave callers to check that the allocation succeeds. Because our

vectors are derived from intraprocedural traces, it is sensible that

accuracy suffers for interprocedural behaviors.

By contrast, our vectors perform extraordinarily well on the łRet

Error / Propž category (100% top-1). This category represents cases

where an outer function (i) performs an inner call, (ii) detects that

it has received an error result, and (iii) returns (łpropagatesž) that

error result as the outer function’s own return value. Unlike for the

łRet Check / Callž category, the nature of the łRet Error / Propž cate-

gory ensures that both the check and the return propagation can be

observed in intraprocedural traces, without losing any information.

5.2 Experiment 2: Simple Similarity

One of the most basic word-vector tasks is to ask for the k nearest

vectors to some chosen vector (using cosine distance). We expect

the results of such a query to return a list of relevant words from our

vocabulary. Our similarity experiments were based on two types

of queries: (i) given a word, find the closest word, and (ii) given a

word, find the five closest words.

ret = new(/*...*/, &priv ->bo);

if (!ret) {

ret = pin(priv ->bo, /*...*/);

if (!ret) {

ret = map(priv ->bo);

if (ret)

unpin(priv ->bo);

}

if (ret)

ref(NULL , &priv ->bo);

}

Figure 8: Excerpt from nv17_fence.c. Names have been

shortened to conserve space.

Similar pairs. We identified the single most similar word to each

word in our vocabulary V. This process produced thousands of

interesting pairs. In the interest of space, we have selected four

samples which are representative of the variety of high-level rela-

tionships encoded in our learned vectors6:

• sin_mul and cos_mul

• dec_stream_header and dec_stream_footer

• rx_b_frame and tx_b_frame

6The artifact accompanying this paper includes a full listing of these pairs, ordered by
cosine-similarity.
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• nouveau_bo_new_$EQ_0 and nouveau_bo_map 7

The last pair is of particular interest, because it expresses a com-

plex pattern of behavior that would be impossible to encode without

some abstraction of the path condition. The last pair suggests that

there is a strong relationship between the function new return-

ing 0 (which signals a successful call) and then the subsequent

performance of some kind of map operation with the map call. To

gain a deeper understanding of what the vectors are encoding, we

searched for instances of this behavior in the original source code.

We found several instances of the pattern shown in Fig. 8.

The code in Fig. 8 raise a new question: why isn’t pin more

closely related to new_$EQ_0 ? We performed additional similarity

queries to gain a deeper understanding of how the learned vectors

have encoded the relationship between new , pin , and map .

First, we checked to see how similar pin is to new_$EQ_0 . We

found that pin is the fourth-most related word to new_$EQ_0 ,

which suggests that a relationship does exist, but that the relation-

ship between new_$EQ_0 and pin is not as strong as the one

between new_$EQ_0 and map . Looking back at the code snippet

(and remembering that several more instances of the same pattern

can be found in separate files), we are left with the fact that pin

directly follows from the successful new . Therefore, intuition dic-

tates that pin should be more strongly related to new than map .

The disagreement between our intuition and the results of our

word-vector queries motivated us to investigate further.

By turning to the traces for an answer, we uncovered a more

complete picture. In 3,194 traces, new co-occurs with pin . In

3,145 traces, new co-occurs with map . If we look at traces that

do not contain a call to new , there are 11, 354 traces that have

no call to new , but still have a call to pin . In contrast, only 352

traces have no call to new , but still have a call to map . Finally,

we have a definitive answer to the encoding learned by the vectors:

it is indeed the case that new and map are more related in our

corpus of traces, because almost every time a call to map is made,

a corresponding call to new precedes it. Our intuition fooled us,

because the snippets of source code only revealed a partial picture.

Top-5 similar words and the challenge of prefix dominance.

Another similarity-based test is to take a word and find the top-k

closest words in the learned embedding space. Ideally, we’d see

words that make intuitive sense. For the purpose of evaluation, we

picked two words: affs_bread , a function in the AFS file system

that reads a block, and kzalloc , a memory allocator. For each

target word, we evaluated the top-5 most similar words for rele-

vance. In the process, we also uncovered an interesting challenge

when learning over path-sensitive artifacts, which we call prefix

dominance.

Our corpus of symbolic traces can be thought of as a corpus of

execution trees. In fact, in the implementation of our trace gen-

erator, the traces only exist at the very last moment. Instead of

storing traces, we store a tree that encodes, without unnecessary

7In the following text, and in Fig. 8, we remove the nouveau_bo_ prefix to conserve

space.

Table 2: Top-5 closest words to affs_bread and kzalloc

affs_bread kzalloc

affs_bread_$NEQ_0 kzalloc_$NEQ_0

affs_checksum_block kfree

AFFS_SB _volume

affs_free_block snd_emu10k1_audigy_write_op

affs_brelse ?->output_amp

duplication, the information gained from symbolically executing

a procedure. If we think about the dataset of traces as a dataset

of trees (each of which holds many traces that share common pre-

fixes), we begin to see that learning word vectors from traces is an

approximation of learning directly from the execution trees.

The approximation of trees by traces works, in the sense that

we can use the traces to learn meaningful vectors, but the approxi-

mation is vulnerable to learning rare behaviors that exist at the be-

ginning of a procedure whose trace-tree has many nested branches.

These rare behaviors occur only once in the original procedure text

and corresponding execution tree, but are replicated many times in

the traces. In a procedure with significant branching complexity,

a single occurrence of rare behavior can easily overwhelm any

arbitrary number of occurrences of expected behavior.

In Tab. 2, we see two words, affs_bread and kzalloc ,

and the five most similar words to each of them. Word similar-

ity has captured many expected relationships. For example, the

fact that kzalloc is most commonly checked to be non-null

( kzalloc_$NEQ_0 ) and then also kfree d is what we would ex-

pect, given the definition of an allocator. Similarly, we can see that

affs_bread is also checked to be non-null, checksummed, freed,

released, etc. However, in addition to these expected relationships,

the last three entries for kzalloc seem out of place. These un-

expected entries are present in the top-5 answer because of prefix

dominance.

We searched our traces for places where kzalloc and the

three unexpected entries in the table co-occur. We found one func-

tion with 5,000 paths (5,000 being our łbudgetž for the number

of traces we are willing to generate via symbolic execution for

a single procedure), of which 4,999 have several instances of the

pattern kzalloc followed by snd_emu10k1_audigy_write_op .

This one function, with its multitude of paths, overwhelms our

dataset, and causes the word vectors to learn a spurious relationship.

Prefix dominance also explains the strong associations between

kzalloc and _volume and ?->output_amp .

On the other hand, affs_bread is relatively unaffected by pre-

fix dominance. Examining our traces for the affs file system

that contains this function, we found that no procedures had an

overwhelming number of paths. Therefore, we never see an over-

whelming number of affs_bread usage patterns that are rare at

the source level but common in our set of traces.
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5.3 Experiment 3: Queries Via Word-Vector
Averaging

Word vectors have the surprising and useful ability to encode mean-

ing when averaged [23, 24]. We devised a test to see if our learned

vectors are able to leverage this ability to capture a relationship

between allocation failure and returning -ENOMEM .

To understand whether our word vectors are capable of answer-

ing such a high-level question, we evaluated their performance on

increasingly targeted queries (represented by averaged vectors).

Each query was restricted to search only for words in the subspace

of the embedding space that contains kernel error-codes. (Narrow-

ing to the subspace of error codes ensures that we are only looking

at relevant words, and not at the whole vocabulary.)

Results.We identified twenty different functions that act as allo-

cators in the Linux kernel.

First, for each such allocator, we took its word vector A, and

queried for the closest vector to A (in the subspace of error codes).

This method found the correct error code only twice out of twenty

tests (i.e., 10% accuracy).

Second, we asked for the vector closest to an average vector

that combined the vector for the allocator A of interest and the

vector
−−−−→
$ERR for a generic error:8 (A +

−−−−→
$ERR)/2. This query found

the correct ENOMEM code fourteen times out of twenty (i.e., 70%

accuracy).

Third, instead of averaging the allocator’s A vector with
−−−−→
$ERR,

we tried averaging A with the vector for the special $END token

that signals the end of a trace. Seeking the error code closest to

(A +
−−−−→
$END)/2 found the correct result for sixteen of twenty test

cases (i.e., 80% accuracy). The fact that this method outperforms

our previous query reveals that the call to an allocator being near

the end of a trace is an even stronger signal than the $ERR token.

Finally, we mixed the meaning of the allocator, the er-

ror token, and the end-of-trace token by averaging all three:

(A +
−−−−→
$ERR+

−−−−→
$END)/3. The error code whose vector is closest to

this query is the correct ENOMEM code for eighteen of the twenty

tests (i.e., 90% accuracy). The steadily increasing performance indi-

cates that targeted queries encoded as average word vectors can

indeed be semantically meaningful.

The effectiveness of these queries, and the results from ğ5.1

and ğ5.2, support a positive answer to Research Question 1: learned

vectors do encode useful information about program behaviors.

6 RQ2: ABLATION STUDY

In this section, we present the results of an ablation study to isolate

the effects that different sets of abstractions have on the utility of

the learned vectors. We used the benchmark suite of 19,042 code-

analogies from ğ5 to evaluate eight different configurations. We

scored each configuration according to the number of analogies

correctly encoded by theword vectors learned for that configuration

(i.e., we report top-1 results).

8The $ERR word is added to any trace that returns either (i) the result of an ERR_PTR

call, or (ii) a constant less than zero that is also a known error code. Consequently, a

vector
−−−→
$ERR is learned for the word $ERR .
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Figure 9: Ablation study: top-1 analogy results for eight con-

figurations (baseline (1) with up to one individual abstrac-

tion class removed). The vocabulary minimum was 0, and

the number of training iterations was 1,000.

In addition to the baseline configuration from ğ5.1, we parti-

tioned the abstractions into six classes9 and generated six new

embeddings, each with one of the six abstraction classes excluded.

We also used one more configuration in which stop words were

included. In natural language processing, stop words are words that

are filtered out of a processing toolchain. Sometimes these are the

most common words in a language, but any group of words can be

designated as stop words for a given application. In our context,

stop words are function names that occur often, but add little value

to the trace. Examples are __builtin_expect and automatically

generated __compiletime_assert s.

We evaluated the following eight configurations:

(1) baseline: all abstractions from ğ3;

(2) baseline without ParamTo and ParamShare;

(3) baseline without RetEq, RetNeq, etc.;

(4) baseline without AccessPathStore and AccessPathSensitive;

(5) baseline without PropRet, RetError, and RetConst;

(6) baseline without Error;

(7) baseline without FunctionStart and FunctionEnd; and

(8) baseline with stop words included.

Fig. 9 compares the accuracy of for these eight configurations.

Blue bars indicate the number of tests in the analogy suite that

passed; red indicates tests that failed; and brown indicates out-

of-vocabulary (OOV) tests. Configuration (4) had the most out-

of-vocabulary tests; in this configuration, we do not have words

like !->next and !->prev , which leaves several portions of

the analogy suite essentially unanswerable. Thus, we count out-of-

vocabulary tests as failed tests.

To create a fair playing field for evaluating all eight configu-

rations, we chose a single setting for the hyper-parameters that

were used when learning word vectors. We reduced the threshold

for how often a word must occur before it is added to the vocab-

ulary from 1,000 to 0. The latter parameter, which we refer to as

9Except for Called, which was used in all configurations.
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the vocabulary minimum, significantly impacts performance by

forcing the word-vector learner to deal with thousands of rarely-

seen words. To understand why we must set the vocabulary min-

imum to zero, effectively disabling it, consider the following ex-

ample trace: Called(foo), ParamShare(foo, bar), Called(bar). In

configuration (2), where we ignore ParamShare, we would encode

this trace as the sentence foo bar . In configuration (1), this same

trace is encoded as foo foo bar . The fact that some abstractions

can influence the frequency with which a word occurs in a trace cor-

pus makes any word-frequency-based filtering counterproductive

to our goal of performing a fair comparison.

We also lowered the number of training iterations from 2,000

to 1,000 to reduce the resources required to run eight separate

configurations of our toolchain. (These changes are responsible for

the change in the top-1 accuracy of the baseline configuration from

93.9% in Tab. 1 to 85.8% in Fig. 9.)

In Fig. 9, one clearly sees that configuration (2) (the one without

any dataflow-based abstractions) suffers the worst performance

degradation. Configuration (4), which omits access-path-based ab-

stractions, has the second-worst performance hit. These results in-

dicate that dataflow information is critical to the quality of learned

vectors. This conclusion further confirms findings by Allamanis

et al. [4] regarding the importance of dataflow information when

learning from programs.

Fig. 9 also reveals that removing łstatež abstractions (RetEq,

RetNeq, etc. and Error) has little effect on quality. However, these

abstractions still add useful terms to our vocabulary, and thereby

enlarge the set of potentially answerable questions. Without these

abstractions, some of the questions in ğ5 would be unanswerable.

These results support the following answer to Research Ques-

tion 2: dataflow-based abstractions provide the greatest benefit to

word-vector learning. These abstractions, coupled with access-path-

based abstractions, provide sufficient context to let a word-vector

learner create useful embeddings. Adding abstractions based on

path conditions (or other higher-level concepts like Error) adds

flexibility without worsening the quality of the learned vectors.

Therefore, we recommend including these abstractions, as well.

7 RQ3: SYNTACTIC VERSUS SEMANTIC

Now that we have seen the utility of the generated corpus for word-

vector learning (ğ5) and the interplay between the abstractions we

use (ğ6), we compare our recommended configuration (1) from ğ6

with a simpler syntactic-based approach.

We explored several options for a syntactic-based approach

against which to compare. In trying to make a fair comparison, one

difficulty that arises is the amount of data our toolchain produces to

use for the semantics-based approach. If we were to compare con-

figuration (1) against an approach based on ASTs or tokens, there

would be a large disparity between the paucity of data available

to the AST/token-based approach compared to the abundance of

data available to the word-vector learner: an AST- or token-based

approach would only have one data point per procedure, whereas

the path-sensitive artifacts gathered using configuration (1) provide

the word-vector learner with hundreds, if not thousands, of data

points per procedure.

0% 20% 40% 60% 80% 100%

Semantic

Syntactic

85.8%

31.4%

Passed Failed OOV

Figure 10: Top-1 analogy results for syntactic versus seman-

tic abstractions. (The vocabulary minimum was 0, and the

number of training iterations was 1,000.)

To control for this effect and avoid such a disparity, we instead

compared configuration (1) against a configuration of our toolchain

that uses only łsyntacticž abstractionsÐi.e., abstractions that can be

applied without any information obtained from symbolic execution.

Thus, the syntactic abstractions are:

• FunctionStart and FunctionEnd,

• AccessPathStore(path), and

• Called(callee).

The rest of our abstractions use deeper semantic information, such

as constant propagation, dataflow information, or the path condi-

tion for a given trace.

Using only the syntactic abstractions, we generated a corpus of

traces, and then learned word vectors from the corpus. We com-

pared the newly learned word vectors to the ones obtained with

configuration (1). Fig. 10 clearly shows that semantic abstractions

are crucial to giving the context necessary for successful learning.

Even if we assess performance using only the analogies that are

in-vocabulary for the syntactic-based approach, we find that the

syntactic-based approach achieves only about 44% accuracy, which

is about half the accuracy of vectors learned from (mainly) semantic

abstractions.

These results support an affirmative answer to Research Ques-

tion 3: abstracted traces that make use of semantic information

obtained via symbolic execution provide more utility as the in-

put to a word-vector learner than abstracted traces that use only

syntactic information.

8 RQ4: USE IN DOWNSTREAM TASKS

Research Question 4 asks if we can utilize our pre-trained word-

vector embeddings on some downstream task.

To address this question, we selected a downstream task that

models bug finding, repair, and code completion in a restricted

domain: error-code misuse. We chose error-code misuse because

it allows us to apply supervised learning. Because there are only a

finite number of common error codes in the Linux kernel, we can

formulate a multi-class labeling problem using traces generated via

our toolchain and our pre-trained word-vector embeddings.

To build an effective error-code-misuse model, we gathered a

collection of failing traces (traces in which the $ERR token occurs).

We then constructed a dataset suitable for supervised learning as fol-

lows: we took each trace from configuration (2)10 and removed the

10The dataflow abstractions present in (1) were created to aid word-vector learners;
for this experiment, we use configuration (2) to exclude those abstractions.
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last three abstract tokens, namely, $ERR , $RET_E* , and $END ;11

we used the $RET_E* token as the label for the trimmed trace. We

sampled a subset of 20,000 traces from this large trace collection to

use for training our model.

This dataset is a good starting point, but feeding it to a machine-

learning technique that accepts fixed-length inputs requires further

processing. To preprocess the data, we kept only the last 100 tokens

in each trace.We then took the trimmed traces, and used our learned

word-vector embedding to transform each sequence of words into

a sequence of vectors (of dimension 300). If, originally, a trace had

fewer than 100 tokens, we padded the beginning of the trace with

the zero vector. We paired each of the trimmed and encoded traces

with its label (which we derived earlier). Finally, to complete the

preprocessing of the dataset we attached a one-hot encoding of the

label.

To collect a challenging test set to evaluate our learned model,

we turned to real bug-fixing commits applied to the Linux kernel.

We searched for commits that referenced an łincorrect returnž in

their description. In addition, we leveraged Min et al.’s [31] list of

incorrect return codes fixed by their JUXTA tool. Next, we gen-

erated abstracted symbolic traces both before applying the fixing

commit and after. Finally, we kept the traces generated before ap-

plying the fix that, after the fix, had changed only in the error code

returned. Using this process, we collected 68 tracesÐfrom 15 unique

functionsÐthat had been patched to fix an incorrect return code.

Using the preprocessed dataset, we trained a model to predict

the error code that each trace should return. We used a recurrent

neural network with long short-term memory (LSTM) [22]. We

evaluated the trained model, using our test set, in two different

ways:

(1) Bug Finding: we use our learned model to predict the three

most likely error codes for each trace in our test set. If a given

trace initially ended in the error code A , but was patched

to return the error code B , we check to see if the incorrect

A error code is absent from our model’s top-3 predictions.

(2) Repair / Suggestion:we again use the learned model to predict

the three most likely error codes for each trace in the test set.

This time, we determine the fraction of traces for which the

correct error code (i.e., B ) is present in the top-3 prediction

made by the model.

In evaluation (1), we found that the learned model identified an

incorrect error code in 57 of our 68 tests. This result is promising,

because it suggests that there is enough signal in the traces of

encoded vectors to make good predictions that could be used to

detect bugs early.

In evaluation (2), we observed that the learned model had a

top-3 accuracy of 76.5%, meaning that the correct error code is

among our top suggested fixes for more than three fourths of the

buggy traces. This result is a strong indicator that the learned

vectors and abstracted symbolic traces are rich enough to make

high-level predictions that could be used to augment traditional

IDEs with predictive capabilities. Such a feature could operate like

autocomplete, but with an awareness of what other contributors

11We exclude traces that included the $RET_PTR_ERR token because these traces do

not have an associated error code.

have done and how their (presumably correct) code should influence

new contributions. This feature would be similar to the existing

applications of statistical modeling to programming tasks such as

autocompletion [2, 10, 34, 38, 45].

These results support an affirmative answer to Research Ques-

tion 4: our pre-trained word-vector embeddings can be used suc-

cessfully on downstream tasks. These results also suggest that there

are many interesting applications for our corpus of abstracted sym-

bolic traces. Learning from these traces to find bugs, detect clones,

or even suggest repairs, are all within the realm of possibility.

9 THREATS TO VALIDITY

There are several threats to the validity of our work.

We leverage a fast, but imprecise, symbolic-execution engine. It

is possible that information gained from the detection of infeasible

paths and the use of a memory model would improve the quality

of our learned vectors. In addition, it is likely that a corpus of

interprocedural traces would impact our learned vectors.

We chose to focus our attention on the Linux kernel. It is pos-

sible that learning good word-embeddings using artifacts derived

from the Linux kernel does not translate to learning good word-

embeddings for programs in general. To mitigate this risk, we maxi-

mized the amount of diversity in the ingested procedures by ingest-

ing the Linux kernel with all modular and optional code included.

Our analogies benchmark and the tests based on word-vector

averaging are only proxies for meaning, and, as such, only serve as

an indirect indicator of the quality of the learned word vectors. In

addition, we created these benchmarks ourselves, and thus there

is a risk that we introduced bias into our experiments. Unfortu-

nately, we do not have benchmarks as extensive as those created

throughout the years in the NLP community. Similar to Mikolov

et al. [29], we hope that our introduction of a suitable benchmark

will facilitate comparisons between different learned embeddings

in the future.

10 RELATED WORK

Recently, several techniques have leveraged learned embeddings for

artifacts generated from programs. Nguyen et al. [36, 37] leverage

word embeddings (learned from ASTs) in two domains to facilitate

translation from Java to C#. Pradel and Sen [43] use embeddings

(learned from custom tree-based contexts built from ASTs) to boot-

strap anomaly detection against a corpus of JavaScript programs.

Gu et al. [17] leverage an encoder/decoder architecture to embed

whole sequences in their DeepAPI tool for API recommendation.

API2API by Ye et al. [51] also leverages word embeddings, but it

learns the embeddings from API-related natural-language docu-

ments instead of an artifact derived directly from source code.

Moving toward more semantically rich embeddings, DeFreez

et al. [12] leverage labeled pushdown systems to generate rich

traces which they use to learn function embeddings. They apply

these embeddings to find function synonyms, which can be used to

improve traditional specification mining techniques. Alon et al. [8]

learn from paths through ASTs to produce general representations

of programs; in [7] they expand upon this general representation by
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leveraging attention mechanisms. Ben-Nun et al. [9] utilize an in-

termediate representation (IR) to produce embeddings of programs

that are learned from both control flow and data flow information.

Venturing into general program embeddings, there are several

recent techniques that approach the problem of embedding pro-

grams (or, more generally, symbolic-expressions/trees) in unique

ways. Using input/output pairs as the input data for learning, Piech

et al. [42] and Parisotto et al. [39] learn to embed whole programs.

Using sequences of live variable values, Wang et al. [49] produce

embeddings to aid in program repair tasks. Allamanis et al. [4] learn

to embed whole programs via Gated Graph Recurrent Neural Net-

works (GG-RNNs) [26]. Allamanis et al. [5] approach the more foun-

dational problem of finding continuous representations of symbolic

expressions. Mou et al. [32] introduce tree-based convolutional neu-

ral networks (TBCNNs), another model for embedding programs.

Peng et al. [40] provide an AST-based encoding of programs with

the goal of facilitating deep-learning methods. Allamanis et al. [3]

give a comprehensive survey of these techniques, and many other

applications of machine learning to programs.

We are not aware of any work that attempts to embed traces

generated from symbolic execution. On the contrary, Fowkes and

Sutton [15] warn of possible difficulties learning from path-sensitive

artifacts. We believe that our success in using symbolic traces as

the input to a learner is due to the addition of path-condition and

dataflow abstractionsÐthe extra information helps to ensure that a

complete picture is seen, even in a path-sensitive setting.

In the broader context of applying statistical NLP techniques

to programs, there has been a large body of work using language

models to understand programs [1, 6, 21, 35, 46]; to find misuses [33,

50]; and to synthesize expressions and code snippets [18, 44].

11 EXPERIMENTAL ARTIFACTS

Our c2ocaml tool, which performs a source-to-source transfor-

mation during the compilation of C projects (to generate inputs

to our lightweight symbolic execution engine) is available at

https://github.com/jjhenkel/c2ocaml.

Our lightweight symbolic execution engine, lsee, is also avail-

able at https://github.com/jjhenkel/lsee.

Additionally, we provide tools to demonstrate our experiments at

https://github.com/jjhenkel/code-vectors-artifact [19].

This artifact allows the user to run our toolchain end-to-end on a

smaller open-source repository (Redis). The artifact uses pre-built

Docker [28] images to avoid complex installation requirements.

Our raw data (two sets of learned vectors and a full collection of

abstracted symbolic traces) are also included in this artifact.

12 CONCLUSION

The expanding interest in treating programs as data to be fed to

general-purpose learning algorithms has created a need for meth-

ods to efficiently extract, canonicalize, and embed artifacts derived

from programs. In this paper, we described a toolchain for effi-

ciently extracting program artifacts; a parameterized framework of

abstractions for canonicalizing these artifacts; and an encoding of

these parameterized embeddings in a format that can be used by

off-the-shelf word-vector learners.

Our work also provides a new benchmark to probe the quality of

word-vectors learned from programs. Our ablation study used the

benchmark to provide insight about which abstractions contributed

the most to our learned word vectors. We also provided evidence

that (mostly) syntactic abstractions are ill-suited as the input to

learning techniques. Lastly, we used these tools and datasets to learn

a model of a specific program behavior (answering the question,

łWhich error is a trace likely to return?ž), and applied the model

in a case study to confirm actual bugs found via traditional static

analysis.
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