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Abstract

Neural network-based dialog models often lack robustness to anomalous, out-of-1

domain (OOD) user input which leads to unexpected dialog behavior and thus2

considerably limits such models’ usage in mission-critical production environments.3

The problem is especially relevant in the setting of dialog system bootstrapping4

with limited training data and no access to OOD examples. In this paper, we explore5

the problem of robustness of such systems to anomalous input and the associated6

to it trade-off in accuracies on seen and unseen data. We present a new dataset for7

studying the robustness of dialog systems to OOD input, which is bAbI Dialog8

Task 6 augmented with OOD content in a controlled way. We then present turn9

dropout, a simple yet efficient negative sampling-based technique for improving10

robustness of neural dialog models. We demonstrate its effectiveness applied to11

Hybrid Code Networks (HCNs) on our data. Specifically, an HCN trained with12

turn dropout achieves more than 75% per-utterance accuracy on the augmented13

dataset’s OOD turns and 74% F1-score as an OOD detector. Furthermore, we14

introduce a Variational HCN enhanced with turn dropout which achieves more15

than 56.5% accuracy on the original bAbI Task 6 dataset, thus outperforming the16

initially reported HCN’s result.17

1 Introduction18

Data-driven approaches for building dialog systems have recently passed the stage of open-ended19

academic research and are adopted in platforms like Google Dialogflow, Apple SiriKit, Amazon20

Alexa Skills Kit, and Microsoft Cognitive Services. However, most of those platforms’ data-driven21

functionality is limited to Natural Language Understanding: user intent detection, named entity22

recognition, and slot filling. A more unified approach to dialog system bootstrapping — end-to-end23

dialog learning — is still only emerging as a commercial service, e.g. Microsoft Conversation Learner.24

Although still in its early age, end-to-end dialog learning from examples offers great potential: it25

doesn’t require advanced programming skills and thus it makes it possible for a wider range of users26

to create dialog systems for their purposes. In turn, in the enterprise environment, end-to-end dialog27

learning bridges the gap between user experience designers and the actual working systems thus28

making product cycles and overall workflow faster.29

From the technical point of view, the key issue in end-to-end training is the lack of robustness of30

the resulting systems. In the real-world setting of rapid dialog system prototyping, it is common to31

have only in-domain (IND) data for a closed target domain. This leads to a significant overfitting32

of machine learning methods and unpredictable behavior in the cases outside of what was seen33

during training. For a closed-domain dialog system, it’s extremely important to maintain predictable34

behavior on anomalous, OOD user input.35
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Figure 1: Hybrid Code Network model family

In this paper, we focus on studying the effect of OOD input on end-to-end goal-oriented dialog36

models’ performance and propose a simple and efficient solution to improving robustness only using37

IND data. Our contribution is thus two-fold:38

• We present a dataset for studying the effect of OOD input on dialog models.39

• We present turn dropout, an efficient negative sampling-technique for training dialog models40

that are capable of OOD handling using only the IND data.41

We show that HCN-based models enhanced with turn dropout show superior performance on OOD42

input, as well as surpass original HCN’s result on IND-only data.43

2 Related work44

Detection of anomalous input is a key research problem in machine learning. In the area of dialog45

systems, there is a series of approaches to detecting and processing of OOD input. If treated as46

a classification problem, this problem require both IND and OOD data [10, 13]. Although for47

the real-world scenario of end-to-end dialog system learning the task of collecting data covering48

potentially unbounded variety of OOD input is impractical. In contrast, there are also approaches like49

an in-domain verification method [7] and an autoencoder-based OOD detection [11] which do not50

require OOD data. However, they still have restrictions such that there must be multiple sub-domains51

to learn utterance representation and one must set a decision threshold for OOD detection. For a52

dialog system that is supposed to work in a single closed domain, these methods are not a viable53

solution.54

In contrast to those approaches, we present a simple and efficient technique for training dialog systems55

robust to OOD input in an end-to-end way, which allows the model to leverage the dialog context56

information to avoid the necessity of using IND data.57

3 Dataset for studying robustness of dialog systems58

In order to study the effect of OOD input on end-to-end dialog system’s performance, we used a59

dataset of real human-computer goal-oriented dialogs and augmented it with real user utterances60

from other domains in a controlled way using the open-source toolkit bAbI tools1 [12].61

As our main dataset, we use bAbI Dialog Task 6 [2], real human-computer conversations in the62

restaurant serach domain initially collected for Dialog State Tracking Challenge 2 [5].63

Our OOD augmentations are as follows:64

1https://bit.ly/babi_tools
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• turn-level OOD: user requests from a foreign domain — the desired system behavior for65

such input is the fallback action,66

• segment-level OOD: interjections in the user in-domain requests — treated as valid user67

input and is supposed to be handled by the system in a regular way.68

These two augmentation types reflect a specific dialog pattern of interest (see Table 2): first, the user69

utters a request from another domain at an arbitrary point in the dialog (each turn is augmented with70

the probability pood_start), and the system answers accordingly. This may go on for several turns71

in a row —each following turn is augmented with the probability pood_cont. Eventually, the OOD72

sequence ends up and the dialog continues as usual, with a segment-level OOD of the user affirming73

their mistake. For this study, we set pood_start to 0.2 and pood_cont to 0.42.74

While we introduce the OOD augmentations in a controlled programmatic way, the actual OOD75

content is natural. The turn-level OOD utterances are taken from dialog datasets in several foreign76

domains:77

• Frames dataset [1] — travel booking (1198 utterances),78

• Stanford Key-Value Retrieval Network Dataset [4] — calendar scheduling, weather informa-79

tion retrieval, city navigation (3030 utterances),80

• Dialog State Tracking Challenge 1 [15] — bus information (968 utterances).81

In order to avoid incomplete/elliptical phrases, we only took the first user’s utterances from the82

dialogs.83

For segment-level OOD, we mined utterances with the explicit affirmation of a mistake from Twitter84

and Reddit conversations datasets — 701 and 500 utterances respectively. Our datasets, as well as the85

tools for OOD-augmentation of arbitrary datasets of interest are openly available3.86

4 A data-efficient technique for training robust dialogue systems87

4.1 Models88

In this paper, we experiment with Hybrid Code Network family of models [14]. HCN is reported89

to be state-of-the-art for the original, IND-only bAbI Dialog Task 6 data. Thus, in this paper we90

experiment with it and explore its robustness to OOD input.91

HCN is a hierarchical dialog control model with a turn-level and a dialog-level components (we will92

call them both encoders). The turn-level encoder produces a latent representation of a single dialog93

turn, and the dialog-level one augments it with additional dialog-level features and produces a latent94

representation of the entire dialog with an RNN. The resulting representation is then fed into the95

predictor MLP which outputs the final dialog actions (restricted by expert-provided binary action96

masks). Our models are described below — they share the same dialog-level encoder and predictor.97

The differences are on the turn level and in the overall optimization objective (see Figure 1 for an98

illustration).99

HCN — the original model introduced by [14]. Its encoding of the turn t of N tokens is as follows:

HCNt =
1

N

∑
i

word2vec(ti)

Where word2vec is the pre-trained Google News word2vec embeddings (frozen at the training time).100

HCN’s optimization objective is catecogical cross-entropy with respect to negative log-likelihood101

(NLL) of resulting actions.102

Hierarchical HCN (HHCN) uses an RNN (in our case an LSTM cell [6]) for encoding each
utterance:

HHCNt = LSTM(t)

2We experimented with other values of pood_start and pood_cont but didn’t see significant differences in the
results. Further experiments for different domains are encouraged using the tools provided

3See <link anonymized>

3



The optimization objective is the same as of HCN. Variants of this model were described by [8] and103

[9].104

Variational HCN (VHCN) which, to the best of our knowledge, is presented here for the first time —
uses a Variational Autoencoder as the turn-level encoder, so that the resulting turn encoding is VAE’s
latent variable (normally referred to as z):

V HCNt = µ(LSTM(t)) + σ(LSTM(t)) ∗N(0, 1)

Where µ and σ are MLPs for predicting z’s posterior distribution parameters, and N(0, 1) is a sample105

from its prior distribution, a standard Gaussian [3].106

This model differs from the previous two in that it learns dialog control and autoencoding jointly. In
order to keep the secondary task less complex than the main one, we represent VAE’s reconstruction
targets as bags of words (BoW). Thus, VHCN loss function is as follows:

LV HCN = LNLL(ai) + LBoW (ti) + LKL(qz||pz)

In the above formula, the first term is the main task’s NLL loss for the dialog action ai, the second107

one is the VAE’s BoW reconstruction loss for the input turn ti, and the last turn is KL-divergence108

between the prior and posterior distribution of the VAE’s latent variable z — following [3], we109

compute it in a closed form.110

Another benefit of the BoW loss is, as reported in [16], it helps keep the variational properties of the111

model (i.e. non-zero KL-term) without the necessity of using the KL-term annealing trick [3] which112

is itself challenging to control in practice. Unlike the authors of the original BoW loss approach, we113

don’t stack softmax cross-entropy losses for each token and instead use a single sigmoid cross-entropy114

loss for the entire BoW vector.115

All the models above use the same dialog-level LSTM encoder with additional features concatenated116

to the turn representations: BoW turn features, dialog context features, and previous system action4.117

4.2 Turn dropout118

In order to train a system robust to OOD in the absence of real OOD examples, we employ a negative119

sampling-based approach and generate them synthetically from available IND data with a technique120

we call turn dropout. Namely, we replace random dialog turns with synthetic ones, and assign them121

the fallback action.122

More formally, our dialog features are as follows: < f_turn, f_ctx, f_mask, a >, i.e. turn features123

(token sequences), dialog context features, action masks, and target actions respectively.124

Under turn dropout, for a randomly selected dialog i and its turn j, we replace f_turnij with a125

sequence of random vocabulary words (drawn from a uniform distribution over the vocabulary) and126

UNK tokens, and corresponding aij with the fallback action, and leave all other features intact. In127

this way, we’re simulating anomalous turns for the system given usual contexts (as stored in the128

dialog RNN’s state), and we put minimum assumptions on the synthesized turns’ structure (we only129

limit their lengths to be within the bounds of the real utterances).130

5 Experimental setup and evaluation131

We train our models only using the original bAbI Dialog Task 6 dataset, and evaluate them on our132

OOD-augmented versions of it: we use the per-utterance accuracy as our main evaluation metric;133

the models are trained with the same hyperparameters (where applicable) listed in Table 3. The134

models use the common unified vocabulary including all words from our datasets (including OOD135

content): the intuition behind this is as follows: production dialog models often use word embedding136

matrices with vocabularies significantly exceeding that of the training data in order to take advantage137

of additional generalization power via relations like synonymy, hyponymy, or hypernymy normally138

efficiently handled by distributed word representations. Therefore, mapping every unseen word to an139

‘UNK’ doesn’t quite reflect that setting.140

4Without the loss of the architecture generality, we have action mask vectors as additional features for the
dialog-level LSTM [14], but they don’t convey any information and are always set to 1’s
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Model bAbI Dialog Task 6 bAbI Dialog Task 6 + OOD
Overall acc. Overall acc. Seg. OOD acc. OOD acc. OOD F1

HCN 0.557 0.438 0.455 0.0 0.0
HHCN 0.531 0.418 0.424 0.0 0.0
VHCN 0.533 0.413 0.413 0.0 0.0
TD-HCN 0.563 0.575 0.257 0.754 0.743
TD-HHCN 0.505 0.455 0.435 0.274 0.418
TD-VHCN 0.565 0.545 0.407 0.530 0.667

Table 1: Evaluation results

We tuned our models’ hyperparameters using 2-stage grid search, tracking the development set141

accuracy. At the first stage, we adjusted the embedding dimensionality of our models (and the latent142

variable size in case of VHCN). Then, given the values found, at the second stage we adjusted turn143

dropout ratio at the interval [0.05− 0.7]. Exact hyperparameter values are detailed in Table 3.144

The results are shown in Table 1 — please note, apart from the accuracies we report OOD F1-measure,145

a metric showing the model’s performance as a conventional OOD detector, with positive class being146

the fallback action, and negative — all the IND classes actions.147

Finally, given the stochastic nature of VHCN, we reported its mean accuracy scores over 3 runs (we148

used the same criterion for selecting the best model during the training procedure).149

6 Discussion and future work150

In this paper, we explored the problem of robustness of neural dialog systems to OOD input. Specifi-151

cally, we presented a dataset for studying this problem along with a general procedure for augmenting152

arbitrary datasets of interest for such purpose. Secondly, we introduced turn dropout, a simple yet153

efficient technique for improving OOD robustness of dialog control models and evaluated its effect154

on several Hybrid Code Network-family models.155

As our experiments showed, while learning to handle both IND and OOD input with access to156

IND-only data at the training time, there appears the following trade-off: a model performing better157

on the ‘clean’ test turns is prone to lower accuracy on OOD — it can be said that it slightly overfits158

to its devset. On the other hand, a model regularized with turn dropout during training naturally159

performs better on unseen OOD turns, but with not as high accuracy on its ‘clean’, IND test data.160

Another side of the trade-off is the accuracy of OOD detection vs robust handling of IND input161

with segment-level noise. As our results showed, models specifically trained for OOD detection all162

demonstrate lower accuracy on the noisy IND.163

Among the models we evaluated, it’s worth noting that the original HCN demonstrated the best164

performance as an OOD detector (more than 74% F1-score) and thus overall IND + OOD accuracy165

on the augmented dataset — more than 57%. While some parts of its architecture (e.g. mean166

vector-based turn encoding or bag-of-words feature vector at the utterance level) may not seem to be167

the most robust solution, the model demonstrate superior overall performance. Averaging at the turn168

level instead of recurrent encoding (the case of HHCN and VHCN) makes the model less dependent169

on actual word sequences seen during training but on the keywords themselves.170

In turn, VHCN demonstrated superior performance on IND data when trained with turn dropout,171

more than 56% — it benefited in terms of both overall accuracy and the absence of false-positive172

OODs thus outperforming the original HCN as reported by [14]. An additional challenge was to train173

it while keeping its variational properties (i.e. reasonably high KL term) — the BoW reconstruction174

loss which we used in order to simplify the secondary task, helped with this as well [16]. On the175

other hand, while achieving superior performance on clean data, VHCN’s properties didn’t result in176

OOD handling improvements.177

The question which is still unanswered is how these techniques apply to the setting of few-shot178

training. In the practical setup of training dialog systems from minimal data, having access to even179

medium-sized datasets like bAbI Dialog Task 6 isn’t realistic, and all the initial requirements for180

the models have to be met only using the minimal training data available. It’s the next step in our181
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research to explore how our techniques apply to this setup and what needs to be done in order to182

achieve OOD robustness with maximum few-shot data efficiency.183
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Appendix A238

1 sys: Hello, welcome to the Cambridge restaurant system. You can ask for restaurants by area,
price range or food type. How may I help you?

2 usr: I’d like to get away from Monday, August 15, 2016 to Wednesday, August 31, 2016.
My budget is $3200 and I would leave from Detroit.

3 sys: Sorry I didn’t catch that. Could you please repeat?
4 usr: Will there be frost in Durham next week?
3 sys: Sorry I didn’t catch that. Could you please repeat?
4 usr: So sorry man I want a moderately priced restaurant in the west part of town
5 sys: <api call>

Table 2: Augmented dialog example (OOD content in bold)

Hyperparameter HCN HHCN VHCN
Embedding size 64 128 128
Latent variable size — — 8
Learning rate 0.001
Optimizer Adam
Early stopping threshold (epochs) 20
Turn dropout ratio 0.4 0.6 0.3
Word dropout ratio 0.2

Table 3: Model hyperparameters
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