
Fall-curve: A novel primitive for IoT Fault Detection and
Isolation

Tusher Chakraborty, Akshay Uttama Nambi, Ranveer Chandra, Rahul Sharma, Manohar
Swaminathan, Zerina Kapetanovic, Jonathan Appavoo

Microsoft Research
t-tucha,t-snaksh,ranveer,t-rasha,manohar.swaminathan,v-zekap,t-joappa@microsoft.com

ABSTRACT
The proliferation of Internet of Things (IoT) devices has led to
the deployment of various types of sensors in the homes, offices,
buildings, lawns, cities, and even in agricultural farms. Since IoT
applications rely on the fidelity of data reported by the sensors, it
is important to detect a faulty sensor and isolate the cause of the
fault. Existing fault detection techniques demand sensor domain
knowledge along with the contextual information and historical
data from similar near-by sensors. However, detecting a sensor
fault by analyzing just the sensor data is non-trivial since a faulty
sensor reading could mimic non-faulty sensor data. This paper
presents a novel primitive, which we call the Fall-curve – a sensor’s
voltage response when the power is turned off – that can be used to
characterize sensor faults. Fall-curve constitutes a unique signature
agnostic to the phenomenon being monitored, using which it is
possible to identify the sensor and determine whether the sensor is
operating correctly.

We have empirically evaluated the Fall-curve technique on awide
variety of analog and digital sensors. We have also been running
this system live in a few agricultural farms, with over 20 IoT devices.
We were able to detect and isolate faults with an accuracy over 99%,
which are otherwise hard to detect only by observing measured
sensor data.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Hardware→ Fault tolerance;

KEYWORDS
IoT system; Fault detection; Fault isolation; Sensor identification;
Analog and Digital sensors, Reliability

ACM Reference Format:
Tusher Chakraborty, Akshay Uttama Nambi, Ranveer Chandra, Rahul
Sharma, Manohar Swaminathan, Zerina Kapetanovic, Jonathan Appavoo.
2018. Fall-curve: A novel primitive for IoT Fault Detection and Isolation.
In The 16th ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys ’18), November 4–7, 2018, Shenzhen, China. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3274783.3274853

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’18, November 4–7, 2018, Shenzhen, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5952-8/18/11. . . $15.00
https://doi.org/10.1145/3274783.3274853

1 INTRODUCTION
Internet of Things (IoT) systems gather data from various sensors,
which are processed to provide unique insights from the IoT deploy-
ment. These sensors are often battery powered, rely on low-cost
components, and might be deployed in harsh environments. Given
the likelihood of sensor failures, a key challenge in the design of
IoT systems is ensuring the integrity, accuracy, and fidelity of data
reported by the sensors.

To identify sensor failures, existing schemes typically use a data-
centric, rule-based approach [24, 25, 31, 34, 40]. These schemes
detect anomalies in the reported sensor data (see Table 1) for fault
detection. However, such an approach has a few limitations. First,
faulty sensor data can mimic non-faulty data. For example, sensor
data obtained when an “open” ADC/ground connection of a sensor
mimics non-faulty sensor data. We observed this phenomenon in
several instances in our real world deployment (see Section 2). Sec-
ond, an anomalous sensor reading is often not enough to identify
the root cause of the sensor failure. For example, an incorrect read-
ing could be caused by a bad sensor, low battery, or an error with
the microprocessor, among other factors. The capability to isolate
the faulty component is especially important for IoT deployments
where the field staff might have limited technical background, and
it might be expensive for staff with deep technical expertise to
reach remote areas, for example, in oil and gas, agriculture, mining,
forestry, and other verticals.

In this paper, we address the above challenges using a key in-
novation, called the Fall-curve. When a sensor is powered off it
continues to report data values for a short period of time, primarily
due to the parasitic capacitance of the sensor board. These values
decay in a characteristic “Fall-curve”. Our key observation is that
a sensor’s Fall-curve constitutes a unique signature and is agnos-
tic to the phenomena being monitored (See Figure 3). Hence, we
can leverage the Fall-curve based technique to identify the sensor
connected to an IoT device and determine whether the sensor is
correctly operating.

In a typical operation, the Fall-curves are sampled either peri-
odically, or on-demand in response to anomalous data. If there is
a suspected error in the reported readings, Fall-curve is used to
identify the likely cause of the error. Using several measurements,
we have shown that the above schemes, including the algorithms
to match Fall-curve, consume extremely low-power, and can be run
locally on the IoT device itself with less than 0.3% energy overhead.
We have implemented our system on a variety of analog and digital
sensors. We have also been running the system live in a few agricul-
tural farms, with over 20 IoT devices (having up to 4 sensors each)
that are monitoring soil properties over 3 months. In this setup, we
were able to identify sensors faults with an accuracy of 99.13%.

https://doi.org/10.1145/3274783.3274853
https://doi.org/10.1145/3274783.3274853

We note that the proposed Fall-curve based technique signifi-
cantly improves the state-of-the-art in sensor fault detection and
isolation in IoT systems. Fall-curve provides a way to identify faults
by shutting the power off to the sensor, and thus it is independent of
the sensing environment. Hence, it is able to identify faulty sensors,
even when the reported readings are similar to real-world data.
Finally, the Fall-curve based technique is able to isolate the cause of
the fault without requiring additional hardware, or spatiotemporal
correlation across multiple physical sensors. It also works across a
range of sensors and IoT environments.

Through this work, we make the following contributions:

• We introduce the concept of a Fall-curve as a way to char-
acterize a sensor, including theoretical analysis and experi-
mental evaluation over a range of sensors.

• We show that Fall-curves can identify faulty sensors, and
show how they can be used for both analog and digital sen-
sors, over a wide variety of sensors.

• We demonstrate the efficacy of the proposed technique for
detecting faults in a real-world agricultural IoT deployment,
where more than 20 IoT devices have been deployed in the
wild for over three months.

2 IoT DEVICE AND ITS FAULTS
A data fault refers to the data reported by an IoT device that is incon-
sistent with the measured phenomenon’s true behavior. Prevalent
research efforts have analyzed sensor data to detect faults from
various IoT deployments. Table 1 outlines the most common sen-
sor data faults observed in IoT deployments: short, spike, stuck-at,
noise, and calibration [31].

One possible way to detect these faults is using a data-centric ap-
proach, that extracts features based on the characteristics of sensor
data to define expected behavior for both faulty and non-faulty sen-
sor data [24, 31]. Due to the nature of IoT deployments (diverse and
in-wild), detecting and isolating faults requires significant domain
knowledge, historical data, and contextual information, eventually,
often requiring human intervention to isolate the faults [24, 25, 31].
Table 1 (Columns 3 & 4) describes the prerequisites for detecting
faults in an IoT device using the data-centric approaches.

This necessitates going beyond data-centric approaches for fault
detection and isolation. Here, the hypothesis is that all the data
faults encountered in an IoT system can be mapped to a set of
failures in an IoT device [24, 31]. The core components of a typical
IoT device are (i) microcontrollers, (ii) sensors, (iii) connectivity
modules, and (iv) batteries. Based on the extensive empirical evalu-
ation and state-of-the-art studies, we present a mapping between
sensor data faults to probable system-centric faults as shown in
Table 1 (Column 5). It can be seen that most sensor data faults can
be mapped to a finite set of IoT system components1 such as sensor,
battery, microcontroller, and ADC (analog-to-digital converter) .

Sensor data faults due to failure in a microcontroller, ADC and/or
battery can be determined by actively probing the system compo-
nents. For example, faults in a microcontroller such as swiss chess
problem in SRAM, GPIO writing delay, interrupt failure, etc., can be

1Here, we do not consider missing data faults which are mostly related to the commu-
nication part in a sensor network deployment.

10 20 30 40 50 60 70

Data sequence

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

Node 15

Node 19

Node 10

(a) Mimic non-faulty data

10 20 30 40 50

Time (minutes)

0

500

1000

1500

2000

1
2

-b
it
 A

D
C

 v
a

lu
e

(b) Novelty data

Figure 1: Challenges in accurately detecting faults.

determined using real-time software-based self-testing (SBST) tech-
nique [6]. SBST is a classical method for testing different modules
by exploiting a predefined test program, wherein the microcon-
troller executes the test program. Similarly, low battery voltage, as
well as battery fluctuation, is one of the prevalent sensor data faults
in an IoT deployment. Faults induced due to battery fluctuations
can be determined by analyzing if the response of a sensor to a
battery voltage fluctuation is within a permissible range (typically
described in the sensor datasheet).

On the other hand, sensor failures are often the most common
causes of sensor data faults in IoT deployments. Sensor failures
can be transient or permanent due to malfunction of sensor hard-
ware circuity, physical damage to the sensor, exposure to the harsh
environment (e.g., high temperature), etc. We now illustrate why
detecting sensor data faults is challenging using a data-centric ap-
proach. Consider a sensor deployment in an agricultural farm to
monitor the soil moisture value at different soil depths without
having any prior data. In this case, the spatial correlation of sensor
data is not effective given the heterogeneous nature of the field.
Further, temporal correlation requires irrigation timing information
and rainfall detection, which are loosely correlated across the field
due to the diversity in moisture sensing depth, soil texture, and
characteristics. Thus, it is impossible to model sensor data without
significant domain and contextual information.

Figure 1(a) represents a scenario where faulty sensor data mimics
non-faulty sensor data in our real-world deployment. In this figure,
we depict soil moisture sensor values from three different IoT de-
vices deployed in the farm. The devices are time synchronized and
sensor data from all three sensor nodes are in the expected range.
However, from manual field investigation, we found an open ADC
wire connection fault in Node 19. Here, the open ADC was acting
as an antenna which was picking a signal from the PCB traces and
generating values which mimic real sensor data. A similar fault can
also be observed in case of an open ground connection. Hence, it is
crucial to accurately monitor the condition of the sensor.

Similarly, Figure 1(b) shows data from an LDR sensor deployed
in a room. It can be seen that the sensor data exhibits periods where
light values are significantly high. These regions correspond to the
abrupt changes in room-lighting. While traditional data-centric
models might raise a false alarm here, our investigation identified
these as valid data. Hence, fault detection techniques need to be
robust to isolate novel data from faulty data.

Table 1: Fault categorization in IoT deployments using data-centric approaches and the corresponding system-centric causes.

Fault Definition Prerequisites for detection
Further

investigation
required?

Possible system-centric causes

Short A data point that significantly deviates from the
expected temporal or spatial trend of the data

Domain knowledge of sensor readings,
spatiotemporal context, sensor redundancy,

historical data
Yes Battery fluctuation, transient sensor malfunction, loose

wire connection, etc.

Spikes
A rate of change much greater than expected over a
short or longer period of time which may or may not

return to normal afterwards

Domain knowledge of sensor readings,
spatiotemporal context, sensor redundancy,

historical data, human intervention, correlation
Yes Low battery, ADC failure, trigger failure, short-circuit,

loose wire connection, control unit fault, etc.

Stuck-at A series of data points having zero or almost zero
variation for a period of time greater than expected

Domain knowledge of sensor readings,
spatiotemporal context, sensor redundancy,

historical data, spatial correlation
Yes

ADC failure, trigger failure, control unit fault,
short-circuit, open connection, clipping, sensor

malfunction etc.

Noise Sensor data exhibiting an unexpectedly high amount of
variation over temporal domain

Spatiotemporal context, prior knowledge,
correlation, human intervention, sensor redundancy

Depends on
context

Battery fluctuation, open connection, Trigger failure,
sensor malfunction, etc.

Calibration Sensor data may have offset or have a different gain
from the ground truth values

Domain knowledge of sensor readings, sensor
redundancy, spatial correlation Yes Sensor drift, ADC drift, battery offset, control unit fault,

sensor malfunction, etc.

 Sensor ON
Time

S
en

so
r o

ut
pu

t

Sensor OFF

Data acquisition

Sensor OFF

Fall-curve
accumulation

Figure 2: Overview of sensor Fall-curve accumulation.

To overcome the above challenges, we present a novel Fall-curve
based technique to reliably detect and isolate sensor faults in Sec-
tion 3. Further, in Section 5 we describe Fall-curve processing on
the IoT device to determine the operation of the sensor (faulty or
non-faulty) in real-time.

3 FALL-CURVE
As described in the previous section, data-centric approaches fail to
reliably detect faults associated with the sensors. For example, an
analog sensor having a hardware malfunction continues to generate
a faulty analog signal and can mimic non-faulty data. Hence, it is
challenging to distinguish between a faulty and non-faulty sensor
data. In this section, we propose a technique to detect faults in
analog and digital sensors with a novel primitive – Fall-curve.

It is common practice in IoT systems to power on sensors only
for the period of data collection in order to save energy. Typically,
when the sensor is turned off the output signal takes a certain
amount of time before going down to zero, which is known as Fall-
time [26]. This Fall-time is primarily due to parasitic capacitance
in a sensor circuit that exists between the parts of an electronic
component or PCB traces because of their proximity to each other.

During the powered ON state of a sensor, these parasitic capaci-
tors charge and when the power is turned off, they start discharging
over the circuit of the sensor. Consequently, the sensor’s voltage
response when the power is turned off goes down to zero following
a curve, which we define as the “Fall-curve". The characteristic
of the Fall-curve also depends on the electronic components and
circuitry of a sensor. To measure the Fall-curve, we continue to
sense the ADC reading for a short period of time after turning off
the sensor. Figure 2 shows the overview of Fall-curve accumulation
after turning off the sensor.

3.1 Fall-curve characteristics
To study the characteristics of Fall-curve across different sensors,
we conducted several testbed experiments with over 20 different
sensor types. These sensors are commonly used in diversified IoT
applications, such as agriculture, robotics, air quality monitoring,
smart home, etc. The set of sensors includes soil moisture (from
different manufacturers), soil temperature, ambient temperature,
accelerometer, current sensor, ambient light sensor (LDR), different
gas sensors (MQ series), obstacle detector, heart rate sensor, sound
sensor, vibration sensor, hall effect sensor, line tracker sensor, etc.
Here, to accumulate a Fall-curve through ADC, we used two differ-
ent microcontroller-based development boards: ATmega328P based
Arduino Uno [2] and ARM Cortex M4 based Tiva TM4C123G [12].
Figure 3 shows the experimental results and depicts the character-
istics of the Fall-curve for various sensors.

Characteristic-1: Uniqueness. Figure 3a shows Fall-curves for
7 non-faulty sensors. The x-axis indicates the time in microseconds
and the y-axis shows the sensor value obtained from a 12-bit ADC.
It can be seen that each sensor has its own unique Fall-curve due to
the varying parasitic capacitance and circuitry in the sensor. Thus
each sensor has a unique Fall-curve signature that can be leveraged
to identify the sensor attached to the microcontroller.

Characteristic-2: Independent of the environment or sens-
ing phenomenon. As described in Figure 2, the Fall-curve is accu-
mulated only after the sensor is turned off, and hence, the Fall-curve
data collected should be agnostic to the phenomena being moni-
tored. To evaluate this we analyzed the Fall-curve data of a sensor
at different initial sensor values. For example, we accumulated Fall-
curve of a soil moisture sensor when it was measuring moisture
content at 80%, 65%, and 55%, respectively. Figure 3b shows the
Fall-curves of a soil moisture at different initial sensor values. The
Fall-curves of the same soil moisture sensor has similar character-
istics, even though, the measured moisture contents were different
in each iteration (Itr). Figure 3b also shows Fall-curves of a current
sensor with different starting current values.

Characteristic-3:Manufacturer dependent. The circuitry as-
sociatedwith a sensor type varies from onemanufacturer to another.
This variation is due to the use of different resistor/capacitor values,
dissimilar component models (part numbers), circuitry manufac-
turing variations, etc. Consequently, leading to a varying parasitic
capacitance of a sensor circuit. Thus, the Fall-curves of the same
sensor from different manufacturers should be distinguishable. To
evaluate this, we performed an experiment involving two soil mois-
ture sensors from each of two different manufacturers. Figure 3c

10 20 30 40 50

Time (microseconds)

0

1000

2000

3000

4000
1

2
-b

it
 A

D
C

 v
a

lu
e

Accelerometer
Current sensor
Hall sensor
LDR sensor
Line tracker
Soil moisture
Sound sensor

(a) Uniqueness

5 10 15 20 25 30

Time (microseconds)

0

1000

2000

3000

4000

1
2

-b
it
 A

D
C

 v
a

lu
e

Soil moisture (Itr. 1)
Soil moisture (Itr. 2)
Soil moisture (Itr. 3)
Curr. sensor (Itr. 1)
Curr. sensor (Itr. 2)
Curr. sensor (Itr. 3)

(b) Independent of environment

20 40 60 80 100

Time (milliseconds)

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

M1, SM1

M1, SM2

M2, SM3

M2, SM4

(c) Manufacturer dependent

Figure 3: Fall-curve characteristics across various sensors.

R

R

R

1

Probes

2
Cp

2N3904

Output

Vcc

(a) Soil moisture sensor

5 10 15

Time (microseconds)

0

1000

2000

3000

4000

1
2

-b
it
 A

D
C

 v
a

lu
e

Simulation

Experimental

(b) Fall-curve comparison

Figure 4: Theoretical analysis of the Fall-curve.

shows the Fall-curves for various soil moisture sensors, where SM1,
SM2 are from Manufacturer 1 (M1) and SM3, SM4 are from Manu-
facturer 2 (M2). It can be seen that Fall-curves of SM1/SM2 fromM1
has a distinguishable characteristic compared to SM3/SM4 fromM2.
Thus, the same sensor from different manufacturers has a distinct
Fall-curve. Furthermore, two sensors from the same manufacturer
will have similar Fall-curves (as seen in Figure 3c where Fall-curves
of SM1 and SM2 resemble each other).

Thus, the above three characteristics of the Fall-curve enable
robust identification of the sensor connected to the microcontroller.
Further, the Fall-curves can be leveraged to detect and isolate sensor
faults without any hardware modification or human intervention.

3.2 The underlying physics
In the previous section, we described the key characteristics of a
Fall-curve. Further, we experimentally analyzed that any significant
change in the overall sensor circuitry will impact the Fall-curve
characteristics. In order to validate and generalize these observa-
tions, we use a simulator to characterize the sensor behavior. First,
we derive the sensor circuitry using the sensor’s datasheet (from
the manufacturer) to determine the parasitic components. We then
feed this circuitry to the SPICE simulator [18] to extensively study
the Fall-curve characteristics.

To this end, we perform an extensive analysis of the Fall-curve
for a resistive soil moisture sensor, viz., SEN13322 [33]. Figure 4a
shows the circuit of the SEN13322 sensor (from its datasheet) that
consists of a transistor (2N3904), two resistors (R1, R2), and two
resistive probes represented as a single resistance across their out-
puts (Rprobes). Given there exists no capacitance in the sensor

circuitry, we would expect the Fall-curve to drop down immedi-
ately to zero. We can represent this by deriving the equation for
the output voltage of the sensor. To do so, we must first analyze
the base current (IB) and emitter current (IE) of the transistor,
IB =

Vcc−0.6
(R1+Rprobes)+(1+β)∗R1

and IE = IB ∗ (β + 1), where β is the
transistors current gain and Vcc is the input voltage.

Using these two equations, we can now derive the equation for
the output voltage,

Vout = R2 ∗
((Vcc − 0.6) ∗ (1 + β)
(R1 + Rprobes) + (1 + β) ∗ R1

)
(1)

The soil moisture sensor can experience a variety of changes,
for example, the resistance of Rprobe changing due to the moisture
content of the soil. Hence, to analyze this circuit extensively we use
a SPICE simulator [18]. To ensure we have an accurate simulation,
we use the same component values that are on the physical circuit,
where R1 = 100Ω, R2 = 10kΩ, and a 2N3904 Bi-Polar NPN transis-
tor are used. To set Rprobes , we measured the resistance across the
resistive probes when under wet conditions, which came out to be
approximately 1500kΩ. The voltage supply was set to be a square
wave at 5V.

In our simulations, we observed that Fall-curve drops immedi-
ately down to zero, as expected. However, the experimental results
showed a delay in the Fall-curve, implying that a small amount
of capacitance is present at the output terminal of the sensor. In
order to justify the experimental result for the Fall-curve, we an-
alyze the parasitic capacitance of the circuit. For this sensor, the
parasitic capacitance from the copper trace at the output terminal
is approximately 30pF (found after extensive evaluation). Using
the SPICE simulator, we included this parasitic capacitance at the
output terminal, shown in red in Figure 4a, and re-evaluated the
Fall-curve. When the parasitic capacitance is considered, the Fall-
curve characteristics of the soil moisture sensor in simulation and
experiments align quite well as seen in Figure 4b. This can be also
represented by multiplying Eq. 1 by e−t/Cp . Thus Fall-curves of any
sensor can be modeled by analyzing the sensor circuity obtained
from the datasheet.

4 SENSOR IDENTIFICATION AND FAULT
DETECTION USING FALL-CURVES

In Section 3.1 we discussed the three key characteristics of the
Fall-curve viz., uniqueness, independent of the environment, and
manufacturer dependent. In this section, we first present how to

identify a sensor connected to a microcontroller using the Fall-
curve characteristics. We then describe how to reliably detect and
isolate sensor faults in an IoT deployment.

4.1 Sensor identification
A typical IoT device consists of multiple ports to which various
sensors are connected. The measured raw sensor data at each port
is then processed either locally or transmitted to the cloud for
human-interpretability. The processing formula for this raw sensor
data is dependent on the sensor type and the manufacturer. For
example, two temperature sensors from different manufacturers
can have different processing formulas. Hence, if one mistakenly
connects a sensor to a wrong port (during sensor attachment or
replacement), the IoT device still continues to get raw data from
the sensor, however, incorrectly processed due to the application
of wrong processing formula. This necessitates knowing the <
sensor ,port > information, i.e., the port to which a particular sensor
is connected, for correctly processing the raw sensor data.

Sensor identification problem can be solved by utilizing two key
characteristics of the sensor Fall-curve – uniqueness and manufac-
turer dependent. These properties ensure each sensor type has a
unique Fall-curve, which can be used to identify the sensor attached
to a port. To show the effectiveness of sensor identification, we
performed an experiment using an IoT device that is monitoring
ambient light and temperature every 15 minutes in a building. Fig-
ure 5a shows the analog sensor value of a light sensor attached to an
IoT device on Port 1. The x-axis indicates the data sequence where
each point indicates 15 minutes time interval. Figure 5b shows the
corresponding human-interpretable sensor data in illuminance (lx)
after applying the sensor-specific processing formula (obtained
from the datasheet). After some time period, we physically replaced
the light sensor with a temperature sensor, specifically at data
sequence 24 as shown in Figure 5a. In this scenario, one cannot
determine if there is a fault in the sensor data as the data is well
within the permissible range of the light sensor (see Figure 5b). In
such cases, the proposed Fall-curve based technique can identify
the sensor attached to the port as the Fall-curves obtained before
and after sensor change should be significantly different. Figure 5c
shows distinctive Fall-curves before (LDR light sensor) and after
(temperature sensor) the sensor change. Thus, we can reliably de-
tect sensor port change and either alert the IoT designer to update
the processing formula or automatically detect the new sensor con-
nected to the port and adapt the processing formula locally on the
IoT device. Figure 5d shows the human-interpretable sensor data
after applying the correct processing formulas upon detection of
sensor change.

4.2 Sensor fault detection
There are two main types of sensors: analog and digital sensors.
Analog sensors generate a continuous output signal which is typ-
ically proportional to the value being measured. They interface
with a microcontroller through an ADC. Digital sensors produce
a discrete digital output signal and interface with the microcon-
troller using a digital communication protocol, e.g., I2C, RS485, SPI,
etc. In this section, we describe how we can leverage Fall-curve to
accurately detect analog and digital sensor faults.

10 20 30 40 50

Data sequence

0

200

400

600

800

1000

1200

1
2

-b
it
 A

D
C

 v
a

lu
e

Sensor change

(a) Light sensor data

10 20 30 40 50

Data sequence

0

200

400

600

Il
lu

m
in

a
n

c
e

 (
lx

)

Sensor change

(b) Human-interpretable light data

10 20 30 40 50

Time (microseconds)

0

200

400

600

800

1000

1200

1
2
-b

it
 A

D
C

 v
a
lu

e

LDR (Before)

Temp. (After)

(c) Fall-curves

10 20 30 40 50

Data sequence

0

200

400

600

Il
lu

m
in

a
n
c
e
 (

lx
)

20

25

30

T
e
m

p
.
(C

e
ls

iu
s
)

LDR

Temp.

(d) Human interpretable data after apply-
ing correct processing formula

Figure 5: Sensor port mismatch and identification.

4.2.1 Analog sensor fault detection. Based on the discussion
so far, we can deduce that any permanent or transient hardware
malfunction in a sensor results in a change of Fall-curve shape. We
use this phenomenon to detect non-faulty and faulty sensors. To
evaluate this, we conducted several experiments wherewemanually
injected faults in the sensor by physically damaging sensors or
exposing to heat, or passing current with high voltage, etc., which
occurs commonly in an IoT deployment.

Figure. 6a shows a broken (faulty) and working soil moisture
sensor, and Figure 6b shows the corresponding Fall-curves. We can
see that Fall-curve for a broken sensor is significantly different
from that of a working sensor, which can be used to determine
faulty sensors. Figure 7a shows a faulty accelerometer sensor where
we manually applied a high voltage beyond its tolerance limit. In
Figure 7b, we see the contrast between the Fall-curves of a faulty
and non-faulty accelerometer. Note that, in both of the scenarios,
the damaged/faulty sensor was generating some sensor data in the
valid data range.

Finally, we also evaluate a scenario where the port is open and
the IoT device still reads some data (port acting as an antenna and
picking some signal from the PCB traces). Figure 7b shows distinc-
tive Fall-curves when the ADC port is open and when the port is
connected to a working sensor. Thus, Fall-curve can identify faults
in analog sensors without any additional hardware or contextual
information about the IoT sensor deployment.

4.2.2 Digital sensor fault detection. A digital sensor has two
main components – digital block and an analog block. The dig-
ital block contains a digital data processing and communication
unit, memory, and internal ADC. The analog block contains one or
multiple analog sensing modules. The measurement of sensing phe-
nomenon begins as an analog signal, which is then converted into

(a)

2 4 6 8 10

Time (microseconds)

0

1000

2000

3000

4000

1
2

-b
it
 A

D
C

 v
a

lu
e

Working

Broken

(b)

Figure 6: Manually injected faults: Soil moisture.

(a)

20 40 60 80 100

Time (microseconds)

0

1000

2000

3000

4000

1
2

-b
it
 A

D
C

 v
a

lu
e

Working

Faulty

Open port

(b)

Figure 7: Manually injected faults: Accelerometer.

Figure 8: Fall-curve accumulation in digital sensor.

a digital signal through ADC in the digital block and transmitted
to the external microcontroller.

In a faulty digital sensor, any or both of the blocks can fail. If the
digital block of the sensor is faulty, it can easily be detected as the
sensor stops responding or transmits default out-of-service value.
However, if the analog block is faulty, the digital block continues
to process and transmit the faulty signal from the analog sensing
module(s). While the Fall-curve based fault detection of the analog
sensor is possible, the external microcontroller does not have access
to the analog block of the digital sensor. To this end, we propose
a single-wire connection between the analog sensing module and
the ADC port of the external microcontroller.

Figure 8 depicts a block diagram of a microcontroller and digital
sensor interfacing along with the proposed single-wire connection.
Note that this single-wire connection does not have any influence
on off-the-shelf digital sensor data communication. The single-
wire connection is only utilized to accumulate Fall-curve when the
sensor is turned off. Thus, we can detect faults in a digital sensor at
both, (i) digital block: checking for response from the digital block
and (ii) analog block: by accumulating the Fall-curve.

5 10 15

Time (hours)

0

20

40

60

T
e

m
p

e
ra

tu
re

 (
c
e

ls
iu

s
) Working

Faulty

(a)

2 4 6 8 10

Time (milliseconds)

0

1000

2000

3000

4000

1
2

-b
it
 A

D
C

 v
a

lu
e

Working

Faulty

(b)

Figure 9: Non-faulty vs faulty digital DHT sensor.

Figure 10: Block diagram of Fall-curve processing pipeline.

Figure 9a shows an instance of faulty and non-faulty DHT sen-
sor [22] where the x-axis shows the time in hours and the y-axis
shows the temperature values in degree Celsius. On one of the
DHT sensor, we replaced the analog temperature module (thermis-
tor) with a faulty thermistor. While the temperature readings from
both the sensors look normal (within valid range), upon analyzing
the Fall-curves (see Figure 9b), we can detect that one of the DHT
sensors is faulty. This fault could not have been detected using
any other techniques unless having more co-located sensors. In
Section 6.5 we present some of the limitations of the proposed Fall-
curve based technique to reliably detect faults in a digital sensor.

5 FALL-CURVE PROCESSING
A key challenge in using the proposed Fall-curve primitive is that
one has to analyze and match the Fall-curves for each sampled sen-
sor data. In this section, we first present an edge machine learning
algorithm that can run on the microcontroller in real-time to (i)
determine if the sensor is faulty or non-faulty and (ii) identify the
sensor. We then describe various schemes that allow IoT designers
to determine the granularity of fault probing in an IoT device.

5.1 Edge algorithm to process Fall-curve
As mentioned earlier, the Fall-curve is collected for a short period
of time when the sensor is turned off (see Figure 2). Our proposed
edge algorithm pipeline has two stages as shown in Figure 10, (i)
pre-deployment stage, wherein the Fall-curves for each sensor is
collected and analyzed to extract key features and (ii) deployment
stage, wherein the features from a new Fall-curve is matched with
the previously extracted features to detect and isolate faults.

5.1.1 Pre-deployment stage. In this stage, we first collect the
Fall-curves for all non-faulty sensors used in an IoT deployment.

20 40 60 80 100

Fall-curve width

60

70

80

90

100
A

c
c
u

ra
c
y

(a) Fall-curve width

0 5 10 15 20

Polynomial degree

60

70

80

90

100

A
c
c
u

ra
c
y

(b) Polynomial degree

50 100 150 200

of data points (Cluster)

60

70

80

90

100

A
c
c
u

ra
c
y

(c) # of clusters

Figure 11: Effect of varying hyper-parameters on accuracy.

We then find the best feature vectors that can be used to represent
a Fall-curve. These feature vectors are further optimized to derive
a feature dictionary for all sensors that can be loaded into the
microcontroller towards sensor identification and fault detection.
We now describe the steps involved:

(1) When installing the sensors for the first time we record the
Fall-curves of the non-faulty sensors and their corresponding
sensor label.

(2) We then fit a polynomial curve to each Fall-curve time-series
and use the corresponding polynomial coefficients as the
feature vector.

(3) We perform clustering on these polynomial features for each
sensor type to identify the unique features. This significantly
reduces the search space and generates a smaller dictionary
of polynomial features.

(4) Considering the resource and power constraints of the IoT
devices, we optimize a set of hyper-parameters viz., Fall-
curve width2, degree of polynomial, and number of clusters.

(5) The resulting feature dictionary alongwith the chosen hyper-
parameters is then loaded onto the IoT devices for real-time
Fall-curve analysis.

Note that, the aforementioned pre-deployment steps are performed
with only non-faulty sensors before deploying in the field.

5.1.2 Deployment stage. In the deployment stage, we first ex-
tract the polynomial features of a new Fall-curve, then find its
nearest neighbor from the feature dictionary obtained during the
pre-deployment stage. If the nearest neighbor distance is within a
certain threshold we classify the Fall-curve as working and assign
the corresponding sensor label, else we classify the sensor as faulty
and send the Fall-curve to the gateway/cloud for further processing.
The nearest neighbor search is performed locally on the IoT devices
using an efficient algorithm – ProtoNN [11].

5.1.3 Evaluation. We first present how to select optimal hyper-
parameters and then present overall accuracy achieved in identify-
ing the sensors and detecting sensor faults.
1. Selection of hyper-parameters: As described in Section 5.1.1,
the proposed edge algorithm enables IoT designers to trade-off
accuracy based on resource and power constraints on the IoT device.
There are three hyper-parameters that can be fine-tuned based on
the fault detection accuracy.

2A Fall-curve width of n implies the first n samples from the Fall-curve time-series.

Table 2: Performance of Fall-curve processing
Sensor Accuracy Precision Recall
Faulty sensor 98.88 93.54 94.15
Accelerometer 99.49 96.92 97.50
Current sensor 100.00 100.00 100.00
Hall sensor 100.00 100.00 100.00
LDR sensor 99.82 99.48 98.50
Line tracker 99.34 99.79 92.90
Soil moisture (Gravity) 99.79 99.20 98.50
Soil moisture (Vegetronix) 99.57 95.48 100.00
Soil temperature 99.76 97.47 100.00
Sound sensor 100.00 100.0 100.00
Vibration sensor 100.00 100.0 100.00

(i) Fall-curve width: Each Fall-curve has a different fall-time to
reach zero (see Figure 3). Intuitively, the larger the Fall-curve width
the higher is the time and energy required to process the Fall-curve
samples. Figure 11a shows the trade-off in the accuracy of detecting
a sensor for varying Fall-curve width. We can see that the accuracy
saturates after Fall-curve width of just 10 samples, indicating, the
polynomial curve fitting is able to capture the key features of the
Fall-curve with just a few samples.

(ii) Polynomial degree: In general, as we increase the polynomial
degree, the accuracy also increases up to a certain extent. However,
the higher the polynomial degree the higher is the resource require-
ment. Figure 11b shows the detection accuracy across different
polynomial degrees. We can see that up to polynomial degree of 8
the accuracy is close to 98%, after which the accuracy drops. This
accuracy drop indicates that the higher polynomial degrees are not
able to capture any new information in the Fall-curve.

(iii) Number of clusters: A Fall-curve for the same sensor might
have some variations resulting in different polynomial coefficients/
features. To eliminate this variation, we perform clustering across
all polynomial features obtained for a particular sensor. Thus re-
sulting in a set of optimal polynomial features for each sensor. A
lower number of clusters reduces the time required to match the
polynomial features. Figure 11c shows the accuracy across varying
number of clusters. We can see that the accuracy saturates after
the number of clusters is greater than 10.

Thus, we select Fall-curve width of 10 samples and polynomial
degree of 4 with 10 clusters as our optimal values.
2. Accuracy: In order to evaluate the proposed edge algorithm,
we use 10 different sensors with each having 1000 non-faulty and
2000 faulty Fall-curve instances collected from lab experiments
and real-world deployments. We use the optimal hyper-parameters
selected above to determine the accuracy of identifying the sensor.

Note that, if the Fall-curve is not matched to one of the sensors,
then we classify the Fall-curve as faulty.

Table 2 shows the Accuracy, Precision, and Recall values in per-
centage for 10 sensors. Accuracy is the ratio of correctly predicted
instances to the total number of instances. We can see that among
20000 faulty Fall-curves across 10 sensors, the proposed algorithm
is able to detect 19776 Fall-curves as faulty, resulting in an accuracy
of 98.88% (shown in row 1 of Table 2). Furthermore, our algorithm
achieves an overall accuracy of 99% in identifying the correct sensor.

5.2 Fault analysis schemes
We now present various schemes for Fall-curve based fault analysis.
These schemes allow designers to trade off accuracy, granularity of
fault analysis, and power consumption to determine the quality of
data as required by their particular IoT application.

5.2.1 Sampling interval triggered fault analysis. The number of
sensor readings taken by an IoT device is governed by the sampling
interval. Generally, the sampling interval is set based on the ap-
plication scenario and power requirements. Fall-curve based fault
analysis can be triggered based on the sampling interval that is
controlled with a rate parameter (r), which determines the gran-
ularity for fault analysis. If r = 1 fault analysis is triggered for
every sensor reading, which is beneficial for IoT applications that
require highest data fidelity, for example, when the phenomenon
being monitored continuously varies. Similarly, r = 100 implies
fault analysis performed on every 100th sensor reading. A low rate
parameter has a bearing on power consumption, however, supports
higher accuracy. A high rate parameter comes up with a probability
of missing faulty data points from being probed, which may be
acceptable if the required data fidelity is not high. Upon detection
of a fault, this scheme adapts the rate parameter to a lower value in
order to aggressively probe for faults, otherwise, it maintains the
pre-defined rate parameter.

5.2.2 Event triggered fault analysis. In this scheme, we first ana-
lyze the sensor data and look for an outlier event. Upon detecting
an outlier event, Fall-curve based fault analysis is triggered for a
definitive answer. Outlier detection could be a simple rule-based
detection to complex Hidden Markov Models (HMM) or artificial
neural networks. Note that, hitherto fault analysis scheme is only
triggered based on an investigation on sensor data. As described in
Section 2 (see Figure 1a), there are scenarios where faulty sensor
data can mimic non-faulty sensor data. While this scheme is effi-
cient in detecting faults when the sensor data has an outlier, it may
miss probing faulty data points in the aforementioned scenarios.

5.2.3 Hybrid fault analysis. This scheme combines both sam-
pling interval triggered and event triggered fault analysis schemes.
Here, a Fall-curve based fault analysis is triggered on a particular
interval defined by the rate parameter, or after an outlier event
detection in sensor data. Hence, it decreases the chance of missing
faulty data points from being probed compared to the two afore-
mentioned schemes, and thus increases the accuracy. In addition, it
is power-efficient compared to the sampling interval triggered fault
analysis having a low valued rate parameter. Upon detection of a
fault, this scheme also adapts the rate parameter to a lower value
in order to aggressively probe for faults.

(a) Internal components (b) Deployed sensors

Figure 12: IoT sensor node deployed in agricultural farms.

6 EVALUATION
We evaluated Fall-curve based technique on a large-scale IoT de-
ployment over a period of three months. In this section, we first
delineate our IoT node design and deployment setup. We then high-
light the faults we encountered in our deployment, and how our
system detected and isolated these faults leveraging Fall-curve.

6.1 IoT sensor node design and deployment
We have designed a custom-off-the-shelf IoT sensor node (Fig-
ure 12a) for monitoring the soil properties in agricultural farms.
In this IoT sensor node, we have incorporated a low-power 8-bit
microcontroller, ATmega328P, as the control unit. The operating
voltage for the microcontroller is set to 3.3V at 16MHz frequency.
It consumes ∼ 6.6mA current in the active state and ∼ 0.1µA in
sleep mode. We have six three-wire (VCC, Signal, GND) ports for
connecting external sensors to our IoT sensor node. Each of these
ports can support both analog and digital (one-wire protocol based)
sensors. Furthermore, each port is individually powered by the
microcontroller through a Bipolar Junction Transistor (BJT) based
trigger circuitry. Thus, it allows the microcontroller to turn ON a
sensor only during data acquisition.

In our deployment, each IoT sensor node contains four low-
power analog sensors. We have two soil temperature sensors from
Vegetronix [37], each of them consumes ∼ 3mA current. One capac-
itive soil moisture sensor from Gravity [9] which consumes ∼ 5mA
current. Finally, we have another soil moisture sensor from Veg-
etronix [38] having a current consumption of ∼ 13mA. In addition,
each IoT node includes an SD card for data storage where we log
sensor data, corresponding Fall-curves, detailed results of Fall-curve
processing, and battery voltage. We utilize these logs for further
analysis in offline. We have two onboard communication modules
- LoRa (868MHz) and Bluetooth. LoRa module sends sensor data,
results of corresponding Fall-curve processing, and battery voltage
to a Raspberry Pi based SubEdge node. This SubEdge node uploads
the data on to the cloud after some minor processing of sensor
data. Note that, considering the low data-rate and payload size of
LoRa, we do not send the raw Fall-curve data or detailed results
of Fall-curve processing from the sensor node to the SubEdge. For
each Fall-curve of a sensor, we send the sensor type label along
with nearest neighbor distance computed by our edge algorithm
for alerts/visualization. Finally, to power up the IoT node, we use a
series of four 1.5V AA batteries.

We have deployed 20 such IoT sensor nodes in a few agricul-
tural farms with diverse crops for data-driven precision agriculture.
Sensors were deployed at different soil depths (15cm to 30cm) de-
pending on the type of crops. Given small irrigation cycles and

50 100 150 200 250

Data sequence

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

(a) Soil moisture data

20 40 60 80 100

Time (milliseconds)

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

Before fault

During fault

After fault

(b) Fall-curves

50 100 150

Data sequence

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

(c) Soil temperature data

20 40 60 80 100

Time (milliseconds)

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

Before fault

During fault

After fault

(d) Fall-curves

Figure 13: Short fault and its corresponding Fall-curves.

protracted change in soil temperature, a moderate data sampling
rate of 2 hours was used for sensor data collection. Ground truth for
fault detection was collected by deploying an additional sensor of
the same type at exact location and depth. To further strengthen our
ground truth, rigorous manual hardware probing was conducted
on a regular basis. For example, we asked a field staff to check for
system faults, such as open wire connection, any physical damage,
etc., twice a day.

6.2 Fault detection and isolation using
Fall-curve

We now describe the faults that we encountered during our deploy-
ment and how our Fall-curve based technique detected and isolated
these faults.

6.2.1 Short fault. Figure 13a, 13c depicts Short fault instances
in soil moisture sensor (Gravity) and soil temperature sensor of
node 3 from our deployment. The x-axis represents the data se-
quence where each point represents a 2 hour time interval. It can
be seen that the soil moisture data in Figure 13a is generally stable
as these are rain-fed farms with occasional Short fault. Similarly,
in Figure 13c we can see the diurnal pattern of soil temperature
data. Figure 13b, 13d shows the Fall-curves accumulated from the
sensors just before, during, and after the Short fault instance. In
these instances, though all the system components were working
fine, both the sensors had a transient malfunction. It can be seen
that, during the Short fault, the corresponding Fall-curves are dif-
ferent and our system was able to detect these transient sensor
malfunctions. The transient sensor malfunction could be due to the
environmental factors, e.g., exposure to high temperature, etc.

6.2.2 Spike fault. Figure 14a, 14c shows Spike faults encoun-
tered in our deployment. The highlighted region in Figure 14a

50 100 150 200

Data sequence

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

(a) Soil moisture data

20 40 60 80 100

Time (milliseconds)

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

Before fault

During fault

After fault

(b) Fall-curves

50 100 150 200

Data sequence

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

(c) Soil temperature data

20 40 60 80 100

Time (milliseconds)

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

Before fault

During fault

After fault

(d) Fall-curves

Figure 14: Spike fault and its corresponding Fall-curves.

shows that the soil moisture data is high for over 2 days (24 data
sequences). Data-centric techniques cannot determine if the sensor
data is faulty or not in this scenario without contextual informa-
tion. By analyzing the Fall-curves, our system identified that the
faults were due to transient malfunction of the sensor. Figure 14b
and 14d shows the corresponding Fall-curves before, after, and dur-
ing the Spike fault. The pattern of the Fall-curve corresponding
to a faulty sensor data is different from the one corresponding to
any non-faulty sensor data. Further, upon manual investigation of
Spike fault in Figure 14a, it turned out that mud was found on the
exposed soil moisture circuity, and after removal of the mud, the
sensor started working again as shown in the Figure. 14a.

6.2.3 Stuck-at fault. Figure 15a shows an instance of Stuck-at
fault on soil moisture sensor. To determine if it is a sensor fault we
analyzed the Fall-curve before, after, and during the Stuck-at fault.
Figure 15b shows two significantly different Fall-curves indicating
a sensor failure. To understand the reasoning of sensor failure, we
analyzed the logs stored in the onboard SD card of the IoT node and
identified that the Stuck-at fault was due to a battery voltage spike.
This caused a permanent failure in soil moisture sensor. Figure 15b
shows the corresponding Fall-curves of not-faulty (before battery
spike) and faulty (after battery spike) soil moisture sensor.

Figure 15c shows another instance of Stuck-at fault, where soil
temperature sensor permanently went bad. Our on-field investiga-
tion revealed that some parts of the sensor wire had clear damage
possibly due to rats chewing up the wire. After replacing the sensor,
soil temperature value went back to the normal state. Figure 15d
shows that the Fall-curves for the initial working sensor (before
fault) and the replaced sensor (after fault) are similar, whereas the
Fall-curve in the faulty state of initial sensor is completely different.

6.2.4 Noise. Figure 16a shows soil temperature data of two
sensor nodes, where data from node 9 exhibits the Noise fault.

100 200 300 400 500

Data sequence

0

200

400

600

800

1000

1
0
-b

it
 A

D
C

 v
a
lu

e

Fault

(a) Soil moisture data

20 40 60 80 100

Time (milliseconds)

0

200

400

600

800

1000

1
0
-b

it
 A

D
C

 v
a
lu

e

Before fault

During fault

(b) Fall-curves

50 100 150 200 250 300

Data sequence

0

200

400

600

800

1000

1
0
-b

it
 A

D
C

 v
a
lu

e

Fault

(c) Soil temperature data

20 40 60 80 100

Time (milliseconds)

0

200

400

600

800

1000

1
0
-b

it
 A

D
C

 v
a
lu

e

Before fault

During fault

After fault

(d) Fall-curves

Figure 15: Stuck-at fault and its corresponding Fall-curves.

50 100 150 200 250 300

Time (milliseconds)

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

Node 9

Node 10

(a) Noise fault

20 40 60 80 100

Time (milliseconds)

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

Node 9 (noise)

Node 10

(b) Fall-curves

Figure 16: Noise fault and its corresponding Fall-curves.

Figure 16b shows the Fall-curves of the faulty sensor from node 9
and a non-faulty sensor from node 10 for comparison. It can be seen
that the Fall-curves are completely different for these two sensors.
During the on-field investigation, we found a loose connection on
the ground pin of the soil temperature sensor from node 9, resulting
in noisy sensor data.

6.2.5 Sensor port mismatch. In one of the sensor nodes, soil
moisture sensor had permanently gone bad due to a stuck-at fault.
However, during replacement, the soil temperature sensor was
mistakenly added on the port of soil moisture sensor by the field
staff. Figure 17a shows the sensor data, where data before sequence
number 319 was from soil moisture sensor and data after 353 was
from soil temperature sensor. Our Fall-curve based technique au-
tomatically identified this mismatch by analyzing the Fall-curves
as shown in Figure 17b. It can be clearly seen that the Fall-curves
before data sequence 319 and after 353 have two different signa-
tures. Further, our system was able to match the Fall-curve to the
soil temperature sensor and mark the data from this port as soil
temperature by applying correct processing formula, rather than
applying an incorrect processing formula.

100 200 300 400 500

Data sequence

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

Sensor

change

(a) Senor port mismatch

20 40 60 80 100

Time (milliseconds)

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

Before change

(Soil moist.)
After change

(Soil temp.)

(b) Sensor identification

Figure 17: Sensor identification and port mismatch.

20 40 60 80 100

Time (milliseconds)

0

200

400

600

800

1000

1
0

-b
it
 A

D
C

 v
a

lu
e

Node 15

Node 19

Node 10

(a) Mimic Non-faulty data

20 40 60 80 100

Time (microseconds)

0

1000

2000

3000

4000

1
2

-b
it
 A

D
C

 v
a

lu
e

Regular data

Novel data

(Spike)

(b) Novel data

Figure 18: Fall-Curves for detecting faulty sensor data mim-
icking as non-faulty and novelty.

6.2.6 Beyond sensor data faults. A key feature of our approach
is to detect such faults that previously could not be diagnosed,
such as faulty sensor data mimicking non-faulty sensor data and
detection of unseen non-faulty data (novel data). In Section 2 (see
Figure 1), we described these two scenarios where data-centric
approaches fail. We now show how Fall-curve based technique can
be used to detect these. We can see that, in Figure 18a, the Fall-
curves for node 10 and 15 look identical, whereas, node 19 has a
distinguishable Fall-curve indicating a fault. Our system analyzed
the Fall-curves and identified the sensor in node 19 to be faulty.
Upon manual inspection, it was found that node 19 had an open
ADC wire connection. In another instance, Figure 1b depicts a few
spikes generated by an LDR sensor deployed in a room. These
spikes are due to the abrupt changes in the lighting environment as
opposed to faulty data. Figure 18b presents the Fall-curves for both
regular data points and spikes. As we can see, both Fall-curves show
the similar pattern. Consequently, our system isolated those spikes
as novel data leveraging the Fall-curve. Thus, with the help of Fall-
curve, our system can detect and isolate faults in an IoT deployment.

6.3 Energy consumption profiling
We now describe the energy consumption profile of the IoT sensor
node (described in Section 6.1), which uses Fall-curve based tech-
nique to detect and isolate faults. Due to the power constraint, IoT
nodes are generally duty cycled, where the node switches between
(long) sleep state and (short) active state. In our setup, the sampling
interval is set to 2 hours wherein the node is in the sleep state for
2 hours followed by a short active state of 8.250 seconds. In the
active state, the IoT node triggers each individual sensor sequen-
tially to the ON state, which includes sensor start-up time (up to

1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (milliseconds)

0

20

40

60

80

100

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

m
W

)

Soil moist. 2

(Gravity)

ON

Soil moist. 1

(Vegetronix)

ON
Soil temp. 2

(Vegetronix)

ON

Soil temp. 1

(Vegetronix)

ON

Sleep

FA FA FA

FA+FP

Figure 19: Power profile of an IoT node incorporating Fall-
curve technique.

2sec per sensor to stabilize) and sensor data collection. The energy
consumption in the active state of 8.250 sec is 0.32J.

The Fall-curve based fault detection technique introduces two
new activities in the sensor node active state, viz., Fall-curve accu-
mulation (FA) for each sensor and one-time Fall-curve processing
(FP) (at the end of current active state) as shown in Figure 19. Note
that, we collect Fall-curve after turning off a sensor as a comple-
mentary part of sensor data collection. The time taken to collect
Fall-curve per sensor is around 10ms with 0.22mJ energy consump-
tion. Thus, the total time taken to collect Fall-curve from 4 sensors
in our deployment takes 40ms with 0.88mJ energy consumption.
Furthermore, for local Fall-curve processing, we adopt the opti-
mal values of hyper-parameters as discussed in Section 5.1.3, i.e.,
Fall-curve width of 10, 10 clusters for each sensor, and polynomial
degree of 4. The total time taken for all the Fall-curve processing
is ∼ 10ms with energy consumption of ∼ 0.1mJ. Thus, the total
energy consumed in the active state with the proposed Fall-curve
technique includes default active state energy (0.32J) + Fall-curve
accumulation for all sensors (0.88mJ) + Fall-curve processing (0.1mJ)
= 0.32098J. The resulting overhead due to Fall-curve accumulation
and processing in the active state of the node is 0.3%, i.e., ((0.32098-
0.32)/0.32)x100. Thus the proposed Fall-curve accumulation and
processing algorithms consume very nominal energy overhead of
0.3% when each data sample is analyzed for fault detection.

6.4 Complete system evaluation
Now, we will show the performance of three Fall-curve processing
schemes, described in Section 5.2, in order to tradeoff accuracy,
granularity of fault analysis, and power consumption for deter-
mining the quality of data. This evaluation is performed on the
dataset collected from our deployment described above. Based on
the ground truth labels, 10.49% of total 29622 data samples were
found faulty, which is comparable to the fault frequency in a typical
IoT deployment [24, 31].

We utilize four different metrics, viz., accuracy, precision, recall,
and F1 score, where for each data point we compare the assigned la-
bels (faulty/non-faulty) by the decision engine to the ground-truth
labels. A false positive is defined as a non-faulty data point incor-
rectly labeled as faulty, and a true positive is defined as a faulty data
point correctly identified. We then calculate the aforementioned
performance metrics using the standard formula [27].

Table 3 presents the performance of various proposed schemes
and a baseline scheme for fault detection. We first employ an exist-
ing technique, which uses time-series based SVM to detect faults in

Table 3: Performance evaluation of various schemes.

Schemes Parameter Performance metrics % of extra
energyAccuracy Precision Recall F1

Baseline - 66.9 90.29 45.37 60.39 NA

Sampling
interval
triggered

r = 1 99.13 93.44 98.58 95.94 0.3
r = 3 99.19 97.39 94.88 96.12 0.13
r = 6 98.82 98.21 90.41 94.15 0.1
r = 12 98.25 98.64 84.52 91.04 0.07
r = 24 97.17 99.26 73.74 84.62 0.06

Event
triggered d = 10 97.3 98.98 75.06 85.37 0.08

Hybrid r = 6,
d = 10 99.16 97.92 93.98 95.91 0.12

IoT sensor data [25] as our baseline scheme. As the soil temperature
sensor exhibits the diurnal pattern, time-series analysis is a feasible
choice. Using this technique on our dataset, we found accuracy
to be 66.9% with precision and recall values of 90.29% and 45.37%
respectively. Since the dataset includes various types of faults (e.g.,
faulty data mimicking non-faulty data) beyond typical sensor faults
the accuracy and recall values are low. Besides, this scheme cannot
run on an embedded microcontroller with limited resources. Hence,
we are not showing a number for the power consumption using
the baseline scheme.

Turning to the ability of our Fall-curve based technique in de-
tecting faults. In case of sampling interval triggered fault analysis
scheme, we vary the rate parameter (r) starting from 1 to 24. We ob-
tain an accuracy of 99.13% with 0.3% of extra energy consumption
by probing at every data sampling event, i.e, r = 1. Both perfor-
mance and energy consumption decreases with the increment of r .
As we increase the value of r , the probability of missing a faulty data
point from being probed increases, and thus the performance num-
ber decreases. For example, if we probe at every 6th data sample,
i.e., twice in a day in case our deployment, we obtain an accuracy of
98.82% with 0.1% of extra energy consumption. As we mentioned
earlier, our system starts aggressively probing after detecting a
faulty data point. Thus, the accuracy does not significantly degrade
with r = 6 compared to r = 1.

Next, as a part of our event triggered scheme, we incorporated
a lightweight threshold-based anomaly detector exploiting the ab-
solute distance between sensor data samples. Here, we tune the
absolute distance parameter (d) which can vary depending on the
application and context. As the soil moisture and soil temperature
values do not change rapidly, we set d = 10 in our deployment.
We obtain a fault detection accuracy of 97.3% with only 0.08% of
extra energy consumption. However, the recall value significantly
degrades compared to sampling interval triggered scheme, since the
dataset contains a good number of faulty data samples mimicking
non-faulty data (Figure 1a). Finally, with our hybrid scheme, which
combines both sampling interval and event triggered schemes, we
obtain an accuracy of 99.16% with 0.12% of extra energy consump-
tion. This shows the ability of the Fall-curve based technique to
accurately detect sensor faults in a real-world deployment with no
hardware modifications.

6.5 Discussion
In this part, we discuss the limitations of the Fall-curve technique
towards fault detection with possible solutions to overcome it.

(i) Hardware modification to detect fault in digital sen-
sors:As described in Section 4.2.2, a digital sensor includes a digital
block and an analog block. To detect faults in the analog block of a

digital sensor, we proposed a single-wire connection between the
analog sensing module and the ADC port of the external microcon-
troller. There are a few limitations to this approach, viz., requires
small hardware modification to attach the single-wire, in some
sensors the analog part of the digital sensor may not be accessible
without breaking the sensor, etc. One possible solution is that the
modern digital sensors have an internal microcontroller on which
Fall-curve data accumulation and processing can be done to detect
faults. Thus, it eliminates the need for a single-wire connection to
the external microcontroller for Fall-curve accumulation.

(ii) Sensors that require significant warm-up time: There
are few sensors that require significant warm-up time before mea-
suring the phenomenon. For example, air quality sensors such as
MQ-135 [19] and carbon monoxide sensor MQ-7 [20] requires sen-
sor pre-heating of over 24 and 48 hours respectively. In such cases,
the proposed Fall-curve technique would not be compelling, as it
requires to turn-off the sensor to accumulate the Fall-curve. How-
ever, newer gas sensors [1] have warm-up times in few minutes,
which accommodates the Fall-curve based fault detection.

(iii) Fault detection when sensor value is low: If the raw
values generated by a sensor are very low, then the resulting fall-
time after turning off the sensor is negligible. This results in either
a very small or no Fall-curve being accumulated. For example, a
distance sensor is generating a low value as the object of interest is
very close. One possible solution is using a higher sampling rate to
accumulate the Fall-curve.

7 RELATEDWORK
Over the past decade, researchers have shown a profound interest in
detecting sensor data faults in IoT and sensor network deployments.
These studies employ techniques such as simple heuristic-based ap-
proaches to complex machine learning and neural network models.
Majority of the prior work on detecting faults rely on analyzing
sensor data to look for fault patterns. They are specific to either the
type of sensor, fault, or application context [31]. Furthermore, these
techniques can be broadly classified into four categories: heuristic-
based, estimation-based, temporal analysis-based, and machine
learning-based methods.

Heuristic-based methods use domain knowledge of sensor data,
spatiotemporal granularity, and contextual info to develop heuris-
tics [13, 29, 30]. These methods are lightweight, however, their per-
formance largely depends on the selection of parameters [24, 31].
Besides, scalability of these methods is questionable considering
heterogeneous contexts and non-stationary environments.

Estimation-based methods model normal sensor behavior lever-
aging spatiotemporal correlation and different probabilistic models,
such as Bayesian approach, Gaussian distribution, etc., [3, 4, 14,
16, 23, 31, 32, 35]. For example, Least-Squares Estimation (LLSE)
method leverages spatial correlation of sensor data and computes
covariance between sensor measurements to detect faults [31]. Tolle
et al., [35] exploit spatiotemporal correlation in micro-climate on
a redwood tree to reveal trends and gradients in the accumulated
dataset. Estimation-based methods are more accurate when the
environment is homogeneous.

Temporal analysis methods leverage temporal correlations in
sensor data collected by the same sensor to estimate the param-
eters of a predefined model (e.g., ARIMA) for the current deploy-
ment [8, 21, 31, 36]. Sharma et al. [31], proposed a multiplicative

seasonal ARIMA time series model for fault detection, where the pa-
rameter captures the periodic behavior in the sensor measurement
time series. The downside of temporal analysis methods is that
they are prone to false positives and are not feasible in long-term
deployments having short faults.

Finally, machine learning-based methods (e.g., HMM, SVM clas-
sification, etc.) have also been used for fault diagnosis [10, 15, 31].
Although the machine learning approaches are more accurate than
other approaches, they rely on the availability of historical data
for a new deployment and use a static model for a non-stationary
environment. Several complex approaches have been recently pro-
posed to adapt to non-stationary environments in both local and
distributed computing [5, 7, 17, 28, 34, 39, 40]. Although they ad-
dress the problem with non-stationary environments, they still
require historical data for initial training of the models. Moreover,
these approaches are highly sensitive to the isolation of novelty
and anomaly, which is still prone to lower accuracy considering a
non-stationary environment. In addition, a scenario explained in
Figure 1 can exacerbate the overall performance of the system for
a long period.

In contrast to the above approaches, Fall-curve is a new way
to detect faults, even when the faulty readings mimic actual data
– a scenario that is not addressed by prior work. Our system also
isolates faults within the sensors, a scenario that to the best of our
knowledge, has not been looked at before. Finally, the proposed
fault detection and isolation runs locally on the IoT device without
any hardware modification and has an energy overhead of 0.3%.

8 SUMMARY & FUTUREWORK
The growth of sensors and IoT deployments has led to a need for
automating the detection of sensor faults and the isolation of the
cause of the error. Existing schemes rely purely on sensor data to
detect anomalies, and as we show in this paper, they miss out on
detecting several failure scenarios. We propose a new primitive,
called Fall-curve, that can identify a faulty sensor using its voltage
response when power to the sensor is cut off. We have evaluated
this system in a real agricultural system, and shown that it is able
to identify and isolate faults that could not be diagnosed before.

Moving forward, we are extending this work in two directions.
First, we are developing a new “fidelity” parameter associated with
sensor data. In existing IoT systems, the sensors only report the data
to the cloud. Using Fall-curve, one can envision a future where the
data is accompanied by a confidence metric, based on Fall-curves of
the sensors. Second, we are investigating a technique to bring down
the cost of IoT deployments. Existing commercial deployments use
high-end sensors, which significantly increases the cost of a de-
ployment. For example, in agriculture, commercial grade moisture
sensors cost a few hundred dollars, even though the low-end sen-
sors can be purchased for less than 10 dollars. Using Fall-curve, we
are investigating if a few low-cost sensors can be used to replicate
the fidelity and reliability of one expensive sensor. Our technique
can identify when a low-cost sensor is reporting incorrect data, and
trigger the operation of another sensor. Our initial experiments
with some off-the-shelf sensors show very promising results.

REFERENCES
[1] Alphasense. 2018. Alphasense sensors. (2018). Retrieved May 27, 2018 from

https://goo.gl/ivXVes
[2] Arduino. 2018. Arduino Uno. (2018). Retrieved April 4, 2018 from https:

//goo.gl/pDxdRv
[3] Laura Balzano and Robert Nowak. 2007. Blind calibration of sensor networks. In

Proceedings of the 6th international conference on Information processing in sensor
networks. ACM, 79–88.

[4] Vladimir Bychkovskiy, Seapahn Megerian, Deborah Estrin, and Miodrag Potkon-
jak. 2003. A collaborative approach to in-place sensor calibration. In Information
Processing in Sensor Networks. Springer, 301–316.

[5] Vassilis Chatzigiannakis and Symeon Papavassiliou. 2007. Diagnosing anomalies
and identifying faulty nodes in sensor networks. IEEE Sensors Journal 7, 5 (2007),
637–645.

[6] Li Chen, Srivaths Ravi, Anand Raghunathan, and Sujit Dey. 2003. A scalable
software-based self-test methodology for programmable processors. In Proceed-
ings of the 40th annual Design Automation Conference. ACM, 548–553.

[7] Daniel-Ioan Curiac and Constantin Volosencu. 2012. Ensemble based sensing
anomaly detection in wireless sensor networks. Expert Systems with Applications
39, 10 (2012), 9087–9096.

[8] Amol Deshpande, Carlos Guestrin, Samuel R Madden, Joseph M Hellerstein, and
Wei Hong. 2004. Model-driven data acquisition in sensor networks. In Proceedings
of the Thirtieth international conference on Very large data bases-Volume 30. VLDB
Endowment, 588–599.

[9] DFRobot. 2012. Gravity: Analog Capacitive Soil Moisture Sensor- Corrosion
Resistant. (2012). Retrieved April 4, 2018 from https://goo.gl/p5bhFK

[10] Eiman Elnahrawy and Badri Nath. 2003. Cleaning and querying noisy sensors. In
Proceedings of the 2nd ACM international conference on Wireless sensor networks
and applications. ACM, 78–87.

[11] Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhar-
gavi Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik
Varma, and Prateek Jain. 2017. ProtoNN: Compressed and Accurate kNN for
Resource-scarce Devices. In Proceedings of the 34th International Conference on
Machine Learning (Proceedings of Machine Learning Research), Vol. 70. PMLR,
International Convention Centre, Sydney, Australia, 1331–1340.

[12] Texas Instruments. 2013. Tiva TM4C123G Launchpad. (April 2013). Retrieved
April 4, 2018 from https://goo.gl/GX1itw

[13] Shawn R Jeffery, Gustavo Alonso, Michael J Franklin, Wei Hong, and Jennifer
Widom. 2006. Declarative support for sensor data cleaning. In International
Conference on Pervasive Computing. Springer, 83–100.

[14] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. 2006. Towards
correcting input data errors probabilistically using integrity constraints. In Pro-
ceedings of the 5th ACM international workshop on Data engineering for wireless
and mobile access. ACM, 43–50.

[15] Farinaz Koushanfar, Miodrag Potkonjak, and Alberto Sangiovanni-Vincentelli.
2003. On-line fault detection of sensor measurements. In Sensors, 2003. Proceedings
of IEEE, Vol. 2. IEEE, 974–979.

[16] Bhaskar Krishnamachari and Sitharama Iyengar. 2004. Distributed Bayesian
algorithms for fault-tolerant event region detection in wireless sensor networks.
IEEE Trans. Comput. 53, 3 (2004), 241–250.

[17] Mohammad Ahamdi Livani and Mahdi Abadi. 2010. Distributed PCA-based
anomaly detection in wireless sensor networks. In Internet Technology and Secured
Transactions (ICITST), 2010 International Conference for. IEEE, 1–8.

[18] LTspice 2018. LTspice. (2018). Retrieved May 27, 2018 from http://www.analog.
com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

[19] MQ-135 2018. MQ-135 Carbon Monoxide Sensor Technical datasheet. (2018).
https://goo.gl/PKkn1G.

[20] MQ-7 Gas Sensor 2018. MQ-7 Gas Sensor Technical datasheet. (2018).
https://goo.gl/MfhBLJ.

[21] Shoubhik Mukhopadhyay, Debashis Panigrahi, and Sujit Dey. 2004. Model based
error correction for wireless sensor networks. In Sensor and Ad Hoc Communica-
tions and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communica-
tions Society Conference on. IEEE, 575–584.

[22] Dejan Nedelkovski. 2016. DHT11 & DHT22 Sensors Temperature and Humidity
Tutorial using Arduino. (2016). Retrieved April 4, 2018 from https://goo.gl/YvroSj

[23] Kevin Ni and Greg Pottie. 2007. Bayesian selection of non-faulty sensors. In
Information Theory, 2007. ISIT 2007. IEEE International Symposium on. IEEE, 616–
620.

[24] Kevin Ni, Nithya Ramanathan, Mohamed Nabil Hajj Chehade, Laura Balzano,
Sheela Nair, Sadaf Zahedi, Eddie Kohler, Greg Pottie, Mark Hansen, and Mani
Srivastava. 2009. Sensor network data fault types. ACM Transactions on Sensor
Networks (TOSN) 5, 3 (2009), 25.

[25] Colin O’Reilly, Alexander Gluhak, Muhammad Ali Imran, and Sutharshan Ra-
jasegarar. 2014. Anomaly detection in wireless sensor networks in a non-
stationary environment. IEEE Communications Surveys & Tutorials 16, 3 (2014),
1413–1432.

[26] Bob Orwiler. 1969. Vertical Amplifier Circuits. Tektronix, Inc., Beaverton, Oregon.
[27] Precision and recall 2018. Precision and recall. (2018).

https://en.wikipedia.org/wiki/Precision_and_recall.
[28] Sutharshan Rajasegarar, Christopher Leckie, James C Bezdek, and Marimuthu

Palaniswami. 2010. Centered hyperspherical and hyperellipsoidal one-class sup-
port vector machines for anomaly detection in sensor networks. IEEE Transactions
on Information Forensics and Security 5, 3 (2010), 518–533.

[29] Nithya Ramanathan, Laura Balzano, Marci Burt, Deborah Estrin, Tom Harmon,
Charlie Harvey, Jenny Jay, Eddie Kohler, Sarah Rothenberg, and Mani Srivastava.
2006. Rapid deployment with confidence: Calibration and fault detection in
environmental sensor networks. (2006).

[30] Nithya Ramanathan, Tom Schoellhammer, Deborah Estrin, Mark Hansen, Tom
Harmon, Eddie Kohler, and Mani Srivastava. 2006. The final frontier: Embedding
networked sensors in the soil. (2006).

[31] Abhishek B Sharma, Leana Golubchik, and Ramesh Govindan. 2010. Sensor faults:
Detection methods and prevalence in real-world datasets. ACM Transactions on
Sensor Networks (TOSN) 6, 3 (2010), 23.

[32] Bo Sheng, Qun Li, Weizhen Mao, and Wen Jin. 2007. Outlier detection in sensor
networks. In Proceedings of the 8th ACM international symposium on Mobile ad
hoc networking and computing. ACM, 219–228.

[33] SparkFun 2018. SparkFun Soil Moisture Sensor. (2018). Retrieved May 27, 2018
from https://www.sparkfun.com/products/13322

[34] Sharmila Subramaniam, Themis Palpanas, Dimitris Papadopoulos, Vana Kaloger-
aki, and Dimitrios Gunopulos. 2006. Online outlier detection in sensor data using
non-parametric models. In Proceedings of the 32nd international conference on
Very large data bases. VLDB Endowment, 187–198.

[35] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner, Kevin
Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, et al. 2005. A
macroscope in the redwoods. In Proceedings of the 3rd international conference on
Embedded networked sensor systems. ACM, 51–63.

[36] Daniela Tulone and Samuel Madden. 2006. PAQ: Time series forecasting for
approximate query answering in sensor networks. In European Workshop on
Wireless Sensor Networks. Springer, 21–37.

[37] Inc. Vegetronix. 2014. Soil Temperature Sensor Probes. (2014). Retrieved April
4, 2018 from https://goo.gl/iot1YW

[38] Inc. Vegetronix. 2014. VH400 Soil Moisture Sensor Probes. (2014). Retrieved
April 4, 2018 from https://goo.gl/tDTh95

[39] Miao Xie, Jiankun Hu, Song Han, and Hsiao-Hwa Chen. 2013. Scalable hyper-
grid k-NN-based online anomaly detection in wireless sensor networks. IEEE
Transactions on Parallel and Distributed Systems 24, 8 (2013), 1661–1670.

[40] Yang Zhang, Nirvana Meratnia, and Paul JM Havinga. 2013. Distributed online
outlier detection in wireless sensor networks using ellipsoidal support vector
machine. Ad hoc networks 11, 3 (2013), 1062–1074.

https://goo.gl/ivXVes
https://goo.gl/pDxdRv
https://goo.gl/pDxdRv
https://goo.gl/p5bhFK
https://goo.gl/GX1itw
http://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
http://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://goo.gl/YvroSj
https://www.sparkfun.com/products/13322
https://goo.gl/iot1YW
https://goo.gl/tDTh95

	Abstract
	1 Introduction
	2 IoT device and its faults
	3 Fall-Curve
	3.1 Fall-curve characteristics
	3.2 The underlying physics

	4 Sensor identification and fault detection using Fall-curves
	4.1 Sensor identification
	4.2 Sensor fault detection

	5 Fall-curve Processing
	5.1 Edge algorithm to process Fall-curve
	5.2 Fault analysis schemes

	6 Evaluation
	6.1 IoT sensor node design and deployment
	6.2 Fault detection and isolation using Fall-curve
	6.3 Energy consumption profiling
	6.4 Complete system evaluation
	6.5 Discussion

	7 Related Work
	8 Summary & Future Work
	References

