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Abstract

Recent advances in machine learning (ML) have produced
KiloByte-size models that can directly run on constrained
IoT devices. This approach avoids expensive communica-
tion between IoT devices and the cloud, thereby enabling
energy-efficient real-time analytics. However, ML models
are expressed typically in floating-point, and IoT hardware
typically does not support floating-point. Therefore, running
these models on IoT devices requires simulating IEEE-754
floating-point using software, which is very inefficient.

We present SEEDoT, a domain-specific language to ex-
press ML inference algorithms and a compiler that compiles
SEEDOT programs to fixed-point code that can efficiently run
on constrained IoT devices. We propose 1) a novel compi-
lation strategy that reduces the search space for some key
parameters used in the fixed-point code, and 2) new efficient
implementations of expensive operations. SEEDOT compiles
state-of-the-art KB-sized models to various microcontrollers
and low-end FPGAs. We show that SEEDoT outperforms
1) software emulation of floating-point (Arduino), 2) high-
bitwidth fixed-point (MATLAB), 3) post-training quantiza-
tion (TensorFlow-Lite), and 4) floating- and fixed-point FPGA
implementations generated using high-level synthesis tools.

CCS Concepts -« Software and its engineering — Com-
pilers; - Hardware — Sensor devices and platforms.

Keywords Machine Learning, IoT device, Programming
Language, Compiler, Fixed-point, Microcontroller, FPGA
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1 Introduction

In recent years, we have seen an increase in automation sys-
tems that deploy sensors to collect data and analyze the data
using machine learning (ML) algorithms. A few examples
of such systems include simple health monitoring through
wearable sensors [67, 71, 72], large-scale monitoring of big
cities [9, 53, 63], and so on. Typical systems use sensor de-
vices (also referred to as IoT devices) that only collect data
and run the ML algorithms in the cloud [29, 39, 49]. How-
ever, running the ML classifiers directly on the IoT device
has three known advantages [30, 56]. First, it improves the
security and privacy of user data by keeping it at the source
rather than communicating it to the cloud. Second, it elimi-
nates data communication between the IoT device and the
cloud, thereby reducing energy consumption. Third, running
the algorithms on the IoT device significantly reduces the
latency of prediction, enabling real-time analysis.

Despite these benefits, there are two key challenges in
running ML algorithms on IoT devices. First, IoT devices
have limited compute and memory resources (few KBs). As
a result, they cannot run typical ML models that are MBs or
GBs in size. Even frameworks such as TensorFlow-Lite [84]
that target embedded systems need MBs of memory to run.
Whereas, the largest device that we consider has only 32 KBs
of RAM. Second, these IoT devices do not have hardware
support for floating-point operations [6]. The absence of
floating-point support is problematic as most ML algorithms
are expressed in floating-point.

Recent breakthroughs in ML have addressed the first chal-
lenge by proposing KB-sized ML models [30, 56] that can
fit in the memory available in tiny IoT devices. While these
new models may not be able to run heavy-weight tasks, they
are powerful enough for tasks such as anomaly detection
and activity recognition that are typically useful in IoT appli-
cations. Unfortunately, even these models are expressed in
floating-point. There are two ways of dealing with the lack
of floating-point support: 1) software emulation of floating-
point, and 2) conversion to high-bitwidth fixed-point.

First, existing popular tool-chains (e.g., the Arduino IDE)
emulate floating-point operations in software. However,
faithful software emulation of floating-point must handle
all the vagaries of the IEEE-754 standard [46]: +0, NaNs, de-
normals, infinites, etc. Consequently, this approach results
in poor performance and energy efficiency. The second ap-
proach is to convert floating-point operations to fixed-point
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operations. Existing work in this area focuses on digital sig-
nal processors (DSPs) [3, 5, 7, 8, 64, 68, 88]. These approaches
rely on high-bitwidth arithmetic which is supported natively
by DSPs but is very expensive on microcontrollers.

In this paper, we describe the first framework that gener-
ates efficient fixed-point code for ML inference algorithms
that can run on constrained hardware. For the purposes of
this paper, we define a device as constrained if it has KBs of
memory and does not have hardware support for floating-
point operations. We focus on the scenario where an ML
model is trained in the cloud and an IoT maker wants to
deploy the trained model directly on the IoT device. To this
end, we make the following contributions.

First, we propose SEEDoT!, a domain-specific language for
expressing ML inference algorithms. SEEDoT is high-level,
easy to comprehend, and has intuitive semantics. It provides
language support for standard matrix operations, which are
the natural abstractions used in ML algorithms. The syntax
of SEEDoOT helps the compiler infer and track dimensions of
matrices at compile time which is difficult in general purpose
languages like Python/C/C++. With these features, SEEDoT
improves programmer productivity by making it easy for ML
researchers to specify their algorithms. For instance, SEEDoT
can express the LeNet convolution neural network [83] for
object detection on the CIFAR-10 dataset [54] in ten lines of
code (Section 7.4). In contrast, the corresponding C program
spans hundreds of lines. We formally define the SEEDoT
language and its semantics in Section 5.

Second, we design a compiler that transforms SEeDoT
programs to fixed-point C code for microcontrollers. The
fixed-point code operates only on low-bitwidth integers and
is much more efficient than emulating floating-point in soft-
ware. Our compiler uses two key ideas. First, each fixed-point
number is associated with a scale parameter. The naive ap-
proach for setting the scales results in an unacceptable loss
in precision. The optimal approach for setting the scales
requires exploring a parameter space whose size is exponen-
tial in the size of the input program. Our compiler uses an
intelligent heuristic that reduces the size of the parameter
space to a constant which is independent of the size of the in-
put program. This approach results in a precise and efficient
fixed-point code in practice. Second, we observe that existing
approaches to compute the exponentiation function (e*) on
constrained hardware are very inefficient. We propose an
approach that computes e* as a product of two values that
are looked up from two pre-computed tables. With these
techniques, SEEDoT-generated fixed-point code significantly
outperforms code generated by state-of-the-art float-to-fixed
compilers. Section 3 provides a motivating example and Sec-
tion 5.3 describes our optimizations.

mplementation available at https://github.com/Microsoft/EdgeML/tree/
master/Tools/SeeDot
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Third, we observe that IoT devices are often deployed for
specific scenarios. While the models may undergo updates,
they do not change significantly in structure and complex-
ity. This characteristic makes them an ideal target for hard-
ware acceleration using Field Programmable Gate Arrays
(FPGAS) [69]. As a result, to exhibit the generality of SEEDoT,
we perform a preliminary evaluation to explore SEEDOT’s
potential to target FPGAs. We augment SEEDoT with a back-
end that generates code to run KB-sized ML models on a
low-end, power-efficient Xilinx FPGA with no floating-point
support. Our compiler uses the high-level synthesis (HLS)
tool provided by Xilinx along with two optimizations. First,
our compiler uses a hand-optimized Verilog code for Sparse-
Matrix-Vector (SpMV) multiplication, a frequently-occurring
operation in ML inference. Second, our compiler automati-
cally generates hints for the HLS compiler to parallelize other
operations. To the best of our knowledge, this is the first
demonstration of automatically compiling KB-sized ML algo-
rithms specified in a high-level language to low-end FPGAs.
Section 6 describes the FPGA-backend in more detail.

We evaluate SEEDOT using state-of-the-art KB-sized ML
inference algorithms for constrained devices. In the micro-
controller setting, we compare the performance of SEEDoT-
generated code to the code generated by 1) the native Ar-
duino IDE, 2) the commercial MATLAB float-to-fixed con-
verter, and 3) post-training quantization in Tensorflow. For
the FPGA setting, we compare the performance of our com-
piler to Xilinx’s HLS tool. Our evaluations show that SEE-
Dort-generated programs achieve comparable classification
accuracy for the ML algorithms with a significant reduction
in execution time compared to these prior approaches.

Finally, to evaluate the benefit of SEEDOT in the real world,
we consider two case studies where KB-sized ML models
have been deployed in the wild: 1) a fault detection system
that uses an ML model to detect whether a soil tempera-
ture/moisture sensor deployed in a remote farm has mal-
functioned, and 2) a sensor pod that reacts in real-time to
gestures performed by people with visual impairments us-
ing their white cane. For both scenarios, SEEDOT-generated
fixed-point code for the ML algorithms has comparable clas-
sification accuracy and much better performance than the
deployed implementations. Thus, SEEDOT is already helpful
to farmers and people with visual impairments.

2 Background

In this section, we provide a brief background on machine
learning and fixed-point arithmetic.

2.1 ML Preliminaries

An ML classifier takes an input data point (e.g., an image) and
assigns it a label (e.g., “cat image” or “dog image”). A typical
ML dataset has a training set and a testing set. The training
set is used to learn a model. The performance of the trained
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model is judged by its classification accuracy, the proportion
of points in the testing set that the classifier labels correctly.
For example, in the linear classifier w = x > 0, the vector w is
the trained model, the vector x is the input which needs to be
classified, the possible labels are true and false, and * is the
inner-product operation. In this paper, we focus on running
KB-sized ML classifiers on constrained devices. Therefore, w
is stored on the device’s memory, x is a run-time input, and
the device performs the computation w * x > 0. To generate
efficient code, the SEEDoT compiler has access to the SEEDoT
program, the trained model, and the training set to learn few
parameters for the compiled code. We use the testing set
only to evaluate the performance of the code generated by
our compiler and not for generating the code.

2.2 Accuracy Metric

ML classifiers are typically specified as expressions over Re-
als. As Real arithmetic requires infinite precision, modern
processors approximate Real numbers using floating-point
or fixed-point numbers for efficiency. For ML classifiers, the
correctness of these implementations can be judged by two
metrics: classification accuracy and numerical accuracy. The
latter bounds the error between an implementation and a
Real specification over all possible inputs. It is well-known
that the best numerical accuracy does not necessarily result
in the best classification accuracy. In fact, prior work [51, 74]
observes that using fewer bits of precision can improve clas-
sification accuracy; precision reduction can be seen as a
form of regularization that reduces over-fitting. However,
the choice of an accuracy metric is orthogonal to the im-
plementation of the compiler and SEEDoOT can work with
any metric. In particular, the example in Section 3 uses nu-
merical accuracy. Other metrics like recall, precision, and
F1-score can be used as well. In this paper, we consider an
implementation of a classifier to be satisfactory if it has good
classification accuracy, regardless of the numerical accuracy.

2.3 Fixed-Point Preliminaries

Fixed-point arithmetic represents a Real number r using an
integer? |r  27|. The quantity P is called the scale. IfP > 0
then we say that r has been scaled up by P. If P < 0 then we
say that r has been scaled down by |P|.

The choice of scale is critical when using a fixed-point
representation. E.g., consider 8-bit integers and r = 7 =
3.1415. ... A scale of P = 5 is optimal since it produces the
most accurate result: |7 * 2°| = 100 which represents the
Real 100/2° = 3.125, the most precise 8-bit fixed-point rep-
resentation of x. If the scale is too high, e.g., if P = 6 then
L % 2%] = 200, which when written as an 8-bit integer corre-
sponds to —56. This situation is an overflow. Here, the most
significant bits are lost when converting to 8-bit integers and

2We only consider integers with fixed number of bits (e.g., 8, 16, 32, etc.).
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the result is garbage. If the scale is too low, e.g., if P = -2
then | 7 * 272 = 0 and all the significant bits are lost.

Next, we show how the scale parameter can affect the
precision of fixed-point addition and multiplication. Consider
the real numbers r; = w and r, = e = 2.71828.... The
corresponding 8-bit fixed-point representation using a scale
P=5arey; = [r; 27| = 100 and y; = | ry 27| = 86. To add
the two numbers, simply computing y; + y, is unsafe, as the
operation results in an overflow (y; +y, = —70). The standard
approach to avoid the overflow is to first scale down both
the numbers by 1, and then computing the sum. With this
approach, the computed fixed-point result is % + % =93
with a scale P = 4, which corresponds to the Real number
93/2 =5.8125~ 7 +e.

Similarly, to multiply the two numbers r; and ry, comput-
ing y; * y, results in an overflow. The standard approach to
avoid overflow while multiplying two d-bit fixed-point num-

bers is to scale them down by % before the multiplication,

Y1 Y2
* 2d/2

Le., we evaluate 577 in d-bit arithmetic.® This process
would avoid any overflows due to multiplication as the result
of multiplying two % bit numbers would fit in d bits. The
resultof%*% =30withscale2*5—d=2,i.e.,% X T xe.

While these naive rules of performing fixed-point arith-
metic are sufficient to guarantee the absence of overflows,
they can result in a significant loss of precision. We present
an evaluation of this technique in Section 7.3.2. Our results
show that applying these rules to ML benchmarks can result
in implementations that return unacceptable results (same
classification accuracy as a purely random classifier). We

describe this problem further using an example.

3 Motivating Example

We use a linear classifier as a motivating example for our
fixed-point compiler and to introduce the SEEDoT language.
The input to our example classifier described below is a
vector x € R* and it returns a label £ € {true, false}. The
classifier consists of a model w € R* and it computes w *
x > 0, where # is the inner-product of two vectors. The
following program is how the classifier would be represented
in SEEDoOT for specific values of x and w:

let x = [0.0767;0.9238; —0.8311;0.8213] in
let w = [[0.7793,-0.7316, 1.8008, —1.8622]] in
W x X

(1)

If we run this program in infinite precision Real arithmetic
then w*x evaluates to -3.64214951. Floating-point arithmetic
produces the approximately correct answer -3.642149448.
Suppose we represent each Real number using a 8-bit
fixed-point number (bitwidth = 8), then the best scale for
each entry in x and w is 7 and 6 respectively. Choosing
larger scales would result in overflows. If we mechanically

31f the hardware has support for 2d-bit multiplication then another option
is to extract top d bits of (y; * y2) and discard the lower d bits.
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apply the rules described in Section 2.3 then 1) for addition,
we must scale down the inputs by 1, and 2) for multiplication,
we must scale down the inputs by 4 (half the bitwidth). The
resulting fixed-point code will be,

let x = [[0.0767 % 27],0.9238 + 27 ...] in
let w =[|0.7793 % 2°], | -0.7316 * 2°],...] in
(w1/2424<x1/24)+(w2/24;x2/24)

2 2

@)

(W3/24;X3/24 )+( \4/4/24;)(4/24 )

This code loses valuable significant bits and computes an
imprecise result of —2.625. In contrast, the code generated
by SEEDoT does the following computation:

let x = [[0.0767 % 27],0.9238 + 27] ...] in
let w =[|0.7793 % 2°], | -0.7316 * 2°],...] in
((wy/2% % x1/2%) + (W /2% 5 xp/2%) + . ..

()

The computed value of w * x is —98 with a scale of 5 and
represents the Real value _2—958 = —3.0625. This value is a
significantly better approximation of the ideal result.
Before describing how SEEDOT produces the code shown
in (3), we describe an (impractical) approach to generate the
optimal implementation. Suppose we non-deterministically
guess the best scale that every sub-expression needs to have,
we can then perform the appropriate scale-up/down oper-
ations and obtain the most accurate implementation. This
non-determinism can be removed by enumerating over all
possible choices of scales for all sub-expressions. This enu-
meration space is huge and there are over 102° possibili-
ties for our tiny example in (1). In contrast, the size of the
enumeration space explored by SEEDOT is a small constant
independent of the input program (see Section 5.3).

4 SeeEDort Design Overview

SEeDort avoids enumerating over all the possibilities by eval-
uating only a very small heuristically selected subset of this
vast enumeration space. To this end, our heuristic identifies
a parameter maxscale, P, such that the upper bound for the
intermediate values is 29~%~!, where d is the bitwidth. Given
a P, SEEDoT uses P to avoid scale down operations that lose
significant bits. In particular, the operands to addition and
multiplication are not scaled down if their scale is below .

In our example, the magnitude of all intermediate values
computed by the expression is less than 4 (= 22751). Hence,
SEEDOT uses P = 5 to generate the program in (3). Consider
the sub-expression y; + y, where y; = w;/2* % x; /2. Here,
y; and y, both have a scale of 5. SEEDOT needs to decide
whether a scale down operation needs to be performed. If
we are being conservative then this addition can potentially
overflow. Therefore, we should perform % + % thus de-
creasing the scale of the result to 4. However, since P = 5,
we know that the magnitude of the result is below 4 and can
safely be represented using the scale of 5. Thus, we can com-
pute y; + y, without performing the scale down operation
and guaranteeing no overflows, thus saving significant bits.
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n|lr|Mg|Ms|x|letx=e;ine,
lei+ex|erxex|erXer|exp(e) | argmax(e)

e u=

Figure 1. Syntax of the core language of SEEDoT

If # = 3 then the intermediate results have a magnitude
below 287371 = 16. Hence, there is a possibility that y; +
y2 might produce overflows. To avoid this, the scale down
operation is performed to reduce the scale to 4.

To identify the best £, SEEDOT generates a classifier pro-
gram for each  in {0,1,...,d — 1} and then picks the pro-
gram that achieves the best classification accuracy on the
training set. In particular, the program in (3) corresponds
to # = 5 and (2) corresponds to # = 3. For our example
program, SEEDOT picks # = 5. In general, since ML datasets
have outliers, we have observed that using a # that lets the
outliers overflow but preserves significant bits on most in-
puts leads to better accuracy than using a # that ensures
no overflows on all inputs. Therefore, evaluating all possible
choices of P helps SEEDOT pick the best program.

5 Formal Development

SEeDor is a declarative language whose expressions specify
computations over Reals. It has been designed for express-
ing ML inference algorithms. In this section, we describe
1) the syntax of the core language of SEeDorT, 2) its type
system, and 3) compilation of programs written in SEEDoT
to fixed-point code. We describe our new implementation for
computing exponentials in Section 5.3.1, and our mechanism
to determine critical parameters (e.g., ) in Section 5.3.2.

5.1 Syntax

Figure 1 describes the syntax of SEEDOT using a grammar.
The values in SEEDOT are integer scalars n, real scalars r,
matrices in dense representation My, and matrices in sparse
representation M;. An example of My is [[1, 2, 3]; [4, 5, 6]],
which represents the matrix

1 2 3
[3 4 6]
A sparse matrix is a record consisting of two lists: a list val
of non-zero values and a list idx of positions of these non-
zero values in the matrix. A new identifier x is created using
the let keyword. Run-time inputs can be modeled by free
variables that are not bound by 1let. Free variables of SEEDoT
expressions get their values and types from environments
they are executed and compiled under.

Expressions can be added or multiplied. The operator =
represents dense matrix multiplication and X represents mul-
tiplying a two-dimensional sparse matrix with a (dense) vec-
tor. Exponentials can be computed via the exp keyword and
the index of the maximum element of a vector can be ob-
tained using argmax.
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x € domain(T)

Trx:T(x) Vo

TR T — Real

Tre :ny Ix—>1]Fe:n

T'rletx=e ine : 1y =iz

T+ e :R[ng,ns] T+ e :R[ng,ns]
I'+e; +e:Rlng,ns
I+ e :Rng,ns
T+ e xey: Rlng,ns]
T't+e :Rlng,n]® T+ e :Rlny]
I'te; Xey:R[ny]

T - Add

T'key: R[nz,ng]

T — Mult

T — SparseMult

IF're:R[n,n] ni=ny=1
T're:R T -Mmz25
I're:R ni=ny=1
T - S2M

Tre: R[nl,nz]
T'te:R[n]
T + argmax(e) : Z

I're:R

T rexp(e): R T—-EXP

T — ArgMax

Figure 2. Type system

The syntax of SEEDOT is designed to help the programmer
as well as the compiler. In particular, the compiler infers and
tracks dimensions of matrices at compile time to determine
the appropriate scales and to warn the user about the di-
mension mismatch errors. Tracking dimensions is difficult
in general-purpose languages like Python/C/C++.

The full SEEDoOT language has additional constructs for re-
shaping matrices, for loops, and CNN [70] specific operators
such as convolutions, ReLU, and maxpool. We omit these
from Figure 1 as they do not offer additional insights. SEEDoT
can express any ML model that can be written as a compo-
sition of primitive matrix operations. This expressiveness
suffices for KB-sized models.

5.2 Static Semantics

We describe the type system of SEeDor in Figure 2. The
possible types are the following:

v = Z | R|R[m] | R[ny, nz] | R[ny, no]®

A SEeDOT expression can have a type integer (Z), or a
scalar Real number (R), or a k-dimensional matrix of Re-
als where k € {1, 2}. The type of the matrix in Equation 5.1
is R[2, 3]. Two dimensional sparse matrices with n; rows
and n, columns are assigned the type R[ny, nz]*. We restrict
the maximum dimension of matrices to two for the ease of
presentation.

We use I to denote the typing environment, which is a
map from variables to types. The judgementI' + e : 7 isread
as follows: under the typing environment I', the expression
e is well-typed and has a type 7. The rule T-Var is standard:
a variable x is well-typed if it belongs to the domain of I'.
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The rule T-Let is also standard and adds variables to I'. T-Add
and T-Mult ensures that we only add and multiply matrices
of compatible dimensions. T-SparseMult checks that the two
arguments of X are a two-dimensional sparse matrix and a
vector. If a SEEDoT developer multiplies or adds matrices
with non-compatible dimensions then a compile-time error
is generated. The rules T-M2S and T-S2M coerce a 1X 1-matrix
to a scalar and vice versa. The exp operator takes a scalar
argument and returns a scalar result. We only support the
exponentiation of scalars. argmax returns an integer. These
rules are expected from any strongly-typed language for
matrix algebra. However, the widely used production DSLs
for matrix algebra (e.g., MATLAB) are dynamically typed
and can only catch the errors described above at run-time.
A well-typed SEEDOT expression can be executed by tar-
geting it to computer algebra systems (e.g., Mathematica [89])
that perform arbitrary precision Real arithmetic. Although
exact Real arithmetic is useful for debugging at development
time, production systems rely on approximations such as
floating-point or fixed-point arithmetic to ensure high effi-
ciency. We describe the fixed-point code generator next.

5.3 Fixed-Point Compilation

The compilation rules provided in Figure 3 translate SEE-
Dot programs to a sequence of procedure calls. The pseudo-
code for the procedures is described in Algorithm 2. The
compilation rules use the auxiliary functions described in
Algorithm 1. Note that the compilation rules, the auxiliary
functions, and the procedures crucially use the dimensions
of the matrices inferred by the type system (the calls to dim).
The auxiliary functions are parameterized. The functions
used in addition and multiplication rules are parameterized
by P, which was introduced in Section 4. We use B to denote
the bitwidth. The functions for exponentiation rule require
some other parameters (T, m, and M) that are described in
Section 5.3.1. In this section, we assume that the compiler
has been given a valuation of these parameters by an oracle.
Given such a valuation, the compilation rules can be ap-
plied to generate a fixed-point implementation statically. We
discuss our strategy to set these parameters in Section 5.3.2.
The compilation environment xk maps a variable x to a
unique location 7 and a scale P. The judgment« + e : (C, ,P)
is read as follows: under an environment «, an expression e
is compiled to a code C, a sequence of procedure calls. The
return value of C is stored at location », which has a scale P.
We use € for a no-op code in Figure 3. The rules use these
standard functions: function max(W) returns the maximum
element of a matrix W; abs(W) returns a matrix containing
the magnitude of each entry in the matrix W; dim returns
the dimensions of a matrix as inferred by the type system.
We discuss Figure 3 using examples. Consider the simple
SeEeDort program: let x = 1.23 in x. Compiling this program
involves using the rules C-Let, C-Var, and C-Val. C-Val uses
the auxiliary function GETP to compute the scale of 1.23. If
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k(x) = (n,P)

P = GeTP(max(abs(vy)))

vy = |y % 27

Vv
o K ko — (7= 033),1,P)

C-Val
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KFx — (e,n,P) -

k e — (Ci,11,P1)

k[x = (171,P1)] + e2 — (Ca, 12, P2)

C — Let

k+letx=e ine; — ((C1;Cs;), 12, P2)

KFe — (Cl, I]I,Pl) KFey— (Cz,l]g, Pz) (I,_]) = dim(el) Pz >= P1

(P3,Sadd) = ADDSCALE(P;)

C — MatAdd
Kk + ey +e; = ((C1;Cz; 13 = MATADD(71, 12, P2 — P1, Sada); ) 13, P3)
kter — (Ci,n,P1) Krkey— (Cone,P2) (1)) =dim(er) (J,K) = dim(e;)
(Pmulv Smul) = MULSCALE(Pla PZ) (PS, Sadd) = TREES’UMSCALE(Pmula ])
C — MatMul

K Feg x e — ((Cy;Ca;m3 = MATMUL(D1, 12, Smul»> Sadd); ) 113> P3)

KF e — (Cls ’Ila Pl) K+ €y — (C23 ’72’ PZ) (19]) = dlm(el)
(Pmul: Smul) = MULSCALE(Pls PZ) (P3s Sadd) = TREESUMSCALE(Pmul, .])

Kk F ey X ey = ((Cy;Cz; 13 = SPARSEMATMUL(11, 72, Simuls Sadd); )> 113, P3)

(T¢, Ty, P11, P12, k) = ExPTABLE(P1, m, M) (P2, Spuui) = MULSCALE(P11, P12)

ke — (Cy,n1,Pq)

C — SparseMatMul

K+ eXp(e) _— ((Ch N2 = EXP(”I —m, Tf, Tgs Smul’ k)a )a N2, PZ)

KFe— (Cl,l]l,Pl)

C—Exp

K + argmax(e) — ((Cy; 72 = ARGMAX(n1); ), 12, 0)

C - ArgMax

Figure 3. Compilation rules

the bitwidth 8 = 16, i.e., 16-bit integers are used to represent
the Real numbers, then GETP returns 14 and the value 1.23
compiles to 5 = 20152, where 20152 = | 1.23%2*|. The rule
C-Let updates the environment to map x to (1, 14). The rule
C-Var for variables is standard where under an environment
Kk, the variable x compiles to an empty program and the
return value of the expression is stored at the location 1 with
scale 14. Overall, this example compiles to 5 20152; €,
where the return value in 5 has a scale of 14.

If our example is let x = 1.23 in x + x then the rule
C-MatAdd is applicable. This example compiles to n
20152; 171 = MatAdd(n n,0, 1), where the return value in 7,
has a scale of 13. The scales P; and P, in C-MatAdd are the
scales of x, i.e., 14. The function ADDSCALE computes the
scale of the result of addition, which is first set to 14 —1 = 13.
Recall, addition can result in larger numbers that can over-
flow. Hence, the scale needs to be reduced. Accordingly, S,44
specifies that both the arguments of addition need to be di-
vided by 2%edd = 2 before adding them together. However, if
P is large then there would be no need to reduce scale and
Sadq would be zero. The compiled fixed-point code evaluates
to 20152 with a scale of 13, i.e., 2.4599609375, which is a good
approximation of the exact result 2.46.

Dense and sparse matrix multiplications follow the same
pattern as addition. In particular, the intermediate results
need to be scaled down before they are added or multiplied.
An intermediate step of matrix multiplication requires sum-
mation over a sequence of values. We use the TREESUM pro-
cedure of Algorithm 2 that minimizes the precision loss.
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5.3.1 Computing Exponentials

There are two standard techniques for computing e*: either
compute approximations in floating-point or use a look-up
table [40, 78]. Both of these approaches are unsatisfactory
for constrained devices. The former approach [78] simulates
floating-point in software and has high latency. The latter
approach [40] has low latency but consumes a lot of memory.
In particular, a look-up table for 16-bit fixed-point arithmetic
would have 21° entries of 16-bits each and consumes 128 KB.
This table cannot fit on the KB-sized resource-constrained
devices that we consider in this paper. In this paper, we
propose an approach that uses only 0.25KB of memory.

At a high level, our approach implements e* as a product
of two values that are looked up from two tables. Specifically,
we first divide x into four parts as shown in Figure 4: the
sign bit, two parts of T each (a and b), and remaining least

i Tr[63] i T,[63]
! Trl62] | :
o[ s [ b [e] “ffer— || |
6 bits 6 bits 3 bits : i Tyl1] i
x 77[0] 5 7,10]
Tf[l] - e2 *i i Tg[l] — eZ *i :

,,,,,,,,,,,,,

X ~ ez‘?*a ® 623*17 — Tf[a] % Tg[b]

Figure 4. Computing e* using pre-computed tables T
and T, where x is a positive 16-bit fixed-point number.
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Algorithm 1 AUXILIARY FUNCTIONS

Al

gorithm 2 CODEGEN PROCEDURES

1: function GETP(n)
2: return (8 - 1) - [logz(n)]

3: function MuLScaLE(Py, P,)

4 Smul — B

5 Pmul — (Pl - Smul / 2) + (PZ - Smul / 2)
6: if P, <= P then

7 Smut < max(B - (P - Ppy), 0)

8 Pmul < (Pl - Smut / 2) + (PZ - Smut / 2)
9 return P,,,;, Snmul

10: function ADDSCALE(P)

11: Sadd < 1

12: Paga < P-1

13: if Py4q <= P then

14: Sadd < 0

15: Padd < P

16: return P,g44, Spaa

17: function TREESUMSCALE(P, n)
18 Sgaa < [loga(n)]

19: Padd —P- Sadd

20: if P44 <= P then

91: Sadd < max(Saaq - (P - Pada), 0)
22: Pada < P - Saaa

23: return P44, Sada

24: function ExpTABLE(P, m, M)
25: k « [logg(M - m)'|
26: Py < GETP(e™), P, < GETP(1)

27: for iin 0:2T do

28: T¢[i] |e(m+2 /2 oP1
29: T,[i] — Le@ /2" 4 oP2 |
30: return T, Py, Py, k

significant k bits (c). Assuming x to be positive, we have,
x=2"Fg 4 2kp 4 ¢
T+k k T+k k
= ¢ =€2 *Ra+25b+c ~ 62 + a'eZ b _ f(a)g(b)

where f(a) = 2™ a and g(b) = 2t Our idea is to imple-
ment the functions f and g using two look-up tables, Ty and
Ty, respectively. For bitwidth 8 = 16, T = 6, and k = 3, each
table has 64 entries with 2 bytes each. Therefore, the total
cost of the two tables is just 256 bytes. We can use the same
approach and use two additional tables to compute e* for
negative values of x. We present a detailed evaluation of our
approach in Section 7.2.

5.3.2 Auto-Tuning Parameters

There are five parameters in SEEDoT compiler: , B, T, m,
and M. We show how these parameters are set. In our eval-
uation, we keep T = 6 and the other parameters need to
be explored. There are two main strategies for setting pa-
rameters: brute force and run-time profiling. In the former,
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1
2
3
4
5:
6
7
8
9

: procedure MATMUL(A, B, S,,,u1, Sadd)
(P, Q) « dim(A), (Q, R) « dim(B)
var T[Q], C[P, R]
foriin 0:P do
for jin O:R do
for k in 0:Q do
var a « A[i][j] / 25mw/?
var b « B[i][j] / 25mu/?
T[k] < a*b
C[i][j] « TreEeSUM(T, Saq4)
return C
: procedure SPARSEMATMUL(A, B, S;,u1, Sadd)
(P, Q) « dim(A), Q « dim(B)
var C[P, 1],i_idx « 0,i_val « 0
foriin 0:Q do
j — Addx[i_idx++]
while j != 0 do
var u « 25mul/2
var t « (A.val[i_val++] /u) * (B[i] / u)
Clj-1][0] — C[J-1][0] + (¢ / 25aa)
j — Addx[i_idx++]
return C
: procedure TREESUM(A, S,44)
n « dim(A)
vark «n/2, s« 1
while k > 1 do
if S,44--<=0thens « 0
for iin 0:k do
A[i] « (A[2*i] / 2%) + (A[2%i+1] / 2°%)

if n%2 != 0 then A[k] « A[2°k] / 2°
n « (n+1)/2, k < n/2
return A
: procedure MATADD(A, B, n, S;44)
P, Q « dim(A)
var C[P, Q]

for iin 0:P do
for jin 0:Q do
Cl][j] « (Al(j] / 2%«44) + B[] [j] / 2"*+5ade)
return C
: procedure Exp(x, Tr, Ty, Simuit, k)

var i « bits(x, k), j « bitsp(x,k —T)
var e « (T¢[i] / 25mut/2) * (T, [j] / 25mut/?)
return e

: procedure ARGMAX(A)
P « dim(A)

var index « 0, max <« A[0]
foriin 0:P do
if A[i] > max then
max <« A[i], index « i

return index
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we exhaustively try all possible values of the parameter and
choose the one that works the best. This evaluation is per-
formed by measuring classification accuracy on the training
set. In the latter, we observe the runs of the ML classifier on
the training data and set the parameters according to the
observations. Brute force provides optimal performance and
ideally, we want to set all parameters this way.

We set the following parameters by brute force: the
bitwidth 8, i.e., the number of bits assigned to each vari-
able and the maxscale #. In particular, for 8 = 16, SEEDoT
generates 16 programs for each # value from 0 to 15 and
chooses the # with highest accuracy. Note that the number
of programs generated by SEEDOT is constant and indepen-
dent of the size of the input program. The time taken for
each exploration step is dependent on the size of the train-
ing set and is usually within a couple of minutes. Although
we would like to set (m, M), the range of inputs for e*, via
brute force as well, this would increase the enumeration
space significantly. Therefore, (m, M) are set by profiling. In
particular, we run the SEEDOT program using floating-point
arithmetic on the training set. We monitor the calls to ex-
ponentiation and select a small range in which most (more
than 90%) of the inputs lie. By excluding the outliers, this
process produces satisfactory implementations.

6 Accelerating SEEDoT Using FPGA

Field Programmable Gate Arrays (FPGA) are re-configurable
chips that can be used to build custom hardware accelerators
for important applications. FPGAs offer better performance
and power efficiency compared to general-purpose proces-
sors; Unlike Application-Specific Integrated Circuits (ASICs),
FPGAs can be reprogrammed to handle updates to algorithms.
These features make them a natural choice for IoT devices.
To this end, we explore the potential for accelerating SEEDoT
programs using FPGAs.

6.1 SeEEDoOT to FPGA: Overview

Traditionally, FPGA programmers write code in Hardware
Description Languages (HDL) like VHDL [44] or Verilog [45].
This process requires significant expertise in digital design
and is extremely time-consuming. To improve programmer
productivity, FPGA vendors have developed High-Level Syn-
thesis (HLS) tools that can compile programs written in a
language like C directly to Verilog code. A simple approach
to compiling a SEEDOT program to Verilog is to directly feed
the SEEDoT-generated fixed-point C code as input to the
HLS tool. Although this approach significantly outperforms
Arduino Uno (on an FPGA of comparable power consump-
tion), it does not fully utilize the FPGA resources. To address
this underutilization problem, we present two optimizations.
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Figure 5. Flowchart for compiling SEEDoT to FPGA

6.2 Optimizations to Improve FPGA Utilization

Our first optimization exploits the fact that ML algorithms
heavily use Sparse-Matrix Vector (SpMV) multiplications.
To this end, we use a hand-optimized Verilog code to per-
form SpMV multiplications, thereby reducing the execution
time. Our second optimization automatically generates loop-
unrolling hints for the HLS compiler, thereby enabling better
utilization of the FPGA resources. Figure 5 shows the flow-
chart for compiling a SEEDOT program to FPGA bitstream.

6.2.1 Accelerating SpMV Multiplication

Many ML algorithms use sparse matrices to compress the
models [2, 27, 93]. In our evaluation, we observe that SpMV
multiplication (the X operator of Section 5) consumes a sig-
nificant fraction of the execution time (56% on average). To
accelerate this operation, we implemented it in Verilog. Our
implementation creates multiple processing elements (PEs)
on the FPGA where each PE can perform one fixed-point
multiply-accumulate operation per cycle. The columns in the
sparse matrix are partitioned and assigned to PEs to compute
the result. To avoid workload imbalance across the PEs, a
small portion (about a quarter) of matrix columns is retained
for dynamic assignment to PEs which complete the work
first. The remaining portion is assigned statically. Our im-
plementation of SpMV multiplication is significantly faster,
2.6xX-14.9%, than the version generated by the HLS compiler.

6.2.2 Hints to the HLS Compiler

The HLS compiler allows programmers to provide hints to
exploit the parallelism offered by FPGAs. However, prior
work [24] has shown that inserting these hints requires some
knowledge of hardware design, which many ML experts do
not possess. Our second optimization automatically gener-
ates loop unrolling hints (#pragma HLS UNROLL) for the HLS
compiler, thereby increasing the parallelism of the generated
Verilog code. To exploit loop unrolling, we must determine
1) the loops in which the iterations are independent of each
other, and 2) the degree of unrolling for each such loop.
While loop unrolling improves parallelism, it also increases
resource utilization. Unrestricted unrolling can result in the
generated-code exceeding the resource budget on the FPGA.
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Our FPGA hint generator has two aspects that are enabled
by SEEDOT. First, as the SEEDOT program specifies opera-
tions at a high level (e.g., matrix multiplication), the hint
generator can easily identify loops in the generated C-code
that have no data dependence between iterations. In contrast,
this analysis is harder for programs written directly in C.
Second, determining the unrolling factor for each “for” loop
so as to minimize the overall execution time is a complex
optimization problem. In this preliminary exploration, we
devise a simple heuristic that sequentially unrolls each loop
as much as possible as long as the generated FPGA-code is
within the resource budget. This heuristic is feasible to im-
plement as the compiler knows the dimension of all matrices.
The hint generator statically estimates the resource usage
of operations (number of required configurable logic blocks)
and then computes the unroll factor for each operation.

For example, consider a SEEDOT program with a matrix
subtraction followed by a matrix addition as shown below,
where A, B, and C are 10 X 1 vectors.

letD=A-B+CinD

During compilation, the hint generator knows that the
addition and subtraction operations are independent and can
be executed in parallel. Then, the hint generator determines
the loop unrolling factors as follows. Consider the available
resource on the FPGA as ‘R’, and the estimated resource
usage of each iteration of subtraction and addition as 0.4 X
R and 0.1 X R respectively. First, the hint generator greedily
assigns the maximum unroll factor, 10, for A-B and computes
the resource usage as 10 X 0.4 X R. Since the resource usage
exceeds R, the unrolling factor is progressively reduced to
bring the resource usage less than Rr. Thus, an unroll factor
of 2 is computed for A-B and uses 0.8 X Rr resources. Further,
the hint generator applies the same heuristic to the next
operation, matrix addition with C, with the remaining 0.2 X r
resources and computes the unroll factor as 2. The generated
C-code with annotations for the unroll factors is as follows.

for (int i=0; i<10; i++)
#pragma HLS UNROLL factor=2
temp[i] = A[i] - B[il;
for (int i=0; i<10; i++)
#pragma HLS UNROLL factor=2
DLi]l = temp[i] + C[il;
Our simple heuristic significantly improves resource utiliza-
tion and consequently the performance of the generated
FPGA code (Section 7.3.1).

7 Evaluation

We evaluate SEEDOT in three different settings: Arduino
boards, FPGAs, and real IoT devices. Through empirical eval-
uation, we aim to justify the following claims:

e SEeDoT-generated fixed-point code is much more efficient
than emulating floating-point in software. In particular, we
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compare the performance of fixed-point and floating-point
code on two Arduino boards (Uno and MKR1000).

e SEEDOT’s novel compilation strategy beats state-of-the-
art float-to-fixed converters in compiling KB-sized ML
models to resource-constrained devices. We show that
SeeDoT-generated code for Arduino Uno has much better
performance than commercial MATLAB toolboxes that
cost more than $30000 per license to achieve the same task.
We also compare the performance of SEEDoT-generated
code with TensorFlow-Lite, a framework to generate ef-
ficient code for smartphones and embedded devices, and
observe significant performance improvements.

e SEEDOT’s novel approach to compute exponentiation is
much more efficient than the state-of-the-art approaches
that compute approximations in floating-point.

o SEEDOT generates FPGA implementations that are much
more efficient than both microcontroller-based implemen-
tations and FPGA implementations obtained using high-
level synthesis (HLS) tools directly. Moreover, SEEDOT-
generated fixed-point code for FPGAs performs signifi-
cantly better than traditional fixed-point schemes.

e SEEDOT can express various ML inference algorithms. In
particular, SEEDOT can express recently-published ML clas-
sifiers for constrained devices as well as convolution neural
networks (CNNs) used in computer vision tasks.

e SEEDOT’s novel compilation technique to generate fixed-
point code results in a minimum loss in accuracy. We show
that exploring multiple programs with different maxscale
values improves the precision of the generated code.

o SEEDOT is helpful in the real-world and improves the per-
formance of IoT devices used in the wild. We consider
devices deployed on agricultural farms and pods attached
to white canes of persons with visual impairments.

We use Arduino Uno and MKR1000 for our evaluation. The
Uno has an 8-bit, 16-MHz Atmega328P microcontroller, with
2KB of SRAM and 32KB of read-only flash memory. MKR1000
has more powerful hardware: a 32-bit 48-MHz ARM Cortex-
MO+ microcontroller, 32KB of SRAM and 256KB of read-only
flash. These devices are much more resource-constrained
than the floating-point equipped embedded devices consid-
ered in prior work (e.g., Raspberry Pi [66], ARMv7 [32], etc.).

The FPGA device we target is the Xilinx Arty board which
has 225KB of on-chip memory, 5200 logic slices consisting of
20800 LUTs and a peak operating frequency of 450MHz. Prior
systems that run ML on FPGAs require devices with much
richer capabilities (e.g., Zynq [80], Virtex [28], Stratix [10]
etc.). For synthesis, we use Xilinx’s Vivado HLS tool. We use
10 standard ML datasets that have been used by [30, 56]: ci-
far [54], character recognition (cr) [18], curet [87], letter [41],
mnist [59], usps [43], ward [92], and binary classification
tasks of cr, mnist and usps datasets from [50].

We consider three types of KB-sized ML classifiers: Bon-
sAI [56], PROTONN [30], and CNNs [70]. Note that BONSAI
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Figure 6. Speedup of SEEDoT-generated fixed-point code over hand-written floating-point code.

and PROTONN are the only known classifiers that are com-
pact enough to fit in the tiny memories of Arduino Unos.
BoNsal is a tree-based classification algorithm which learns
a shallow and sparse tree. PROTONN is a k-means style algo-
rithm. The mathematical description of the classifiers and
the corresponding SEEDOT code can be found in the sup-
plementary material. We trained Bonsar and PROTONN on
10 different datasets and learned 20 different models. We
present our evaluation on these 20 models.

7.1 Arduino Evaluation

We compare SEEDoT-generated fixed-point code against
floating-point code, MATLAB-generated fixed-point code,
and post-training quantization of Tensorflow-Lite.

7.1.1 Comparison with Floating-Point

Emulating floating-point operations in software is inefficient.
On an Uno, addition and multiplication operations on inte-
gers are 11.3X and 7.1X faster than the respective floating-
point operations. This results in high performance of the
SeeDort-generated code. Figure 6a and Figure 6b show the
speedup of SEEDOT-generated implementations for BoNsAI
and PROTONN respectively over the baseline floating-point
implementations from [30, 56]. The text on each bar shows
the absolute execution time of SEEDoT-generated code in
milliseconds. The size of all models is within 32KB and they
fit on both Uno and MKR. The mean speedup for BoNsAl
is 3.1x on Uno and 4.9x on MKR. For PRoTONN, the mean
speedup is 2.9% on Uno and 8.3x on MKR. Thus, fixed-point
implementations are much more efficient for both these ML
inference algorithms. The average loss in classification accu-
racy on the testing set caused by using fixed-point arithmetic
for BoNsAI is 0.345% on Uno and 0.127% on MKR. Similarly,
for PROTONN, the loss is 1.855% and 0.051% respectively. The
MKR implementations are more precise because they use
32-bit integers and the Uno implementations use 16-bit inte-
gers. We note that, in most cases, the MKR implementations
have better classification accuracy than the corresponding
floating-point implementations. The average accuracy loss
reported above includes only the cases where the floating-
point implementations are more precise.
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These stark performance improvements are actually not
surprising. Custom fixed-point implementations of BONsAI
and PROTONN are known to outperform floating-point im-
plementations [30, 56]. Such custom implementations are
obtained after careful manual fine-tuning of scales and this
effort needs to be repeated for each dataset. In contrast, SEE-
Dor is fully automatic and improves developer productivity.
Moreover, SEEDoT-generated code is comparable in perfor-
mance to the custom handwritten implementations [30, 56].

7.1.2 Comparison with MATLAB

We now compare SEEDoT with existing float-to-fixed con-
verters. Most frameworks to compile ML models to fixed-
point code do not target KB-sized microcontrollers and are
irrelevant for comparison purposes. To the best of our knowl-
edge, MATLAB is the only tool that compiles KB-sized ML
models to fixed-point code for Arduino Uno. We use the
following MATLAB toolboxes: MATLAB Coder, Embedded
Coder, and Fixed-Point Designer. MATLAB uses arithmetic
operations over large bitwidths to guard against overflows.
Although this approach is good for DSPs, performing such
operations on microcontrollers causes huge slowdowns.
Most implementations of ML algorithms support special
representations of sparse matrices for performance. However,
the Fixed-Point designer toolbox of MATLAB lacks support
for sparse matrices which results in the generation of in-
efficient fixed-point code. On the other hand, SEEDoT has
language support for sparse matrices. As a side contribution,
to be more fair to the techniques being used by MATLAB, we
spent significant development effort in adding support for
sparse matrices in the MATLAB tool-chain. This improves
the performance of MATLAB-generated code by up to 4.8x%.
Figure 7a and Figure 7b use the MATLAB-generated fixed-
point code for Bonsa1 and PRoToNN as the baseline and
shows the speedups of SEEDoT-generated code on Uno.
The text on each bar shows the absolute execution time
of MATLAB-generated code in milliseconds. The y-axis is
in log scale. MATLAB++ represents MATLAB with sparse
matrix support. Without sparse matrix support, the mean
speedup is 51X for Bonsar and 28.2x for PRoTONN. With
sparse matrix support, the speedups are still quite high with
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Figure 7. Speedup of SEEDoT-generated code over MATLAB-generated fixed-point code on an Arduino Uno. MAT-

LAB++ denotes MATLAB with sparse matrix support.
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Figure 8. Speedup of SEEDoT-generated code with
TensorFlow-Lite-generated code on an Arduino Uno.

amean speedup of 11.6X for Bonsart and 15.6x for PRoTONN.
We note that, in some cases, the classification accuracy of
MATLAB-generated code is extremely poor (similar to that
of a purely random classifier). In contrast, SEEDoT-generated
implementations have comparable accuracy to the floating-
point code for all classifiers.

7.1.3 Comparison with TensorFlow-Lite

TensorFlow-Lite (TF-Lite) [84] is TensorFlow’s low resource
footprint solution for running ML on smartphones and em-
bedded devices. Using TF-Lite, a developer can deploy ML
models trained using TensorFlow directly on smartphones.
TF-Lite also provides “post-training-quantization” that con-
verts trained floating-point models to 8-bit tensors. We com-
pare SEEDOT and post-training-quantizer of TF-Lite next.

A direct comparison between these two approaches is hard
as they target different hardware. TF-Lite focuses on devices
having MB/GB sized memories. The TF-Lite runtime itself is
afew MBs and cannot fit on the KB-sized microcontrollers. In
particular, TF-Lite compiled binary for Raspberry-Pi is 2.9MB.
For comparison purposes, we have translated TF-Lite’s quan-
tized models [85] to C. These C models are standalone and
do not need the TF-Lite runtime for execution.

TF-Lite uses a hybrid approach for quantization. The quan-
tized tensors are converted to floating-point while perform-
ing arithmetic operations. Hence, arithmetic operations of
TF-Lite code are all performed in floating-point. For devices
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Figure 9. Performance of the SEEDoOT-generated code
for PRoTONN with and without the exponentiation op-
timization described in Section 5.3.1 on MKR1000.

without floating-point support, the overhead of floating-
point operations and integer-to-float conversions is large.

Figure 8 shows the comparison of SEEDoT-generated code
and our TF-Lite implementation for Bonsar and PROTONN.
The numbers on top of each bar show the absolute execu-
tion time of TF-Lite generated code in milliseconds. The
observed average speedup is 6.4X and 5.5x for BoNsar and
PrOTONN respectively. The high speedups are due to the
floating-point arithmetic operations performed by TF-Lite.
Moreover, since TF-Lite performs integer-to-float operations
at runtime, its performance is worse than our floating-point
baseline described in Section 7.1.

7.2 Exponentiation Evaluation

Existing approaches for computing e* compute approxima-
tions in floating-point. We evaluate our approach described
in Section 5.3.1 against two approaches: math.h implemen-
tations in Arduino IDE and fast exponentiation technique
in [78]. We ran the three implementations on 100 random
inputs on an Arduino Uno, and recorded the average time per
e* computation. SEEDOT performs 23.2x faster than math.h
implementation, which performs an inefficient simulation
of floating-point in software. The fast exponentiation tech-
nique [78] uses a clever floating-point-based technique to
reduce computation and performs significantly better than
math.h. However, since the computation is still in floating-
point, SEEDoOT outperforms this implementation by 4.1x.
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Figure 10. Performance of FPGA implementations
generated by HLS and SEeDort (with our optimiza-
tions) for Bonsar, with SEEDoT-generated Uno imple-
mentations as baseline.
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Figure 11. Performance of FPGA implementations for
PrROTONN generated by SEEDoOT (w/0o our optimiza-
tions) at 10MHz and 100MHz, with HLS as baseline.

Figure 9 shows the performance improvement of using
our exponentiation technique in SEEDoT-generated code
for PROTONN on an MKR1000. The numbers on top of each
bar show the absolute execution time in milliseconds. The
speedups in blue use math. h for computing e*. The increase
in speedup from the exponentiation technique is 3.8x-9.4x.

7.3 FPGA Evaluation

This section describes our experience of accelerating ML
models on low-end FPGAs. We delve into a preliminary eval-
uation of SEEDOT’s potential to accelerate KB-sized models.

7.3.1 Comparison with HLS Tools

We compare SEEDoT-generated FPGA implementations with
Uno implementations described in the previous section and
handwritten floating-point Vivado HLS C code.

The evaluation on Bonsar models is shown in Figure 10.
The results for PROTONN are similar and are omitted. The
FPGA implementations are bit-wise equivalent to the Uno
implementations and have the same classification accuracy.
The text on each bar shows the absolute execution time of the
baseline HLS-generated and SEEDOT-generated code respec-
tively in milliseconds. We observe that the FPGA implemen-
tations are 33.1X-235.7x faster than the Uno implementa-
tions. To the best of our knowledge, this is the first empirical
comparison of KB-sized ML models running on constrained
devices versus low-end FPGAs. We observe that acceleration
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Figure 12. Comparison of accuracy loss of HLS base-
line with ap_fixed type with SEEDoT-generated code.

using FPGAs can provide significant benefits in this setting.
The optimizations described in Section 6 have a significant
impact on performance. In particular, the SEEDoT-generated
FPGA implementation with loop-unrolling hints and hand
optimized sparse multiplication are 3.6X-21X faster than the
HLS-generated floating-point FPGA implementations.

At the clock frequency of 10MHz that we use in this eval-
uation, both a floating-point operation and a fixed-point
operation take one clock cycle. The benefits at higher clock
frequencies are even larger. At higher frequencies, floating-
point operations consume multiple cycles whereas fixed-
point operations can still be completed within a single cycle.
For instance, consider fixed-point PROTONN code generated
by SEeDot with all optimizations described in Section 6 dis-
abled. At low clock frequencies, we expect this fixed-point
code to be slower as it performs more number of operations
than a floating-point code. Indeed, at 10MHz, this code is
about 2X slower than the HLS implementation (Figure 11).
However, at 100MHz, the same code is about 1.5 faster.

These promising results demonstrate that SEEDoOT can
generate programs for low-end/low-cost FPGAs, thereby
laying an initial groundwork for targeting MB/GB-sized ML
(e.g., compressed/quantized/binary neural nets [1, 26, 34, 35,
38, 42, 61, 95]) and server-grade FPGAs in the future.

7.3.2 Comparison with HLS Fixed-Point Types

We evaluate the arbitrary precision ap_fixed type from the
fixed-point library provided by Vivado HLS [91]. In this li-
brary, ap_fixed<W, I> represents a fixed-point type, where
W is the word length, and I is the number of bits represent-
ing the integer part. For example, ap_fixed<8, 6> repre-
sents a Real number r as an 8-bit integer |r - 279 | We
use the default quantization (truncation) and overflow (wrap
around) modes. A developer can use this type instead of
floating-point to reduce resource utilization and latency on
FPGAs. In this evaluation, we compare the classification ac-
curacy of ap_fixed type and SEEDoT-generated code. We
replace the floating-point type in our HLS baseline with
ap_fixed. Then, for a particular bitwidth W, we evaluate dif-
ferent configurations of ap_fixed<W, I> by sweeping I from
0 to (bitwidth-1). We evaluate each configuration on the
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Table 1. Comparison of SEEDoT-generated code with
floating-point code for LeNet models on MKR1000.

Model size Bitwidth Accuracy loss Speedup
50K 16 2.45% 2.5%
50K 32 0.00% 3.3X
105K 16 1.16% o]

testing set to record classification accuracy and then report
the configuration with the best accuracy.

Figure 12 compares the classification accuracy loss of the
ap_fixed type with SEEDoT-generated code for Bonsarl
and PROTONN across various datasets. For PROTONN, 16-
bit ap_fixed type loses 39.69% accuracy on average. In most
cases, ap_fixed type has trivial accuracy (~50% for binary
and ~10% for decimal classification tasks). However, 32-bit
ap_fixed type achieves comparable accuracy with SEEDOT.
The trend with BoNsa1 models is similar: 8-bit ap_fixed type
loses 17.26% accuracy on average, and 16-bit ap_fixed type
has comparable accuracy. Thus, at lower bitwidths, SEEDoT-
generated code significantly outperforms ap_fixed type.
These results highlight the drawback of traditional fixed-
point arithmetic that quickly loses precision.

7.4 Expressiveness

SEEDOT can express a variety of ML models. Bonsal and
PROTONN can be expressed in 11 lines and 5 lines of SEEDoT
code respectively. Since SEEDOT provides language support
for standard operations in linear algebra, we believe that it
can express most ML inference algorithms.

To demonstrate the expressiveness of SEEDOT, we imple-
mented a KB-sized convolution neural network (CNN) [70] in
SEeDoT. CNNs are widely used in computer vision and are be-
ing deployed on embedded devices for various applications:
pedestrian detection [82], enhancing driver safety [65, 79],
traffic management [62, 96], etc. For our evaluation, we use
LeNet [83], a popular CNN architecture, which passes an in-
put image through a number of convolution layers followed
by a number of fully-connected layers. We trained KB-sized
LeNet models for the CIFAR-10 dataset and deployed them
on an MKR. Since these models are large, they did not fit on
an Uno. CIFAR-10 requires labeling RGB images with ten
possible labels (e.g., cat, dog, truck, etc.) and is one of the
most widely used datasets in computer vision [20, 33, 55].
LeNet can be expressed in 10 lines of SEEDOT code, whereas
the hand-written C code is several hundred lines long.

Table 1 summarizes the results on two LeNet models with
different sizes. On the smaller model with 50K parameters,
SeeDoT-generated 16-bit fixed-point code performs 2.5X
better than the baseline floating-point code with a small loss
in accuracy (2.45%). To obtain better precision, we tested
the model with SEEDoT-generated 32-bit fixed-point code
which has no accuracy loss and performs 3.3x better. For
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Figure 13. Significance of the maxscale parameter on
the accuracy of the generated fixed-point code.

testing the larger network with 105K parameters, the floating-
point model is too large to fit on an MKR. Therefore, we
measured its accuracy by running it on an x86 processor. In
contrast, the fixed-point model can fit on an MKR. To the
best of our knowledge, this is the first implementation of a
KB-sized ML inference algorithm running on such a small
microcontroller that provides high accuracy (above 70%) on
a practical computer vision task. Therefore, we believe that
SEEDOT can facilitate new ML applications in the future.

7.5 Significance of Maxscale

In this section, we study how accuracy varies with the maxs-
cale parameter. For a given SEEDOT program, the compiler
generates multiple fixed-point programs with different val-
ues for the maxscale parameter. We measure the classifica-
tion accuracy of the generated program using the training
set. Figure 13 shows the accuracy of the BoNsar model on
mnist-10 and the PROTONN model on usps-1@ across vari-
ous maxscale values. For PROTONN, SEEDoT achieves maxi-
mum accuracy at maxscale=8. For Bonsar, there is a huge
change in accuracy for maxscale=3,4,5. Thus, the accuracy
of the generated fixed-point code depends heavily on the
maxscale parameter and exploring it is critical to generating
programs with minimum accuracy loss.

7.6 Real-World Case Studies

Our evaluation till now has focused on standard ML datasets.
Next, we show how SEEDoOT improves the performance of
ML inference algorithms that have been deployed on real
IoT devices using two case studies.

7.6.1 Farm Sensors

Chakraborty et al. [11] have recently deployed 20 IoT devices
on a few agricultural farms to enable data-driven farming.
Each device contains multiple sensors, deployed at different
soil depths, to collect soil moisture and soil temperature data.
Given the likelihood of sensor failures, it is necessary to
ensure the fidelity of the collected data. Hence, the device
contains an Arduino Uno which runs ML inference to detect
whether some sensor has malfunctioned. Since the farms are
large, the devices neither have network connectivity nor are
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connected to power supplies. Thus, the devices need to be
power efficient and use constrained hardware like the Uno.
The deployed devices use a floating-point PROTONN classi-
fier that can detect sensor failures with an accuracy of 96.9%.
For this classifier, the SEEDoT-generated code uses 32-bit in-
tegers and has an accuracy of 98.0%, which is higher than the
floating-point classifier. Moreover, the SEEDoT-generated
code is 1.6X faster than the floating-point implementation.

7.6.2 Interactive Cane

Gesturepod [73] is an [oT device that can be attached to white
canes carried by people with visual impairments (VIs). When
a person makes a gesture with the cane, e.g., taps it twice on
the ground, the pod uses ML to recognize the gesture and
communicates it to a smart-phone app. The smart-phone can
then perform a task, e.g, read the recent notifications. User
studies with 12 people with VIs have shown that the pod can
recognize gestures with high accuracy and help complete
smart-phone tasks up to 9 times faster [73].

The classification accuracy of the floating-point PROTONN
model used by the pod is 99.86%, which is comparable to the
99.79% accuracy of SEEDOT’s 16-bit fixed-point implementa-
tion. The pod uses an MKR1000 on which SEEDoT-generated
code is 9.8x faster than the deployed implementation.

8 Related Work

Using quantization to compress ML models is an active re-
search area. A number of works modify the training algo-
rithm to incorporate quantization [13, 14, 23, 31, 36, 48, 60,
75, 90, 97]. More recently, extremely low bitwidth quanti-
zation techniques [13, 75, 97] can learn 1, 2, 3-bit weights
and biases. All of these techniques require running a non-
standard training algorithm to generate quantized models
with good accuracy. The modified training techniques are
tailored to specific ML tasks (CNNs) or datasets. Instead,
SEEDOT is a post-training quantization framework that can
generate fixed-point code for a pre-trained floating-point
model and thus does not require the training algorithm to
be modified or re-run.

SEEDOT can be considered as an approximate computing
framework [4, 76, 77, 81, 98]. However, the prior frameworks
do not deal with fixed-point arithmetic and their techniques
are complementary.

SEEDOT is a compiler that translates Real expressions to
fixed-point code. The previous compilers for this task are too
restrictive to be useful for ML tasks. In particular, Darulova et
al. [15-17] can only express arithmetic over scalar variables
and provide no support for matrix operations.

Many frameworks exist for running ML on smart-
phones [47, 84]. However, these frameworks require MB-
sized memory to run and are irrelevant to KB-sized devices.
There are tools in digital signal processing (DSP) that convert
floating-point expressions to fixed-point [3, 5, 7, 8, 64, 68, 88].
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Such tools do not target the KB-sized devices we consider
and are far from ideal in compiling ML inference algorithms
to KB-sized microcontrollers. These tools use high-bitwidth
operations to compute intermediate results. Unlike DSPs,
microcontrollers do not have hardware support for such op-
erations and hence such operations cause huge slowdowns.

Developing ML classifiers for constrained hardware is an
active research area [19, 30, 37, 5658, 94]. There have been
several efforts to explore acceleration of ML inference with
MB/GB sized models on FPGAs [10, 21, 22, 25, 80]. Since we
focus on ML inference with KB-sized models on low-end, low-
cost FPGAs, these works are inapplicable at this scale. Under
this setting, the research in the area is in its infancy. The
closest works to SEEDoOT are by Guan et al. [28] and Sharma
et al. [80]. The former uses a hybrid RTL + HLS framework
to accelerate DNN inference on FPGAs and the latter uses
a template architecture to map various DNN layers onto it.
However, quantization, if necessary, needs to be performed
by the user. SEEDOT automatically generates fixed-point
FPGA implementations that accelerate ML inference on low-
end FPGAs that lack floating-point support.

An ML programmer who attempts to use high-level syn-
thesis tools such as Intel’s FPGA SDK for OpenCL and Xil-
inx’s Vivado HLS faces a steep learning curve. The SEEDoT
compiler hides this complexity and makes FPGAs more ac-
cessible to an end-user. For example, Embedded FPGAs (eFP-
GAs) are gaining traction in real-world embedded systems.
They are present in various domains such as bio-medical [86],
computer vision [52], traffic monitoring [96], and industrial
safety [12]. We believe that SEEDoT would be useful in mak-
ing eFPGAs more accessible to programmers who are inex-
perienced in digital design.

9 Conclusion

SEEDoOT is a framework for generating precise and efficient
fixed-point code for ML inference algorithms that can run
on microcontrollers and FPGAs. To this end, SEEDOT com-
piler uses novel techniques like auto-tuning key parameters
used in fixed-point code. With these techniques, SEEDOT-
generated code significantly outperforms existing alterna-
tives for microcontrollers and FPGAs by 2.4x-82.2X and
3.6X—-21X, respectively. We believe that SEEDOT can facili-
tate new ML applications.
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