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ABSTRACT

The automotive industry is increasingly employing software-
based solutions to provide value-added features on vehicles,
especially with the coming era of electric vehicles and au-
tonomous driving. The ever-increasing cyber components
of vehicles (i.e., computation, communication, and control),
however, incur new risks of anomalies, as demonstrated by
the millions of vehicles recalled by different manufactures.
To mitigate these risks, we design B-Diag, a battery-based
diagnostics system that guards vehicles against anomalies
with a cyber-physical approach, and implement B-Diag as
an add-on module of commodity vehicles attached to auto-
motive batteries, thus providing vehicles an additional layer
of protection. B-Diag is inspired by the fact that the auto-
motive battery operates in strong dependency with many
physical components of the vehicle, which is observable as
correlations between battery voltage and the vehicle’s corre-
sponding operational parameters, e.g., a faster revolutions-
per-minute (RPM) of the engine, in general, leads to a higher
battery voltage. B-Diag exploits such physically-induced
correlations to diagnose vehicles by cross-validating the ve-
hicle information with battery voltage, based on a set of
data-driven norm models constructed online. Such a design
of B-Diag is steered by a dataset collected with a prototype
system when driving a 2018 Subaru Crosstrek in real-life
over 3 months, covering a total mileage of about 1, 400 miles.
Besides the Crosstrek, we have also evaluated B-Diag with
driving traces of a 2008 Honda Fit, a 2018 Volvo XC60, and
a 2017 Volkswagen Passat, showing B-Diag detects vehicle
anomalies with >86% (up to 99%) averaged detection rate.
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1 INTRODUCTION

e Background. The automotive industry is increasingly
employing software-based solutions to provide value-added
features on vehicles, such as automatic crash response and re-
mote diagnostics, especially with the coming era of (hybrid)
electric vehicles and autonomous driving. As a result, modern
vehicles are commonly installed with software systems con-
sisting of hundreds of millions of lines of codes distributed
across over 80 Electronic Control Units (ECUs) [1, 2], ren-
dering vehicles prototypical cyber-physical systems (CPSes).
The ever-increasing cyber components of vehicles, however,
prove to be a double-edged sword and incur new risks to
vehicles’ reliability/safety [3-5].

First, software system becomes error-prone with the ever
growing data volume in the in-vehicle network [6-8]. Taking
the automatic gear shifting in Fig. 1 as an example:

(a) the vehicle’s engine control module first gathers read-
ings of the crankshaft position sensor to calculate the
RPM!,

(b) it then actuates based on the thus-calculated RPM to
control the activation frequency of spark plug,

(c) the engine control module also broadcasts the RPM to
other ECUs via the in-vehicle network, e.g., in form of
the controller area network (CAN) [9],

(d) the transmission control module receives and then
processes the broadcasted RPM, and changes gears
accordingly.

As can be seen, any software defects in the computation/com-
munication/control of the above process could compromise
the gear shifting. Software flaws, unfortunately, have been
frequently identified in vehicles: (i) a bug causing unintended

IRevolutions per minute (RPM) quantifies the engine speed.


https://doi.org/10.1145/3300061.3300126
https://doi.org/10.1145/3300061.3300126
https://doi.org/10.1145/3300061.3300126

(a) gathering sensor
readings and
processing at ECUs

| crankshaft

(b) actuating based on the

gathered (and then processed)

sensor readings, e.g., RPM

(d) processing the
received information and
actuating accordingly

Network

]

ECU ECU ECU
I
In-Vehicle Existing On-Board

Diagnostics Systems

real-time
vehicle
information

B-Diag: Battery-
based Diagnostics
System for Vehicles

Engine activate | Transmission change '
+ position Control *s ark plug * Control * eargs |
sensor Module park plug Module 9

(c) broadcasting processed information (e.g., RPM) to other ECUs on the in-vehicle network

Fig. 1: Vehicle’s cyber operations: gathering, processing,
transmitting information and actuating accordingly.

acceleration forced Toyota to recall 7.5 million vehicles be-
tween 2009-2011 [10], (ii) a glitch unlocking the door with-
out notifying drivers caused Jaguar to recall 65,000 Range
Rover in 2015 [11], (iii) defects in the cruise control software
caused Chrysler to recall 4.8 million vehicles in 2018 [12], to
name a few.

Second, the proliferation of in-vehicle sensing and com-
munication modules eases the inter-connection between cars
and third-party devices, thus exposing new vulnerabilities
to cyber attacks [13-19]. For example, many work on the
injection and modification of data packets in the in-vehicle
network through WiFi, Bluetooth, or other cyber interfaces
have been reported [20-24]. People have even successfully
stopped a Jeep Cherokee on a highway by masquerading its
in-vehicle data packets [25], triggering a recall of 1.4 million
vehicles by Jeep in 2015 [26].

These risks, albeit of different causes, lead to the same con-
sequence of unintended information in the in-vehicle network,
referred to as cyber anomalies, disrupting the automotive
industry and degrading vehicles’ reliability/safety.

o State-of-the-Art. Vehicle anomalies are traditionally diag-
nosed with the On-Board Diagnostics System (OBD-II) [27],
which however, is ineffective in detecting cyber-induced
anomalies, as demonstrated by the fact that many of the
above cyber flaws/attacks do not trigger any diagnostic trou-
ble code of OBD-IL To fill this need of anomaly diagnostics,
researchers have designed various solutions such as mes-
sage authentication [28-32] and intrusion detection [33-35].
These solutions, however, still suffer from the following three
deficiencies. First, these solutions are defective in systemati-
cally exploiting a vehicle’s CPS nature [36] — i.e., a system of
sub-systems interacted constantly in the cyber and physical
spaces — missing a reliable opportunity in vehicle diagnos-
tics, as we will see in this work. Second, these solutions are
commonly implemented at vehicles’ ECUs as part of the
in-vehicle network, and thus also suffer from the risks of
anomalies thereof, i.e., the diagnostics systems themselves
could be abnormal [31, 37, 38]. Last but not the least, many
existing solutions are grounded on an offline knowledge of
known vehicle anomalies, thus being defective in adapting
to unexpected but inevitable vehicle dynamics [39-43].
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Fig. 2: B-Diag diagnoses vehicles with a cyber-physical ap-
proach by exploiting automotive batteries as sensors.

batteries as sensors

physical dependency between
battery and other vehicle modules

Table 1: A (nonexclusive) list of vehicle information that are
corroborated to be diagnosable by B-Diag.

[ Vehicle Information

1) Absolute Throttle Position B 12) Intake Manifold Pressure

2) Accelerator PedalPosition D 3) Mass Air Flow Rate

3) Accelerator PedalPosition E 14) O2 Sensor1 Equivalence Ratio

Air Fuel Ratio (Commanded) 5) O2 Sensor1 Equivalence Ratio (alternate)

Commanded Equivalence Ratio 7) Throttle Position (Manifold)

3)
4)
5) Air Fuel Ratio (Measured) 6) O2 Sensorl Wide-Range Voltage
6)
7)

8) Engine Load 9) Transmission Temperature (Method 3)
9) Engine Load (Absolute) 0) Voltage (Control Module)
10) Engine RPM 1) Voltage (OBD Adapter)

)
)
)
)
)
Engine Coolant Temperature 18) Transmission Temperature (Method 1)
)
)
)
)

11) Fuel Level (From Engine ECU) 2) Volumetric Efficiency (Calculated)

o Battery-based Diagnostics of Vehicles. To mitigate
these deficiencies, we design a battery-based diagnostic sys-
tem for vehicles, called B-Diag, and implement B-Diag as
an add-on module of commodity vehicles attached to auto-
motive batteries, thus providing vehicles an additional pro-
tection on top of the traditional OBD-II (see Fig. 2). B-Diag
has the following salient properties.

(1) Diagnosing with a Cyber-Physical Approach. The
foundation of B-Diag is the fact that many physically
inter-connected modules of the vehicle operate in close
dependency — e.g., a faster engine RPM increases the alter-
nator’s output current and then the automotive battery’s
voltage — which is observable as correlations among the
vehicle’s operational parameters in the cyber space. B-Diag
exploits such correlations to diagnose vehicles with a cyber-
physical approach by: (i) capturing the physically-induced
correlations in the cyber space with data-driven norm
models constructed online, and (ii) detecting (and then
verify) vehicle anomalies by cross-validating, in real-time,
the vehicle information. These online constructed norm
models also make B-Diag adaptive to the inevitable changes
in vehicles.

(2) Exploiting Batteries as Sensors. B-Diag’s
validation of vehicle information requires a trustworthy
ground, to which no information from the in-vehicle net-
work satisfies due to the risks of cyber-induced anomalies.
As a mitigation, B-Diag novelly grounds its cross-validation
on the voltage of automotive batteries by exploiting batteries
as sensors: (i) battery voltage can be reliably (and easily)

Cross-
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Fig. 3: We have prototyped B-Diag as an add-on module of commodity vehicles attached to automotive batteries.
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Fig. 4: Using B-Diag’s prototype to collect the real-life driving data of a 2018 Subaru Crosstrek.

collected from the physical batteries without going through
the in-vehicle network, thus serving as the hardware-based
root of trust [44] and making the cross-validation reliable; (ii)
battery operates in strong dependency with many vehicle
modules, and thus battery voltage correlates with many
vehicle parameters, making the cross-validation effective.
This way, B-Diag’s anomaly detection will be robust and
effective even when the in-vehicle network is compromised.
Such a battery-based diagnostics of B-Diag also magnifies
its practicality because no re-designing of existing in-vehicle
network is needed, which is crucial for the cost-conscious
automotive industry with only 4-9% profit margin [45].
Table 1 summarizes the vehicle information that has been
corroborated to be diagnosable by B-Diag.?

The design of B-Diag is steered by a dataset collected with
a prototype system when driving a 2018 Subaru Crosstrek
in real-life over 3 months, covering a total mileage of about
1, 400 miles. Besides the Crosstrek, we have also evaluated
B-Diag using driving traces collected from a 2008 Honda Fit,
a 2018 Volvo XC60, and a 2017 Volkswagen Passat, show-
ing B-Diag detects anomalies in vehicle information with
>86% (up to 99%) detection rate on average. In this paper,
we use B-Diag’s diagnosis of engine RPM as a complete
walk-through example, and then validate B-Diag’s ability
of individually diagnosing the vehicle information listed in
Table 1. An integrated approach to diagnose all vehicle in-
formation in real-time, however, is still missing in this work.

2 SYSTEM PROTOTYPING

We have prototyped B-Diag as an add-on module of com-
modity vehicles attached to their automotive batteries, as

%Please see [46] for the details of these vehicle information.

shown in Fig. 3(a), including: (i) an Arduino-based micro-
controller attached to the automotive battery in the vehicle’s
engine cabin, (ii) a battery monitor collecting the voltage
of the automotive battery in real-time, (iii) a RS485-to-TTL
converter transforming the voltage signal and sending it
to the micro-controller, (iv) a Bluetooth module collecting
the vehicle information from the in-vehicle network — e.g.,
via the OBD-II port with off-the-shelf OBD-II adapters —
and reporting the results to the smartphone of the vehicle’s
driver/owner, and (v) a power supply supporting the above
components. This prototype is installed in a 3D-printed pro-
tective case, as shown in Fig. 3(b). Fig. 3(c) shows an exam-
ple of the prototype’s GUI on an Android phone. Note the
Bluetooth-based collection of vehicle information from the
OBD-II port is only for the ease of implementation. Wired
OBD-II adapters are readily available in the literature and
could be adopted to further improve the reliability. The total
hardware cost of this prototype is below US$50, which could
be further reduced, e.g., by using the automotive battery to
power the prototype and thus removing the power supply.
We have used this prototype of B-Diag to collect the real-
life driving traces of a 2018 Subaru Crosstrek, as shown in
Figs. 4(a) and (b). We used four commodity Bluetooth OBD-
IT adapters (Fig. 4(c)) to collect the vehicle information via
the OBD-II port at 10Hz (Fig. 4(d)) and upload the informa-
tion to B-Diag’s prototype. These data are collected over 3
months, on both highway and urban roads, and also when
driving during rush hour traffic jams and in snowing/raining
weather, as summarized in Fig. 4(e). These data cover most
of activities during driving such as turning, breaking, cruise
control, operating the vehicle’s e-systems such as air con and
radio, etc. No abnormal behavior of the vehicle is observed
during the collection of these traces, which is also confirmed
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Fig. 5: Other things being equal, a faster engine RPM leads to a higher battery voltage.

when performing its regular maintenance at the auto dealer.
This way, we treat these collected traces as normal. We have
also identified another Bluetooth OBD-II adapter (not among
the four adapters in Fig. 4(c)) that is not reliable in collecting
the driving traces. We will use the “abnormal” vehicle infor-
mation collected with this faulty adapter to evaluate B-Diag,
as we explain in Sec. 5.1.

Note that such an installment of B-Diag is general for
all vehicles because (i) all automotive batteries have pos-
itive/negative terminals exposed to the environment, via
which B-Diag can be connected and thus the battery voltage
collected; (ii) OBD-II port — under the dash in virtually all
modern vehicles — has been mandatory for all vehicles sold
in the US since 1996 and Europe since 2001, via which the
well-defined vehicle information can be collected in real-time
without knowing the vehicle architecture or the format of
the in-vehicle messages.

Knowing the hardware components of B-Diag, we ex-
plain B-Diag’s diagnostic algorithms in the next two sections,
steered by the above empirically collected driving traces.

3 CASE-STUDY: DIAGNOSING ENGINE
RPM WITH BATTERY

We first use B-Diag’s detection of anomalies in engine RPM
as an example to walk through its diagnostics of vehicles.
The related algorithms are also applicable to the detection
of anomalies in other vehicle information listed in Table 1,
as we elaborate in Sec. 4.

3.1 Automotive Battery and Engine

We first explain the physically-induced correlations between
the automotive battery and vehicle’s engine.

¢ Automotive Battery. Automotive battery — normally a
rechargeable lead-acid battery with 12/24V nominal voltage
depending on vehicle type — supplies the necessary current
to the starter motor and the ignition system while cranking to
start the engine. The battery will be charged by the vehicle’s
alternator once the engine is running. It is crucial to note
that even (hybrid) electric vehicles such as Chevrolet Volt
and Bolt — which use high-voltage (e.g., up to 400V) battery
packs to supply the driving power — have such low-voltage
batteries, ensuring their compatibility to standard 12/24V
automotive accessories.
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Fig. 6: Exemplary traces of battery voltage and engine RPM.

e Engine RPM. Revolutions per minute (RPM) is the met-
ric quantifying the engine speed, defined as the number of
rotations per minute made by engine’s crankshaft and mon-
itored by the crankshaft position sensor in real-time. RPM
is crucial to engine’s timing functions for ignition, fuel in-
jection, spark events, and valve timing. For example, RPM is
needed to determine the activation frequency of spark plugs,
normally every 10-17ms [36], to control the fuel injection
to each cylinder in real-time. As a result, inaccurate RPMs
cause a variety of problems such as misfiring, motor vibra-
tion, backfires, hesitant acceleration, abnormal shaking, or,
the car may simply do not start [47, 48]. Koscher et al. has
experimentally demonstrated the feasibility of fabricating
engine RPM via cyber attacks [22], rendering the abnormal
RPM a real-life risk. For example, fabricating a large RPM to
alow level could falsely convince the Power Steering Control
Module (PSCM) that the vehicle is driving slowly, thus trick-
ing PSCM to start a diagnostic session even when driving
on a highway, causing critical safety risk [24].

o Physical Dependency betw. Battery and Engine. The
automotive battery and engine operate in close dependency,
as summarized in Fig. 5. First, the engine’s rotation triggers
that of the alternator at a speed about 1-3 times of engine
RPM [49]. The alternator’s rotation, in turn, generates an
electric power that is monotonic to its rotation speed (up
to a certain safe level). This way, a faster RPM leads to a
larger output current Iy of the alternator (see part-A of
Fig. 5) [50]. Second, part of the alternator’s Ioy: is used to
power the vehicle’s electrical systems, and the remaining cur-
rent charges the battery. Other things being equal, a larger
Lyt increases the battery’s charging current (see part-B of
Fig. 5). Third, a larger charging current increases the bat-
tery voltage. This can be explained by the battery’s circuit
model shown in Part-C of Fig. 5: the battery will have a volt-
age of Viart = Voev + 7 * Icharge When charging with current
Icharge [51], where r is the internal resistance of the battery.
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Fig. 9: B-Diag detects (and verifies) the anomalies in engine RPM based on battery voltage with an online data-driven model.

Combining these three facts uncovers a dependency between
the automotive battery and engine induced by their physical
design/connection — the battery will has a higher voltage
with a faster engine speed.

e Correlation betw. Battery Voltage and RPM. We next
examine if such a dependency between battery and engine
could be observed as a correlation between the vehicle’s
corresponding operational parameters.

Observation-I: Weakly Correlated Raw Readings.  Fig. 6
plots the traces of battery voltage and engine RPM during a
39-minute driving trip, and Fig. 7(a) shows the correspond-
ing scatter plot, confirming their dependency that a larger
RPM, in general, leads to a higher voltage. Significant vari-
ance, however, is observed: the battery voltage varies in a
wide range of [14.2,14.4]V when the RPM is about 2, 000,
rendering such a correlation weak. Also, the two traces have
only a small Pearson correlation coefficient of 0.06. Fig. 7(b)
plots all the voltages and RPMs of the 64 traces summarized
in Fig. 4(e), confirming again such weakly correlated raw
readings of battery voltage and engine RPM. A potential expla-
nation for such a weak correlation is that the battery voltage
is affected by, besides the engine RPM, a variety of other
factors, such as the power requirements of the vehicle’s elec-
trical systems (i.e., Igcus in Fig. 5), and thus rendering the
battery voltage highly dynamic [52].

Observation-II: Strongly Correlated Peaks. ~ We further

identify the local maximums of the RPM/voltage readings
in Fig. 6, referred to as peaks, and then use dynamic time
warping [53] to align these peaks’ time-stamps, as shown
in Fig. 8(a). The close-to-diagonal warp path indicates we
can find a voltage peak at a similar time whenever an RPM
peak is observed, i.e., the peaks of battery voltage and engine

RPM are synchronized (and hence correlated). Fig. 8(b) plots
the warp paths obtained by aligning the RPM/voltage peaks
of all the 64 Crosstrek traces in Fig. 4(e), validating again
such strongly correlated RPM/voltage peaks. Note that here
the correlation between RPM/voltage peaks is in a general
sense and not necessarily in terms of the Pearson correlation.

B-Diag exploits the above two correlations between the
battery voltage and engine RPM to detect the potential anom-
alies in RPM readings, as we explain next.

3.2 Detecting RPM Anomalies with Battery

Fig. 9 shows an overview of B-Diag’s detection of potential
anomalies in engine RPM: taking as input (i) the real-time
battery voltage collected from the battery directly and (ii) the
engine RPM from the in-vehicle network, B-Diag outputs an
online decision value indicating if anomalies are detected in
RPM readings. B-Diag conducts such an anomaly detection
with three steps: data preparation, norm model construction,
and anomaly detection. In what follows, we elaborate on the
design of B-Diag using the trace shown in Fig. 6.

e Data Preparation. B-Diag applies a set of operations to
prepare the collected battery voltage and engine RPM before
constructing the norm model.

Data Alignment. B-Diag collects battery information
from the battery and vehicle information from the in-vehicle
network. Such different approaches of data collection make
the collected battery voltage and engine RPM (likely) not
aligned in the time domain. B-Diag aligns the data by ex-
ploiting the engine’s cranking time as the anchor, which can
be reliably identified based on the fact that both the battery
voltage and engine RPM (i) keep stable before cranking and
then (ii) change abruptly and significantly while cranking,
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as shown in Fig. 10. B-Diag detects the cranking time by
identifying the local min/maximums of voltage/RPM with
significant magnitudes and are proceeded by stable readings.

Real-Time Peak Detection. B-Diag, besides collecting and
recording the battery voltage and engine RPM, also checks
the RPM to determine, in real-time, if a new RPM peak is
observed, and triggers its diagnostics of potential anomalies
if yes. Specifically, B-Diag identifies and maintains the cur-
rent trend of RPMs as increasing or decreasing — a peak is
detected if the trend changes from increasing to decreasing.
B-Diag confirms such a change in trend only when it has
been observed with three consecutive RPM samples, as illus-
trated in Fig. 11, reducing the variance in the peak detection
caused due to signal dynamics.

Time Window Construction. B-Diag maintains the time at
which the previous RPM peak is observed, denoted as tp.
Once detecting a new RPM peak, B-Diag constructs a time
window of [tyre—Ty, tpre], Wwhere T, is the window size. The
window terminates at #,, instead of the current time fnow,
because not all properties of the newly detected RPM peak
can be determined at t,oy, as we explain later.

Peak Identification in Time Window. B-Diag fetches the
two time-series of battery voltage and engine RPM within
the above-constructed time window, and then identifies the
peaks therein. B-Diag describes each peak by its peak value
v, width w, prominence p, and time-stamp ¢, as illustrated in
Fig.12,1.e.,peak = {v, w,p, t}.B-Diag stores the peaks in the
current time window to facilitate identification of peaks in
the next window, exploiting their (likely) overlapping. Also,
B-Diag discards the 10% of peaks (in both voltage and RPM)
with the least prominence in the window, further improving
its tolerance to the inherent dynamics of voltage and RPM
readings. Note that neither the width or the prominence of a
peak can be determined upon its detection. This is why the
time window ends at the time of previous peak.

e Norm Model Construction. B-Diag constructs an online
norm model capturing the relationship between the battery
voltage and engine RPM, based on the two correlations ob-
served in Sec. 3.1. Instead of manually constructing rules that
map the battery voltage to RPM, we opted to use a machine
learning-based classifier to increase the accuracy of B-Diag’s

prominence p.

mapping. Specifically, B-Diag abstracts each of the two sub-
traces of battery voltage and RPM in the time window to a
10-parameter feature vector, i.e.,

F={fi, fa,- - fio} for battery voltage,
G =1{9i,92, - - - 1o} for engine RPM,

and constructs a norm model that estimates Gs based on Fs.

Feature Extraction. B-Diag forms its feature vectors of Fs
and Gs based on the two correlations observed in Sec. 3.1:
(i) defining fi-fs and g;—gs based on the weakly correlated
raw readings of voltage and RPM, thus facilitating the detec-
tion of RPMs’ unusual values; (ii) defining fs— fio and gs—g10
based on the strongly correlated peaks of voltage and RPM,
thus facilitating the detection of RPMs’ unusual dynamics.
The weakly correlated raw readings of battery voltage and
RPM indicates the feasibility to infer RPMs based on bat-
tery voltage, but the accuracy of such an estimation may
be limited. As a mitigation, B-Diag uses the statistics, in-
stead of the raw values, of voltage/RPM readings to form
the first part of its feature vectors. Specifically, for each time
window, B-Diag uses the [10, 25, 50, 75, 90]% percentiles of
the voltage and RPM readings as f;—fs for F and g;—gs for
G, respectively. B-Diag forms the second part of its feature
vectors based on the strongly correlated peaks of voltage
and RPM. Specifically, for each time window, B-Diag uses
the mean of the voltage/RPM peaks’ value as fi/gs, width
as f7/g;, prominence as fg/gs, relative time-stamp as fo/go,
and the ratio of their counts over the window size as fio/g1o0-
The relative time-stamp of a peak is defined as its relative
position in the current time window, i.e., t; = t — (fpre — Tw)
where t is the peak’s time-stamp. Also, B-Diag defines fio
and gjo as the normalized peak counts to the window size
— i.e., the rate at which peaks are observed — to reduce its
dependency to the particular setting of window size.

This way, by constructing two feature vectors for each
time window, B-Diag transforms the two time-series of bat-
tery voltage and engine RPM into another two time-series
of their corresponding feature vectors, i.e.,

F= {Fl, F? ... } for battery voltage,
G= {Gl, G- } for engine RPM.

Classifier. B-Diag uses machine learning-based classifiers
to construct a norm model that maps from F to G. We opted
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Fig. 14: An averaged error of 0.8-11% is achieved when estimating the features of RPM based on battery voltage, but with

significant variance.

to use decision tree as the classifier because of its simplicity
and high interpretability.? Again, taking the traces in Fig. 6 as
an example and with a 10-minute time window, Fig. 13 plots
the results when estimating G, or more specifically the g;s in
each of the feature vector GEG, based on F. Fig. 14 summa-
rizes the estimation errors normalized to the corresponding
true values (i.e., the error ratios): (i) the errors are clustered
around 0 and thus accurate, e.g., the mean errors when esti-
mating g;—gjo are within [0.8, 11]%; (ii) variance, however, is
observed in both the estimation errors of individual g;s and
across different g;s, thus requiring further mitigation when
grounding B-Diag’s anomaly detection on these errors.

3We have tried other classifiers such as KNN and SVM, and observed no
clear advantages over the decision tree.

e Anomaly Detection. For the i-th time window (and the
corresponding feature vectors F' and G'), B-Diag trains a
tree-based model based on the previous feature vectors (i.e.,
F! to Fi=! and G! to G'™1), and then uses the trained model
to estimate G’ based on F? — an anomaly in RPM is detected
if the empirically collected G' = {g]’} deviates significantly

from the model estimated Giz{g}’:} (i=1,2, -, 10). Specifi-
cally, B-Diag defines the error of estimating G as

10
e = |IG' =Gl = > (gl - gh2/gi x 100%. (1)
7=

Such a summation of individual estimation errors of g;s sup-
presses their relatively large variance observed in Fig. 14. To
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Fig. 17: Adding anomalies to genuine RPM readings in Fig. 6.

collaborate this, Fig. 15(a) plots the accumulated e;s obtained
with the traces shown in Fig. 6, which increases steadily and
linearly. Fig. 15(b) plots the goodness-of-fit when fitting the
accumulated e;s linearly for each of the 64 traces summarized
in Fig. 4(e). The fact that all the fitting results are clustered
at the right-bottom corner of the figure — i.e., with close-to-
1 Adjusted-R? and close-to-0 NRMSE — validates the high
fitting goodness and thus the linearity of accumulated e;s.

This linearity of accumulated e;s allows B-Diag to de-
scribe it as a linear regression model. A linear parameter
identification problem is thus formulated as

Eaccli] = S[i] - ¢[i] + 8[i], (2)

where for the i-th time window ending at time #[i], Eacc[i]
is the accumulated e;s, S[i] is the regression parameter, and
d[i] is the identification error. The regression parameter S
represents the slope of the linear model and thus the aver-
aged e; over time. The identification error § represents the
residual which is not explained by the model. B-Diag uses
the Recursive Least Squares (RLS) algorithm to solve such a
linear regression. Also, the reliable linear model of accumu-
lated e;s indicates the corresponding identification error ds
should be small and stable in the normal cases, motivating
B-Diag to make its decision on anomaly detection based on
ds. Specifically, B-Diag defines

7 = [6; — (1 : 8i-1)|/0(61 : bim1), 3)
i.e., 7; is the deviation of §; from the mean of {1, - - -, §;—1 } in

terms of their standard deviation, and concludes an anomaly
in RPM is detected if 7;>60. We set 6=5 by default [35, 54].

e Anomaly Verification. B-Diag further verifies the de-
tected anomalies by exploiting the fact that engine RPM,
besides correlates strongly with the battery voltage, also cor-
relates with other vehicle parameters. For example, we have

Throttle Posi. (%)

Acc. Ped. Posi. (%)

0
0 1000 2000 3000 4000 5000

(a) RPM v.s. acc. pedal

(b) RPM v.s. throttle position

Fig. 16: B-Diag verifies the detected RPM anomalies based
on the correlations between RPM and other vehicle informa-
tion, e.g., accelerator pedal position and throttle position.

identified the physically-induced correlations between RPM
and the accelerator pedal position and throttle position, as
shown in Fig. 16. B-Diag further exploits these non-battery
correlations with RPM to verify the above-detected RPM
anomalies, based on the hypothesis that RPM anomalies, be-
sides causing abnormal behavior with regard to the battery
voltage, will also cause its abnormal behaviors with regard to
other correlated vehicle information. B-Diag conducts such
an anomaly verification, again, via norm model construction
and then checking, with similar approaches explained above.
B-Diag will confirm the detected RPM anomalies if abnormal
behaviors between RPM and any of these correlated vehicle
information is detected.

e Walk-Through Example. Next we use a walk-through
example to show how B-Diag detects and then verifies anom-
alies in engine RPM based on the battery voltage. Specifi-
cally, we emulate RPM anomalies by injecting randomly
fabricated RPM readings into the traces in Fig. 6, and test if
B-Diag can detect such anomalies. Fig. 17 plots the altered
RPM trace after injecting anomalies during the time period
of [849, 1449]s. Applying B-Diag to the thus-altered trace
with a window size of 600s, Fig. 18 plots the errors when
estimating RPM’s feature parameters based on those of the
battery voltage, showing much degraded accuracy at {gs,
97, Gs> G99, gro} When compared to Fig. 14.* Fig. 19 plots the
accumulated estimation errors — i.e., e;s as defined in Eq. (1)
— showing the injected anomalies change the slope of the
accumulated e;s, and thus being detectable. Note that no
anomaly is detected when applying B-Diag to the raw traces
in Fig. 6, and thus no false detection is caused. We further
verify the detected RPM anomalies by cross-validating with
the accelerator pedal position and throttle position, which
are confirmed with the changed slopes of accumulated e;s
(see Fig. 20).

4 DIAGNOSING VEHICLE BEYOND RPM

We have used the detection of RPM anomalies with battery
voltage to walk through B-Diag’s cyber-physical approach
of vehicle diagnostics. Besides the engine, physical dependen-
cies with the automotive battery also exists at other vehicle

“The specific feature parameters with degraded estimation accuracy will
depend on the particular anomalies.
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change the slope of the
accumulated e;s with regard
to battery voltage, and thus
being detectable.
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to acc. pedal position and
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Fig. 22: Errors in estimating feature vectors of vehicle infor-
mation listed in Table 1 (besides those relate to engine RPM).
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Fig. 21: Physically-induced correlations among a vehicle’s
accelerator pedal, throttle, engine, alternator, and battery.
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Fig. 23: B-Diag uses a correlation graph to abstract the vehi-

modules, thus offering opportunities to generalize B-Diag’s
cle and the correlations thereof.

anomaly detection to other vehicle information. Specifically,
examining the physical inter-connection among vehicle’s
sub-systems, Fig. 21 shows a dependency diagram among
vehicle’s accelerator pedal, throttle, engine, alternator, and
battery. Steered by this dependency diagram, we further
checked the related vehicle information collected when driv-
ing the Crosstrek, and confirmed the correlations with the
battery voltage at the information listed in Table 1. As an
example, Fig. 22 plots the averaged error when estimating
the vehicle information listed in Table 1 (besides those relate
to engine RPM), or more specifically their feature vectors,
based on the traces collected during the same trip as with
Fig. 6 , showing averaged errors within [0.9, 9.7]%. Note that
Fig. 21 may not be thorough in capturing the physical depen-
dency among vehicle’s sub-systems, and thus Table 1 may

not be exclusive. These multi-modal correlations between
battery voltage and other vehicle information enable B-Diag
to act as a comprehensive diagnostic system for vehicles.

To facilitate the systematic exploitation of these physically-
induced correlations for vehicle diagnostics, B-Diag ab-
stracts the vehicle with a 2-layer correlation graph Georr =
{V, E}, in which: (i) the vertex set V represents the opera-
tional parameters of the vehicle with the battery voltage at
the upper layer and other vehicle parameters at the lower
layer; (ii) the edge set E captures the correlations among
vehicle parameters, i.e., an edge e; ; connecting vertex v; and
v; exists in E if v; and v; are correlated. Fig. 23 shows an
exemplary correlation graph.
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(a) Raw traces

This 2-layer correlation graph facilitates exploiting the
uniqueness of automotive batteries to diagnose vehicles: (i)
battery voltage can be directly (and easily) collected from
the battery without going through the in-vehicle network,
thus being tolerable to the risks of cyber-induced anomalies
thereof and serving as a trustworthy ground for B-Diag’s
diagnostics of vehicles; (ii) battery draws power from the
alternator and supplies power to the vehicle’s electrical sys-
tems, implying strong correlations between battery voltage
and many vehicle parameters. As a result, the correlation
graph consists of two types of edges: the inter-layer edges
representing the correlations between battery voltage and
other vehicle parameters, and the intra-layer edges captur-
ing the pairwise correlations between vehicle parameters
besides battery voltage. Note the correlation graph also de-
fines B-Diag’s ability/limit of diagnosing vehicles, i.e., which
vehicle modules/parameters B-Diag can guard.

With such an abstracted correlation graph Georr, B-Diag’s
detection/verification of anomalies at each vehicle informa-
tion is transformed to the construction (and then checking) of
the data-driven norm model(s) defined by the corresponding
inter/intra-layer edges. This way, B-Diag can take a round-
robin approach to check the individual inter-layer edges of
Georr for anomaly detection: substituting the engine RPM in
Sec. 3 with the target vehicle information and detecting/ver-
ifying the anomalies thereof with similar approaches.’

5 EVALUATIONS

We have evaluated B-Diag with four vehicles: a 2018 Sub-
aru Crosstrek, a 2008 Honda Fit, a 2018 Volvo XC60, and a
2017 Volkswagen Passat. The major challenge in B-Diag’s

>It is possible to design advanced scheduling methods to check the edges
based on factors such as the criticality of vehicle information [55].
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Fig. 28: Accumulated e;s of
emulated anomalies.

Fig. 29: Example on injected
abnormal RPM with AM-2.

evaluation is the short of real-life cases on vehicle anomalies,
gathering of which incurs safety risks. We mitigate this by
evaluating B-Diag with (i) anomalies caused by an unreliable
OBD-II adapter, (ii) emulated anomalies based on wheel’s
RPM, and (iii) simulated anomalies by injecting fabricated
values to normal vehicle traces.

5.1 B-Diag against “True” Anomalies

o Methodology. We have identified one faulty Bluetooth
OBD-II adapter that is unreliable in collecting the vehicle
information, as plotted in Fig. 24 with the engine RPM as
an example: the RPM keeps constant for up to over 10 min-
utes when driving the Crosstrek in urban road with frequent
acceleration and braking. We have further verified the unre-
liability of this adapter with different vehicles. The abnormal
vehicle information collected with this faulty adapter serves
as a promising candidate to evaluate B-Diag’s ability in de-
tecting the anomalies thereof, even though these anomalies
are caused due to the faults of the OBD-II adapter and not the
vehicle. For example, the deficient updates of engine RPM in
Fig. 24 could map to faulty (or hacked [22]) tachometer of
the vehicle.

e Evaluation Results. We have collected 5 abnormal ve-
hicle traces with the Subaru Crosstrek using this “faulty”
adapter, each lasting about {25, 41, 33, 6, 6} minutes. We
then apply B-Diag with a moving window of 60s to these
traces, to detect the anomalies in the vehicle information
listed in Table 1. B-Diag successfully detects the anomalies
in all these vehicle information of all the 5 traces. As an ex-
ample, Fig. 25 plots the accumulated e;s of the engine RPM of
these abnormal traces: the abrupt changes in slopes validate
the detectability of anomalies thereof by B-Diag.
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Fig. 30: B-Diag’s detection rate, latency, and false detection against RPM anomalies, with the 64 Crosstrek traces in Fig. 4(e).

e Adapter Faults or Vehicle Faults? The above evaluation
of B-Diag leads to an interesting and important question:
can B-Diag differentiate the anomalies caused due to the
faults of its own data collection and those by the actual vehi-
cle failures? The answer is confirmative because the faults
of data collection will cause anomalies in all the collected
vehicle information, while the actual vehicle failures will,
unless in a rare case where most of the vehicle modules
fail, cause anomalies only in the vehicle information related
to the faulty vehicle modules. Also note the risk of these
adapter-caused anomalies can be reduced by employing reli-
able OBD-II adapters, e.g., using the wired OBD-II adapters
to collect the vehicle information instead of those based on
Bluetooth.

5.2 B-Diag against Emulated Anomalies

Next we evaluate B-Diag by emulating anomalies of engine
RPM based on the wheel’s RPM empirically collected during
the same driving trip. Wheel RPM quantifies the rotation
speed of the vehicle’s wheels. Mechanically,

RPMyheel = ai(t) . RPMengine, (4)
where «(t) is the gear ratio at time ¢, determined by the
real-time driving behavior. The empirically collected wheel’s

RPMs are a promising candidates to emulate the anomalies
of engine RPMs during the same driving trip, because: (i)

wheel’s RPMs fall in the legal range of engine RPM (i.e., with
a;(t)=1), making the thus-emulated anomalies possible to
occur in practice and not diagnosable by existing range-based
diagnostics systems [2, 36], (ii) the wheel RPM is strongly
correlated to, but different from, the engine RPM, and such
a correlation is dynamic over time.

Inspired by this, we build an Arduino-based RPM sensor
with a hall sensor and a magnetic, and attach it to the front-
right wheel of the Subaru Crosstrek (see Fig. 26). Fig. 27(a)
plots the collected wheel RPM, engine RPM, and battery
voltage during a 23-minute drive of the vehicle. The corre-
sponding gear ratio during this driving is plotted in Fig. 27(b).
We then emulate the abnormal engine RPMs by concatenat-
ing the first 10-minute trace of engine RPM and the last
13-minute trace of wheel RPM, and examine if B-Diag is
able to detect such emulated anomalies. Fig. 28 plots the
accumulated e;s obtained with such an emulation, whose
change in slope at about the 10.5th minute — i.e., about
0.5 minute after the emulated anomalies begin — validates
B-Diag’s ability of detecting such anomalies.

5.3 B-Diag against Simulated Anomalies

We also evaluated B-Diag against simulated anomalies in
the vehicle information.

e Anomaly Model. We emulate vehicle anomalies by in-
jecting fabricated vehicle information to the collected normal
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traces. Specially, denoting the genuine time series of the tar-
geting vehicle information (e.g., engine RPM) as v(t), we
inject anomalies to v(¢) with the following two anomaly
models, emulating the fabrication and masquerade attacks
in practice [35].

AM-1: Injecting anomalies after a randomly selected time
tanom Dy fabricating v(t) within a legal range:

Ul(t) = (1-rand(a)) - Vmin + rand(a) - Vmax (t 2 tanom), (5)

where Uiy and v,y are the min/maximum of v(t), rand(a)
returns a random value in [0, a], and a€[0, 1] controls the
levels of the fabricated readings (a=0.8 unless specified oth-
erwise). The thus-fabricated vehicle information will still be
within the min/maximum of its genuine levels, thus voiding
existing range-based diagnostics systems [2, 36]. This is also
how we generate the RPM anomalies in Fig. 17.

AM-2: Injecting anomalies after a randomly selected time
tanom DYy shifting v(t)s from their true values randomly:

v'(t) = (1= b+ 2b-rand(1)) - v(t) (t > tanom),  (6)

where b controls the maximum shift of the fabricated v(t)s
from their true values (b=0.5 unless specified otherwise).
Fig. 29 shows an example of such generated RPM anomalies
based on the genuine trace in Fig. 6.

¢ Evaluation with Subaru Crosstrek. We first evaluate
B-Diag with the 64 driving traces of the Subaru Crosstrek
summarized in Fig. 4(e), taking again, the anomalies in engine
RPM as an example.

Overall Performance. Fig. 30 summarizes B-Diag’s perfor-
mance in anomaly detection, in terms of the detection rate
(Fig. 30(a)), detection latency (Fig. 30(b)), and false detec-
tion (Fig. 30(c)), with a 60s moving window. The results in
Figs. 30(a) and 30(b) are based on randomly injected RPM
anomalies according to AM-1 and AM-2, each with 100 tests.

0.1 02 03 04 05 06 0.7 08 09 1
b in AM-2

Fig. 35: Detection rate v.s. AM-2’s model
parameter b in Eq. (6).

F’-’rm“ N

=~ JTW Do

- Control Module Volt. from In-Vehicle Network

1000 1500 2000

Time (s)

500 2500
Fig. 36: Control Module Voltageis a close
approximation to battery voltage.

As shown in Fig. 30(a), B-Diag achieves an overall averaged
detection rate of 99% and 97% against the anomalies injected
according to AM-1 and AM-2, respectively, and archives 100%
detection rate for many of these 64 traces. The minimum de-
tection rate of these traces with AM-1/2 is 80/75%. Fig. 30(b)
shows B-Diag detects the anomalies with an averaged la-
tency of less than 31s and 68s, for the two anomaly models
respectively. The overall average detection latency across all
these 64 traces is 8s for AM-1 and 19s for AM-2. We have
also evaluated B-Diag’s false detection of anomalies. Specif-
ically, we apply B-Diag to the genuine RPM traces without
injecting anomalies, and check if any false detection of RPM
anomalies is triggered. Fig. 30(c) shows B-Diag falsely de-
tects RPM anomalies in only 4 of the 64 traces. Moreover,
B-Diag only falsely detects the anomalies in {1, 1, 2,2} of
the 60s moving windows in the 4 traces with false detection,
which last about {30, 26, 25, 25} minutes, respectively.
Impact of Window Size. We next evaluate the impact of
the size of B-Diag’s moving window on its performance
in anomaly detection, based on the RPM traces shown in
Fig. 6. Figs. 31 and 32 summarize B-Diag’s detection rate and
latency of injected anomalies with the window size varying
from 40-120s, showing an over 84/89% detection rate for all
the explored cases and an average latency of 13s and 24s, with
AM-1 and AM-2, respectively. No clear dependency between
B-Diag’s detection rate against anomalies and the window
size is observed from Fig. 31. On the other hand, Fig. 32
shows a larger moving window tends to increase the latency
of B-Diag’s anomaly detection, which is expected as a larger
window requires more samples of abnormal RPM readings to
conclude the detection of anomalies, thus requiring a longer
time. Fig. 33 summarizes the false detection of anomalies
when applying B-Diag to each of these genuine 64 traces
(and thus without anomalies) with varying window size. The
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Fig. 37: Further evaluating B-Diag with the driving traces collected with a 2008 Honda Fit, a 2018 Volvo XC60, and a 2017
Volkswagen Passat.
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Fig. 38: B-Diag detects the anomalies of Honda Fit, Volvo XC60, and Volkswagen Passat with averaged rate/latency of
{92%, 88%, 96%} /{91%, 86%, 87%} and {11, 26,12} /{15, 28, 18}s, with the two anomaly models of AM-1 and AM-2, respectively.

Table 2: Summary of the traces collected with a 2008 Honda

Fit, a 2018 Volvo XC60, and a 2017 Volkswagen Passat.

[ Vehicles H # of Traces [ Total Duration [ Total Distance ]
Honda Fit 11 4.7 hour ~160 miles
Volvo XC60 17 4.1 hour ~210 miles
Volkswagen Passat 7 29 hour ~1,840 miles

number of traces in which B-Diag falsely observes anomalies
increases as the window becomes larger, varying from 1-
9 with window size between 40-120s. Also note that even
for traces with falsely observed anomalies, only a limited
number of time windows therein detect such anomalies, e.g.,
with a maximum of 4 windows in all the cases in Fig. 33, and
thus accounting for only a limited period when compared to
the total driving duration of about 31 hours (as summarized
in Fig. 4(e)).

Impacts of Anomaly Models’ Parameters. Figs. 34 and 35

summarize B-Diag’s detection rates of injected anomalies
based on the RPM traces in Fig. 6, with varying a in Eq. (5)
and b in Eq. (6) respectively. The results are averaged over
100 tests for each setting. B-Diag detects the anomalies
fabricated with AM-1 with over 68% detection rates with
a€[0.1, 1] (see Fig. 34). The relatively low detection rate of
68% with a=0.4 is because in this case, the abnormal RPMs
deviate little from their genuine levels. Specifically, with
the RPM trace shown in Fig. 6, a = 0.4 leads to abnormal
RPMs within [573, 2069] according to Eq. (5), which are close
to their true values (as observed in Fig. 6). Also note that
other things being equal, a smaller deviation of RMP read-
ings from the genuine levels will cause less safety/reliability
risks, when compared to those change the RPMs dramati-
cally. Fig. 35 shows B-Diag accurately detects the anomalies

when the model parameter b in Eq. (6) is not too small, e.g.,
with over 93% detection rates when b>0.3. The low detection
rate with b=0.1 is because, again, a small b in AM-2 causes
little deviation of abnormal RPM readings from their true
levels.

e Evaluation with Other Vehicles. To validate B-Diag’s
generality with different vehicles, we have further evaluated
B-Diag based on the driving traces collected with a 2008
Honda Fit, a 2018 Volvo XC60, and a 2017 Volkswagen Passat
(see Fig. 37), each with its respective owner/driver. Table 2
summarizes the details of these traces. Different from the
Crosstrek traces where the battery voltage is collected with
our prototype and in physical separation of the in-vehicle
network, we use the control module voltage collected
from the in-vehicle network via the OBD-II port as a close
approximation of the battery voltage for these three vehi-
cles, for the ease of data collection. The control module
voltage represents the real-time voltage supplied to the ve-
hicle’s ECUs, i.e., the battery voltage minus any voltage drop
in the wiring between the battery and ECUs, normally less
than a few tenths of a volt. Fig. 36 compares the control
module voltage with the corresponding battery voltage
collected directly from the battery, corroborating their close-
ness. Fig. 38 plots B-Diag’s detection rate and latency against
the added anomalies, with a 60s moving window and aver-
aged over 100 runs. For the two anomaly models AM-1 and
AM-2, B-Diag detects the anomalies with (i) an averaged
detection rate of 92/91% and a latency of 11/15s for Honda
Fit, (ii) an averaged detection rate of 88/86% and a latency of
26/28s for Volvo XC60, and (iii) an averaged detection rate
of 96/87% and a latency of 12/18s for Volkswagen Passat.
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Fig. 39: Using B-Diag to diagnose the information in Fig. 22.

e Diagnosing beyond Engine RPM. We also corroborated
B-Diag’s feasibility as a comprehensive diagnostics system
for vehicles. Specifically, we use B-Diag to detect the anom-
alies at each of these vehicle information in Fig. 22, injected
according to the two anomaly models. Fig. 39 summarizes
the detection results: all of these anomalies are detected with
over 81/76% detection rate and a latency less than 42/31s,
with an average of 94/89% and 19/20s, respectively. Note
that no false detection is observed when applying B-Diag to
the raw traces without injecting anomalies.

Last but not the least, we further verify B-Diag’s gener-
ality in diagnosing the vehicle information listed in Table 1
— which are originally identified with the Subaru Crosstrek
— with the Honda Fit, Volvo XC60, and Volkswagen Passat.
The strong correlations of these vehicle information with the
battery voltage are observed in all these three vehicles, thus
validating B-Diag’s generality. This also demonstrates the
advantage of B-Diag’s cyber-physical approach in vehicle
diagnostics: the physical dependencies among a vehicle’s
individual modules are (likely) general for different vehi-
cles, making the correlations among corresponding vehicle
information universal.

6 LIMITATIONS

Below we discuss a few limitations of the current design/e-
valuation of B-Diag, and their potential mitigations.

e Norm Model Construction. B-Diag constructs the norm
models with a decision tree defined by 10 features. We will
further improve such a model construction by (i) reducing the
number of features and (ii) exploiting the (likely) overlapped
time windows, thus reducing the complexity and improving
the online diagnostics of vehicles. Also, B-Diag assumes the
availability of normal traces to construct the norm model. We
will further explore B-Diag’s ability of vehicle diagnostics
when the normal traces are not available.

e Anomaly Detection and Verification. B-Diag detects
the anomalies based on the 7;s (defined in Eq. (3)) for each
time window. An alternative is to conclude the detection
of anomalies only when multiple 7;s satisfying Eq. (3) have
been observed in several consecutive time windows, trading
off between the anomaly detection’s false positive and false
negative. We will also need to consider the latency of anom-
aly detection, which is desirable to be as small as possible.
We envision the window size should be a promising con-
trol knob to reduce the latency. B-Diag verifies the detected

anomalies by checking the norm models defining the inter-
plays among vehicle information, and confirms the detected
anomalies if any of these checkings fail. We will investigate
other methods for anomaly confirmation, e.g., by weighting
the checking results of individual norm models.

o Fault Identification. After detecting/verifying the anom-
alies, B-Diag will need to identify the corresponding causes,
i.e., which modules (or ECUs) of the vehicle fail? Such a fault
identification is required to provide a swift repair/forensic,
otherwise the vehicle remains unreliable no matter how ac-
curate the anomalies are detected. We will steer B-Diag’s
fault identification based on the correlation graph defined in
Fig. 23, by examining the connectivity among vertexes (i.e.,
vehicle information) with detected anomalies.

e Diagnosing beyond Engine RPM. We have validated
B-Diag’s ability in individually diagnosing other vehicle in-
formation beyond engine RPM in Sec. 4. An integrated solu-
tion that guards all vehicle information in real-time, however,
is still needed to make B-Diag a comprehensive solution for
vehicle diagnosis, especially in view of the possibility of cas-
caded anomalies in vehicles, i.e., anomalies in one vehicle
information may cause anomalies in other information.

e Evaluation against Real-Life Vehicle Anomalies. Al-
though we have validated B-Diag with different approaches
in Sec. 5, B-Diag’s evaluation against real-life vehicle anom-
alies is still missing. Such an evaluation of B-Diag may cause
vehicle malfunction and thus incur safety risks. We will mit-
igate these challenges with two steps: (i) testing when using
jack stands to raise the vehicle from the ground, thus ensur-
ing safety, and then (ii) testing when driving on testing field,
such as the Mcity Test Facility at University of Michigan.

7 CONCLUSION

In this paper, we have designed B-Diag, a battery-based
diagnostics system that guards vehicles against anomalies
in real-time, and implemented B-Diag as an add-on mod-
ule of commodity vehicles attached to automotive batteries.
B-Diag is inspired by the physically-induced correlations
between the battery voltage and other operational param-
eters of the vehicle such as engine RPM. B-Diag exploits
these correlations to diagnose vehicles by exploiting automo-
tive batteries as anomaly sensors: cross-validating vehicle
information with online constructed norm models with re-
gard to the battery voltage, steered by a dataset collected
when driving a 2018 Subaru Crosstrek in real-life for over
3 months. We have evaluated B-Diag based on the driving
traces collected with, besides the Crosstrek, a 2008 Honda Fit,
a 2018 Volvo XC60, and a 2017 Volkswagen Passat, showing
B-Diag detects anomalies in vehicle information with over
86% detection rate on average.
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