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Warm Up: Supervised Learning

* Find function from input space X to output space Y

h: X —Y

such that the prediction error is low.
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* Find function from input space X to output space Y

h: X —Y

such that the prediction error is low.

X

Microsoft announced today that they
acquired Apple for the amount equal to the y
gross national product of Switzerland. — 1
Microsoft officials stated that they first

wanted to buy Switzerland, but eventually
were turned off by the mountains and the
snowy winters...




Warm Up: Supervised Learning

* Find function from input space X to output space Y

h: X —Y

such that the prediction error is low.

X

Microsoft announced today that they
A y
GATACAACCTATCCCCGTATATATATTCTA p— 1
TGGGTATAGTATTAAATCAATACAACCTAT y
CCCCGTATATATATTCTATGGGTATAGTAT B
TAAATCAATACAACCTATCCCCGTATATAT
ATTCTATGGGTATAGTATTAAATCAGATAC

AACCTATCCCCGTATATATATTCTATGGGT
ATAGTATTAAATCACATTTA




Warm Up: Supervised Learning

* Find function from input space X to output space Y

h: X —Y

such that the prediction error is low.
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Imitation Learning

* |nput:

— Sequence of contexts/states:

e iR
* Predict: (vu \Q
a2 | 4

& 4

— Sequence of actions

* Learn Using:

— Sequences of demonstrated actions




Example: Basketball Player Trajectories

* s =|ocation of players & ball

* a = next location of player

* Trainingset: D = {(5,a)}

— S =sequence of s

— a =sequence of a

* Goal:learnh(s) = a




What to Imitate?

Human Demonstrations Animal Demonstrations
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Computational Oracle
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Policy Learning
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Pre-collected Querying
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Value Function Learning
(Inverse Reinforcement Learning)




Policy Learning

Reduction to PAC
[Syed & Schapire 2007]

Autonomous Navigation
[Pomerleau 1991]

Pre-collected

DAgger
[Ross et al., 2011]

SEARN
[Daume et al., 2009]

Oracle

Demonstrations GAIL
[Ho & Ermon 2016]

MaxEnt IRL
[Ziebart et al., 2008]

Apprenticeship Learning
[Abbeel & Ng, 2004]

Querying

& Online
DARKO

[Rhinehart & Kitani, 2016]

Bellman Gradient Iteration
[Li & Burdick, 2017]

Value Function Learning
(Inverse Reinforcement Learning)




Policy Learning

Reduction to PAC DAgger
[Syed & Schapire 2007] [Ross et al., 2011]
Autonomous Navigation SEARN
[Pomerleau 1991] [Daume et al., 2009]
ore-colle| Previous (Deep Imitation) Work: pcle
S - VI
Demonstri ®* Minimal assumptions '*"\lf_'”g
5 ; x niine
* Inefficient in complex & structured settings
MaxEnt IRL [Rhinehart & Kitani, 2016]

[Ziebart et al., 2008]

) ) . Bellman Gradient Iteration
Apprenticeship Learning (Li & Burdick, 2017]

[Abbeel & Ng, 2004]

Value Function Learning
(Inverse Reinforcement Learning)




Structured Imitation Learning




Structured Imitation Learning

FPolicy LParming

Reduction to PAC

DAgrRer
[Syed & Schapire 2007)

[Ross ev al,, 2011)
SEARN
[Daume et al,., 2009)

Auutonomous Navigation
[(Pomeriagau 1991

Oracle
Querying

Pre-collected

Demonstrations

DA EOniline
[Ho & Ermon 2016 DARKO
MaxEnt IRL [Rhinehart & Kitani, 2016)

[Ziebart et al., 2008)
Balltman Gradient Iteration

Aappnantioasivi: Lanrying (LI & Burdick, 2017)

[Abbeaecl 8 Ng, 2004a)

Value Functiomn Learming

(Inverse Reimforcement Learmimg)




Structured Imitation Learning

Structure in the Policy

* Dynamical Systems
* Graphical Models

Policy LiParming

Reduction to PAC

DAgRer
[Syed & Schapire 2007])

[Ross et al., 201 1]

SEARN
[Daume et al,., 2009)

Auutonomous Navigation
[(Pomeriaau 1991

Oracle
Pre~-collected

2 CQuerving
Demonstrations Y b4 5

GAIL EOniline
[Ho & Ermon 2016) DARKO
MaxEnt IRL [Rhinehart & Kitani, 2016)

[Ziebart et al.,, 2008)
Balltman Gradient Iteration

Appreanticaship Learning (LI & Burdick, 2017)

[Abbeaeel 8 Ng, 2004a)

Value Function Learming

(Inverse Reimforcerment Leasarminmng)




Structured Imitation Learning

Structure in the Policy Structure in the Oracle
* Dynamical Systems * Design feedback for
* Graphical Models good global behavior

Policy LParming

Reduction to PAC

[Syved & Schapire 2007 [Ross ev al,., 2011)
Autonomous Navigation § = SEAR ~N
| o ) | mae ot 2 ]
i
11 1 | O
g - - Y
t =Tr > GAIL = i
[Ho & E r*om 2 16] DARKO
MaxEnt IRL [Rhin K 2 ]
[ Zi et al,., 2008)
Baelltman Gradient Iteration
Apprentices hip Learn ing .
, . (L1 & k, 2017)
[Abbeaecl 8 Ng, 2004a)




Structured Imitation Learning

Structure in the Policy Structure in the Oracle

* Dynamical Systems * Design feedback for

* Graphical Models good global behavior
Benefits:

* Better inductive bias

~=:/* Reductions to conventional learning |-

* Composable theoretical guarantees
S —

Value Functionmn Learmin ¥
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Coordinated Learning Hierarchical Behaviors
(Generative)
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Prediction Task i

Sara»h Taehwan

Kim
Taylor
Input sequence X =< Z1,T2y...,T|g >

Output sequence Y = Yy YBiyee:s yYlyl = Yt € RP

Goal: learn predictor h: X — Y




Prediction Task

Sara>h Taehwan

Taylor
Input sequence X =< Z1,T2,..., Tz >

Output sequence Y =<y1,Y2,-- - Yjy| > ,Yt € RP

Goal: learn predictor h: X — Y

‘2

X Frame 1 2 4 56 78 9101112131415161718 1920 21 22
Token - p p r thih d d ith ith th ith k k sh sh sh shuhuh n -

@ h Phoneme sequence
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Frame number

Sequence of face configurations

Kim




NJM.JMWMWMMJ)‘MWMWMWMWWM Input Audio

sssssihihihg grraeaeaeaefff Speech Recognition

( N e e e N T L et Speech Animation J

Retargeting
E.g., [Sumner & Popovic 2004]

(chimp rig courtesy of Hao Li)




.WMWVWWWWWMWMMWM Input Audio
-

sssssithihihggrraeaeaeaefff Speech Recognition

N . T cans T . o T e 1 S [y o ! - ~
[ S eS| SN\ )\ S| e Speech Animation ]

Retargeting
E.g., [Sumner & Popovic 2004]

Editing
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A Decision Tree Framework for Spatiotemporal Sequence Prediction
Taehwan Kim, Yisong Yue, Sarah Taylor, lain Matthews. KDD 2015

A Deep Learning Approach for Generalized Speech Animation

Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017




Polish

A Decision Tree Framework for Spatiotemporal Sequence Prediction
Taehwan Kim, Yisong Yue, Sarah Taylor, lain Matthews. KDD 2015

A Deep Learning Approach for Generalized Speech Animation

Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017

Sarah Taylor Taehwan Kim




Sinhalese

A Decision Tree Framework for Spatiotemporal Sequence Prediction
Taehwan Kim, Yisong Yue, Sarah Taylor, lain Matthews. KDD 2015

A Deep Learning Approach for Generalized Speech Animation

Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017

Sarah Taylor Taehwan Kim




Our Prediction

A Decision Tree Framework for Spatiotemporal Sequence Prediction
Taehwan Kim, Yisong Yue, Sarah Taylor, lain Matthews. KDD 2015

A Deep Learning Approach for Generalized Speech Animation

Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017

Sarah Taylor Taehwan Kim
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QUEEN

English Premier League Match date: 04/05/2013
2012-2013

Data-Driven Ghosting using Deep Imitation Learning
Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017




LUNGE

L

Hierarchical Behaviors
(Generative)

Learning to Optimize Smooth Imitation Learning <.~




Our Approach ARSEN QUEEN
1

Q
White: Learning Policieso

English Premier League Match date: 04/05/2013
2012-2013

Data-Driven Ghosting using Deep Imitation Learning
Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017




Naive Baseline QUEEN

White: Learning Policies

English Premier League Match date: 04/05/2013
2012-2013




State Representation

Geometric features computed

T WO OO OO OO OO WO OW W OWEOWEOWOOWOW

[ <R
" Lz |

Y closest |

\ closest 2
\
Yclosest 3

Data-Driven Ghosting using Deep Imitation Learning
Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017

distance & angles
to GOAL

distance & angles
to BALL

Features of closest player to
active layer



But Who Plays Which Role?

* All we get are trajectories!
— Don’t know which belongs to which role.

* Need to solve a permutation problem




But Who Plays Which Role?

* All we get are trajectories!
— Don’t know which belongs to which role.

* Need to solve a permutation problem

— Naive baseline ignores this!




Coordination Model

Train Multiple Interacting Policies

Action 1 Action K Latent Structure

O-O-
ONO

Policy K Observed Actions

Policy 1

Graphical Model Inference

Coordinated Multi-Agent Imitation Learning
Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017




Learned Roles

LCB

LB

LMF




Imitation Error on Test Examples

9

—e— Decentralized Coordinated
Centralized Coordinated
Decentralized Unstructured

—e— (Centralized Unstructured

(o)

da O, » -~

Average Distance Imitation Loss (meters)

w

50 100 150 200 250 300
Sequence Length (Time Steps)

Coordinated Multi-Agent Imitation Learning
Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017




Naive Baseline QUEEN

White: Learning Policies

English Premier League Match date: 04/05/2013
2012-2013




Learned Roles

LCB

LB

LMF




Imitation Error on Test Examples

9

—e— Decentralized Coordinated
Centralized Coordinated
Decentralized Unstructured

—e— (Centralized Unstructured
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Average Distance Imitation Loss (meters)

w
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Sequence Length (Time Steps)

Coordinated Multi-Agent Imitation Learning
Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017
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Speech Animation Coordinated Learning Hierarchical Behaviors
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Strategy vs Tactics

* Long-term Goal:

— Curl around basket

 Tactics
— Drive left w/ ball
— Pass ball

— Cut towards basket

Stephan
Zheng

_ Eric
S Zhan




Generative + Hierarchical
Imitation Learning

* Generative Imitation Learning

— No single “correct” action

* Hierarchical
— Make predictions at multiple resolutions

Generating Long-term Trajectories using Deep Hierarchical Networks
Stephan Zheng, Yisong Yue, Patrick Lucey. NIPS 2016

Generative Multi-Agent Behavioral Cloning
Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, Patrick Lucey. arXiv




Generative + Hierarchical
Imitation Learning

* Generative Imitation Learning

_ IN agents
— No single “correct” action X
* Hierarchical !
— Make predictions at multiple resolutions l YR |12

‘ \ )/ 1)y
| Macro-goals |

\ VRNN )

\\ I
Xt
Generating Long-term Trajectories using Deep Hierarchical Networks

Stephan Zheng, Yisong Yue, Patrick Lucey. NIPS 2016

Generative Multi-Agent Behavioral Cloning
Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, Patrick Lucey. arXiv

























‘Eﬁ‘.’fldomr Drosophila Behavior




Activity Labels

TOUCH K WING THREAT CHARGE LUNGE
COPUL. ATTEMPT COPULATION

o r 4 N

Learning recurrent representations for hierarchical behavior modeling
Eyrun Eyolfsdottir, Kristin Branson, Yisong Yue, Pietro Perona, ICLR 2017




Aside: Hierarchically Composing IL & RL

* |L for meta-controller (plan sub-goals)
* RL/IL for low-level controllers (individual sub-goals)

Hierarchical Imitation and Reinforcement Learning
Hoang Le, Nan Jiang, Alekh Agarwal, Miro Dudik, Yisong Yue, Hal Daume. ICML 2018




Aside: Hierarchically Composing IL & RL

* |L for meta-controller (plan sub-goals)
* RL/IL for low-level controllers (individual sub-goals)

hg-DAgger/Q versus h-DQN (100 trials)

400 |
—— hg-DAgger/Q 3rd quartile
7 —— hg-DAgger/Q medign
= = B 300 h-DQN
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LO-level Reinforcement Learning Samples
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|
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I

* More label efficient than flat IL
* Converge much faster than conventional hierarchical RL

Hierarchical Imitation and Reinforcement Learning
Hoang Le, Nan Jiang, Alekh Agarwal, Miro Dudik, Yisong Yue, Hal Daume. ICML 2018
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Optimization as Sequential Decision Making

* Many solvers are sequential:
— Greedy
— Search heuristics
— Gradient Descent

* Can view as solver as “agent”
— State = intermediate solution
— Find a state with high reward (solution)




Optimization as Sequential Decision Making

* Greedily maximize F, using only x ﬁ

Learning Policies for Contextual Submodular Prediction [ICML 2013] Stephane Ross

Contextual Submodular Maximization
* Training set: (x, F,)




Optimization as Sequential Decision Making

Contextual Submodular Maximization
* Training set: (x, F;)

* Greedily maximize F, using only x
Learning Policies for Contextual Submodular Prediction [ICML 2013] Stephane Ross

Learning to Search
* Training set: (x=MILP, y=solution/search—trace)

* Find y (or better solution)

Learning to Search via Retrospective Imitation [arXiv]

Jialin Song




Optimization as Sequential Decision Making

Contextual Submodular Maximization
* Training set: (x, F,.)

* Greedily maximize F, using only x
* Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Search
* Training set: (x=MILP, y=solution/search—trace)
* Find y (or better solution)

* Learning to Search via Retrospective Imitation [arXiv]

Learning to Infer
* Training set: (x=data/model, L=likelihood )

* |teratively optimize L (generalizes VAEs)
* |terative Amortized Inference [ICML 2018]
* A General Method for Amortizing Variational Filtering [NIPS 2018]

Stephane Ross

/ ')' §
Joe Marino




Ravi Ongoing Research sialin 9
A Risk-Aware Planning e "%

Low Risk | High Risk

* Compiled as mixed integer program
* Challenging optimization problem




\Distribution of Planning Problemsj
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\Distribution of Planning Problemsj
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Imitation /L—‘
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(Dynamic Constraint) x;.1 = Ax¢ + Bug,
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(Safety Constraints) h,' x; < g,
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/ min J(U, X) \

subject to,

(Dynamic Constraint) x;.1 = Ax¢ + Bug,

(Safety Constraints) hiTXt < gé
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Learning to Search via Retrospective Imitation

Expert Trace

o
& o

of-
®
o

Learning to Search via Retrospective Imitation
R. Lanka, J. Song, A. Zhao, Y. Yue, M. Ono. arXiv




Learning to Search via Retrospective Imitation

Expert Trace Roll-out Trace

- JOJ
@ e Policy Roll-out @ @
@ @ e DAgger Learning { %ﬁﬁfﬁr }(ommml exploration) @ @ @ @

$ ® ©
. O

Learning to Search via Retrospective Imitation
R. Lanka, J. Song, A. Zhao, Y. Yue, M. Ono. arXiv




Learning to Search via Retrospective Imitation

Expert Trace Roll-out Trace

o JO}
@ 6 Policy Roll-out @ @
@ @ e DAgger Learning { %Aoﬁ‘ff,r } (optional exploration) @ @ @ @
o of©
¢ O

l Retrospective Oracle

ok Yok
) ©
¢

Feedback from Retrospective Oracle

00
OaON

Learning to Search via Retrospective Imitation
R. Lanka, J. Song, A. Zhao, Y. Yue, M. Ono. arXiv




Learning to Search via Retrospective Imitation

Expert Trace Roll-out Trace

o JOJ
& 6 | Policy Roll-out @ @
O & o DAgger Learning { %Aoﬁgsr }(optmml exploration) @ @ @ @
o ® ©
é o ot i . <>

poid ~ -7 lRt‘lrosp‘c‘Cli\'e Oracle

’0 < /’f//,’ c

o o

Policy Up(lille @ @ o
of -

Final Learned Policy Feedback from Retrospective Oracle

o
0
o

00

Learning to Search via Retrospective Imitation
R. Lanka, J. Song, A. Zhao, Y. Yue, M. Ono. arXiv




Retrospective DAgger vs Heuristics for
MILP based Path Planning (budget=2k)

Retrospective DAgger
(select only)

—e— GUrobi

50 \
SCIP

Gurobi

*

—

N

w
1

Optimality Gap (%)
—
~ -
¥ o

50 A
Our Approach
P b /
O 2l ® % /
1b 1'1 1'2 1'3 1'4
(400) (440) (480) (520) (560)
/ Way points (# binary variables)

Initial demonstrations

only at smallest size! Learning to Search via Retrospective Imitation
R. Lanka, J. Song, A. Zhao, Y. Yue, M. Ono. arXiv




Learning to Search via Retrospective Imitation

Expert Trace Roll-out Trace

o JO}
@ B . Policy Roll-out @ @
@ @ e DAgger Learning { %ﬁﬁ%;r } (optional c.\plmatmn) @ @ @ @
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e ©
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Learning to Search via Retrospective Imitation
R. Lanka, J. Song, A. Zhao, Y. Yue, M. Ono. arXiv




Retrospective DAgger vs Heuristics for
MILP based Path Planning (budget=2k)

Retrospective DAgger
(select only)

—e— GUrobi

150 \
SCIP

Gurrobi

*

—

N

w
1

Optimality Gap (%)
—
~ -
o o

50 A
Our Approach
20 /
O 2l pe % /
1b 1'1 1'2 1'3 1'4
(400) (440) (480) (520) (560)
/ Way points (# binary variables)

Initial demonstrations

only at smallest size! Learning to Search via Retrospective Imitation
R. Lanka, J. Song, A. Zhao, Y. Yue, M. Ono. arXiv




LUNGE

L

Speech Animation Coordinated Learning Hierarchical Behaviors
(Generative)

Learning to Optimize Smooth Imitation Learning <.~




Realtime Player Detection and Tracking

Human Operated Camera
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Problem Formulation

* Input: stream of x;

— E.g., noisy player detections

* State s¢ = (X¢.t—k) At-1:t—k)
— Recent detections and actions - b

* Goal: learn h(sy) = a; / Q

— Imitate expert \_




Naive Approach

* Supervised learning of demonstration data

— Train predictor per frame
— Predict per frame




Naive Approach

* Supervised learning of demonstration data

— Train predictor per frame
— Predict per frame
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Naive Approach

* Supervised learning of demonstration data
— Train predictor per frame

— Predict per frame -

20

o o

N
o

Camera Angle
- eE e ¢
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Time Frame




What is the Problem?

* Basically takes “infinite” training data to train
smooth model. o

— Via input/output examples ;‘o

& 20
o
-30




What is the Problem?

* Basically takes “infinite” training data to train
smooth model.

— Via input/output examples

Time Frame




Cannot Rely 100% on Learning!

* People have models of smoothness!
— Kalman Filters
— Linear Autoregressors
— Etc...

* Pure ML approach throws them away!
— "black box”




Hybrid Model-Based + Black-Box

* Model-based approaches

— Strong assumptions, well specified ,
o Conventional

— Lacks flexibility Models

— E.g., Kalman Filter, Linear Autoregressor

* Black-box approaches

— Assumption free, underspecified
— Requires a lot of training data
— E.g., random forest, deep neural network

 Best of both worlds?




New Policy Class a

\
Jimmy
Chen

Hoang

Le A h

h(St = (Xp.t—k at—l:t—K)) = argming, (f(sy) —a')* + A(g(as—1.t-x) — a')?

_ fGsp)+Ag(at—1.t-k)
- 1+A




Functional Regularization

)

Complex Predictors F

Smooth Complex
Predictors H

h(st = Ktk p-1:t-5)) = argming, (f(s,) — a)? + 2(g(as-1.4-x) — a')?

_ fGsp)+Ag(at—1:t-k)
- 1+

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016




Our Result

f(se) + Ag(ac—1..-x)
1+ 2

h(st = (Xt:t—k at—l:t—K)) =

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016




Qualitative Comparison

Baseline Our Approach

Learning Online Smooth Predictors for Real-time Camera Planning using Recurrent Decision Trees
Jianhui Chen, Hoang Le, Peter Carr, Yisong Yue, Jim Little. CVPR 2016




Qualitative Comparison

Baseline Our Approach

Learning Online Smooth Predictors for Real-time Camera Planning using Recurrent Decision Trees
Jianhui Chen, Hoang Le, Peter Carr, Yisong Yue, Jim Little. CVPR 2016




Qualitative Comparison

Recurrent Decision Trees
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Definition: Rollout

* Execute h sequentially




Definition: Learning Reduction

* Original Learning Problem: D ={(5,a)}

— Sequential Decision Making

* Converted Learning Problem: D' = {(s',a")}
— Classification / Regression

* Trainhon D’ (easy to do) p

* Theoretical Goals: /D \
h

* Practical Goals: \_ « 4
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SIMILE Learning Algorithm

 |nitial Predictor: hO <«— Memorize Demonstrations

* Form=1,...
— Rollout h__, on stream of x - -
— Collect training data D’ \ -
* Smooth feedback '
— Train new policy h_, | | =
* h',, & regression on D’ /_ R

m

* Interpolate to obtain h,, | Al
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SIMILE: Theoretical Guarantees

* Always Smooth

* Guaranteed Improvement

— Converge to optimal smooth model

* Adaptive learning rate 3,

— Converge exponentially faster than SEARN
— Exploit (Lipschitz) smoothness property of policy class

f(se) + Ag(ar—1..-x)
1+ A4

h(st = (Xt:t—k at—l:t—l{)) =




Adaptive Learning Rate

Irq"gtation Loss - Test Set - Adaptive vs. Fixed Beta
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Lessons Learned

* Intuition: Let model do most of work

— Black box (deep neural net) adds flexibility

— “Regularization” improves learning
* Exponentially faster convergence compared to SEARN

\

. Exploit Lipschitz
* Applicable to other approaches? | from smooth

temporal dynamics

— Deep learning + robust control?
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Speech Animation Coordinated Learning Hierarchical Behaviors
(Generative)

Learning to Optimize Smooth Imitation Learning <. *
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Smooth Imitation Learning for Online Sequence Prediction, Hoang Le et al., ICML 2016

Learning Smooth Online Predictors for Real-Time Camera Planning using Recurrent Decision
Trees, Jianhui Chen et al., CVPR 2016

A Decision Tree Framework for Spatiotemporal Sequence Prediction, Taehwan Kim et al., KDD
2015

A Deep Learning Approach for Generalized Speech Animation, Sarah Taylor et al., SIGGRAPH
2017

Generating Long-term Trajectories using Deep Hierarchical Networks, Stephan Zheng et al.,
NIPS 2016

Generative Multi-Agent Behavioral Cloning, Eric Zhan et al. arXiv

Learning recurrent representations for hierarchical behavior modeling, Eyrun Eyolfsdottir et
al., ICLR 2017

Data-Driven Ghosting using Deep Imitation Learning, Hoang Le et al., SSAC 2017 (Best Paper
Runner Up)

Coordinated Multi-agent Imitation Learning, Hoang Le et al., ICML 2017

Learning Policies for Contextual Submodular Prediction, Stephane Ross et al., ICML 2013
Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv
Iterative Amortized Inference, Joseph Marino et al., ICML 2018

A General Method for Amortizing Variational Filtering, Joseph Marino et al., NIPS 2018

Hierarchical Imitation and Reinforcement Learning, Hoang Le et al., ICML 2018




