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Abstract
Logging is a fundamental part of the software development
and deployment lifecycle but logging support is often pro-
vided as an afterthought via limited library APIs or third-
party modules. Given the critical nature of logging inmodern
cloud, mobile, and IoT development workflows, the unique
needs of the APIs involved, and the opportunities for op-
timization using semantic knowledge, we argue logging
should be included as a central part of the language and
runtime designs. This paper presents a rethinking of the
logger for modern cloud-native workflows.
Based on a set of design principles for modern logging

we build a logging system, that supports near zero-cost for
disabled log statements, low cost lazy-copying for enabled
log statements, selective persistence of logging output, uni-
fied control of logging output across different libraries, and
DevOps integration for use with modern cloud-based de-
ployments. To evaluate these concepts we implemented the
Log++ logger for Node.js hosted JavaScript applications.

CCS Concepts • Software and its engineering→Com-
pilers;Runtime environments;General programming lan-
guages;
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1 Introduction
Logging has always been a important tool for software de-
velopers to gain understanding into their applications [25,
30, 32]. However, as DevOps oriented workflows have be-
come more prevalent, logging is becoming an even larger
consideration when building applications [11, 32]. A key area
driving this shift is the use of cloud-based applications and
the integration of application monitoring dashboards, such
as Stack Driver [27], N|Solid [21], or AppInsights [1], which
ingest logs from an application, correlate this information
with other aspects of the system, and provide the results in
a friendly dashboard format for developers. The additional
value provided by these dashboards and the ability to quickly
act on this data makes the inclusion of rich logging data an
integral part of application development.

Existing logging library implementations, as provided via
core or third party libraries, are unable to satisfactorily meet
the demands of logging in modern applications. As a re-
sult developers must use these loggers with care to limit
undesirable performance impacts [34] and log spew [11, 34],
work to control logging output from other modules to the
appropriate channels, and figure out how to effectively parse
the data that is written from various sources. Consider the
JavaScript code in Figure 1 which illustrates concrete issues
encountered by Node.js [19] developers today.
A major issue with logging is the potential for the acci-

dental introduction of serious performance problems though
seemingly benign activities [11, 25, 30, 32, 34]. In existing
logging frameworks even when a logging level is disabled,
as debug and trace levels usually are, the code to generate
and format the log message is still executed. This can either
be due to eager evaluation semantics of the source language
or due to limitations in compiler optimizations for dead-code
elimination in languages with workarounds such as macros.
This results in code that looks like it will not be executed but
that, in reality, incurs large parasitic costs as can be seen in
the logger.debug statement in the example, which at the
default level does not print to the log, but will still result in
the creation of the literal object and generation of a format
string on every execution of the loop. This cost leads de-
velopers to defensively remove these statements from code
instead of depending on the runtime to eliminate their costs
when deploying an application.

Next is the issue of log spew [11, 34] where logging at a
detailed level, which may be desirable for debugging when
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1 con s t d e s t = f s . c r e a t eWr i t e S t r e am ( "/tmp/logging/app.log" ) ;
2 con s t l o g g e r = r e q u i r e ( 'pino' ) ( de s t , { l e v e l : "info" } ) ;
3
4 function foo ( name , f l a g ) {
5 c on so l e . l og ( "Hello" ) ;
6 l o g g e r . i n f o ( "World" ) ;
7 f o r ( var i = 0 ; i < 1 0 0 0 ; ++ i ) {
8 l o g g e r . debug ( "Data = " + JSON . s t r i n g i f y ( { nva l : name , c v a l : i } ) ) ;
9 . . .
10 }
11
12 con s t ok = check ( name , f l a g ) ;
13 l o g g e r . i n f o ( "check(%s, %b) is %b)" , name , f l a g , ok ) ;
14 i f ( ! ok ) {
15 l o g g e r . warn ( "Error ..." ) ;
16 }
17 }

Figure 1. Examples of logging usage in JavaScript

an issue occurs, fills the log with large quantities of uninter-
esting noise output. An example of this is the logger.info
message about the args and result of the check call in Fig-
ure 1. In the case of a successful execution the content of this
log statement is not interesting and the cost of producing it
plus the increased noise in the logfile is pure overhead. How-
ever, if the check statement fails then having information
about what events led up to the failure may be critical in
diagnosing/fixing the issue. In current logging frameworks
this is an unavoidable conundrum and, in any case where
the trace history is needed, the logging statements must be
added and the cost/noise accepted as a cost.
The combination of verbose logging and the trend to-

wards including critical, but extensive, metadata such as
timestamps and host information in log messages further
drives concerns about the performance of logging. Comput-
ing a timestamp or a hostname string is inexpensive but the
cost of formatting them into a message is non-trivial can can
add up over thousands or millions of log messages resulting
in unexpected performance degradation.
Modern developer practices around logging frequently

involve post processing of log data into analysis frameworks
like the Elastic stack [7] or Splunk [26]. However, free form
specification of message formats, as seen in printf or con-
catenated value styles, are not amenable to machine pars-
ing. Modern logging frameworks, log4j [13], pino [23], bun-
yan [3], etc. provide some support for consistently formatting
and structuring output but fundamentally this problem is
left as a problem development teams need to solve via coding
conventions and reviews.
The final issue we consider is the growing pain of inte-

grating multiple software modules, each of which may use a
different form of logging. In our running example we have

console.log writing to the stdout and a popular frame-
work called pino which has been configured to write to a
file. As a result some log output will appear on the console
while other output will end up in a file. Further, if a devel-
oper changes the logging output level for pino, from say
info to warn, this will not change the output level of the
console output. Developers can work around this to some
degree by enforcing the use of a single logging framework
for their code but they will not always be able to control the
frameworks used by external libraries.
To address these issues we propose an approach where

logging is viewed as a first class feature in the design/imple-
mentation of a programming language and runtime instead
of simply another library to be included. Taking this view
enables us to leverage language semantics, focused compiler
optimizations, and semantic knowledge in the runtime to
provide a uniform and high performance logging API.

The contributions of this paper include:

• The view that logging is a fundamental aspect of pro-
gramming and should be included as a first class part
of language, compiler, and runtime design.

• A novel dual-level approach to log generation and
writing that allows a programmer to log execution
data eagerly but only pay the cost of writing it to the
log if it turns out to be interesting/relevant.

• Using this dual-level approach we show how to sep-
arate and support the desire to use logging for both
debugging when an error condition is encountered and
for telemetry purposes to monitor general application
behavior.
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• A suite of innovative log format and log level manage-
ment techniques that provide a consistent and unified
log output that is easy to manage and feed into other
tooling.

• An implementation in Node.js to demonstrate that key
ideas can be applied to existing languages/runtimes
and to provide an production quality implementation
for use in performance evaluations.

2 Design
This section describes opportunities, using language, run-
time, or compiler support, to address general challenges
surrounding logging outlined in Section 1. We can roughly
divide these into two classes – performance oriented and
functionality oriented.

2.1 Logging Performance
Design Principle 1. The cost of a logging statement at a
logging level that is disabled should have zero-cost at runtime.
This includes both the direct cost of the logging action and the
indirect cost of of building a format string and processing any
arguments. Further, disabling/enabling a log statement should
not change the semantics the application.

When logging frameworks are included as libraries the
compiler/JIT does not, in general, have any deep understand-
ing of the enabled/disabled semantics of the logger. As a
result the compiler/JIT will not be able to fully eliminate
dead-code associated with disabled logging statements and
will incur, individually small but widespread, parasitic costs
for each disabled logging statement. These costs can be very
difficult to diagnose, as they are widely dispersed and indi-
vidually small, but can add up to several percentage points
of application runtime. To avoid these parasitic costs we pro-
pose including logging primitives in the core specification of
the programming language or, if that is not possible, adding
compiler/JIT specializations to optimize them.
An additional advantage of lifting log semantics to the

language specification level is the ability to statically ver-
ify logging uses and handle errors that occur during log
expression evaluation. Common errors include format speci-
fier violations [28], accidental state modification [5, 16] in
the logging message computation, and other logging anti-
patterns [4]. If the language semantics specify logging API’s
then both of these error classes can be statically checked to
avoid runtime errors or heisenbugs that appear/disappear
when logging levels are changed.

Design Principle 2. The cost of an enabled logging state-
ment has two components – (1) the cost to compute the set
of arguments to the log statement and (2) the cost to format
and write this data into the log. The cost of computing the
argument values is, in general unavoidable, and must be done
on the hot path of execution. However, the cost of (2) should be
reduced and/or moved off the hot path as much as possible.

To minimize the cost of computing arguments to the log
statement and speed their processing we propose a novel
log format specification mechanism using preprocessed and
stored log formats along with a set of log expandos which
can be used as a shorthand in a log to specify common, but
expensive/complicated, to compute log argument values. The
use of preprocessed format messages allows us to save time,
the type checking and processing of each argument does
not require parsing the format string, and instead of eagerly
stringifying each parameter we can do a quick immutable
copy of the argument which can be formatted later. Expandos
provide convenient ways to add data into the log, such as the
current date/time, the host IP, or a current request ID [14],
that would either be more expensive or more awkward to
compute explicitly on a regular basis. We can eliminate the
main-thread cost of formatting by batching the log messages
and instead doing the format work on a background thread.

2.2 Logging Functionality
Design Principle 3. Logging serves two related, but some-
what conflicting roles, in modern systems. The first role is to
provide detailed information on the sequence of events preced-
ing a bug to aid the developer in triaging and reproducing the
issue. The second role is to provide general telemetry informa-
tion and visibility into the overall behavior of the application.
This observation leads to the third design principle: logging
should support both tasks simultaneously without compromis-
ing the effectiveness of either one.

To support these distinct roles we propose a dual-level
logging approach. In the first level all messages are ini-
tially stored, as a format + immutable arguments, into an
in-memory buffer. This operation is high performance and
suitable for high frequency writes of detailed logging in-
formation needed for debugging. Further, in event an error
is encountered the full contents of detailed logging can be
flushed to aid in debugging. In the second level these de-
tailed messages can be filtered out and only the high-level
telemetry focused messages can be saved, formatted, and
written into the stable log. This filtering avoids the pollution
the saved logs with overly detailed information while pre-
serving the needed data for monitoring the overall status of
the application [11, 32].

Design Principle 4. Logging code should not obscure the
logic of the application that it is supporting. Thus, a logger
should provide specialized logging primitives that cover com-
mon cases, such as conditional logging, that would otherwise
require a developer to add new logic flow into their application
specifically for logging purposes.

Common scenarios that often involve additional control or
data flow logic include conditional logging where a message
is only written when a specific condition is satisfied, child
loggers which handle a specific subtask and often developers
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Figure 2. Logger architecture

want to include additional information in all log messages
from this subtask, and bracketing entries where developers
want to mark the start/end of something and include corre-
lated timing (and other) information in the bracketing. All
of these scenarios involve the developer adding additional,
error-prone, control and data flow to the program which ob-
scures the core algorithmic code. Thus, we propose adding
primitive methods for supporting all of these scenarios with-
out requiring additional developer implemented logic.

Design Principle 5. Applications are often built leveraging
numerous third-party components which may include their
own logging functionality and may try to configure their own
output endpoints. A logging framework should provide a mech-
anism for composing log outputs and controlling logging re-
lated configurations of included modules and components.

Supporting this workflow requires that the language and/or
runtime to standardize a number of features. The first is the
set of logging levels and way to define categories. Without
these it is not even possible for the loggers to agree onwhat is
expected to be output. The next is a unified way to aggregate
and output messages to a common destination. Finally, since
the toplevel application needs to have the final authority
over which levels/categories are enabled for which modules
and where the data goes, a logger must have the concept of
a root logger which can modify these values and sub-loggers
from included modules which should behave in accordance
with the specifications provided by the root logger.

3 Implementation
Given the design principles outlined in Section 3 we now
present the implementation of Log++1 which realizes these

1Log++ sources available at https://github.com/mrkmarron/logpp

goals in a logger for the Node.js [19] runtime. It is pos-
sible to implement many of the features needed to satisfy
our design goals as a library or using the native API exten-
sion bindings (N-API [18]) but others require core runtime
support. For these core changes we modify the ChakraCore
JavaScript engine and core Node implementation directly.

3.1 Implementation Overview
The logging system is split into five major components that
(1) manage the global logger states, message filters, message
formats, and configurations (2) the message processor and
in-memory buffer (3) the emit filter and processor (4) the
formatter (5) and finally the transports. These components
and the relations between them are shown in Figure 2 and
explained in detail in the rest of the section.

3.2 JavaScript Implementation
Log State Manager The first component we look at in the
implementation is the global log state manager. This compo-
nent is responsible for tracking all of the loggers that have
been created, which one of them (if any) is the root logger, the
enabled logging levels + categories, and the message formats
which have been defined. The loggers are shown as Lroot
and Lc1 . . . Lcj in Figure 2 and each one is associated with a
Level Filter that controls which levels are enabled/disabled
for it. The global category filter controls which categories
are enabled/disabled on a global basis.

As seen in the example code there be many loggers created
in different parts of the application. One logger, named “app”,
is created on line 2 of the main application in Figure 3 while
a second, named “foo”, is created in the module foo.js in
Figure 4 which is included from the main app.js file. As
stated in design principle 5 we do not want the included
sub-module foo.js to be able to, unexpectedly, change the

https://github.com/mrkmarron/logpp
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1 //app.js

2 con s t logapp = r e q u i r e ( "logpp" ) ( "app" ) ;
3 l ogapp . addFormat ( "Hello" , "Hello %s %j" ) ;
4
5 con s t foo = r e q u i r e ( "./foo" ) ;
6 foo . d o i t ( ) ;
7
8 l ogapp . i n f o ( logapp . $Hel lo , "info" , { f : 3 } ) ;
9 l ogapp . d e t a i l ( l ogapp . $He l lo , "detail" , { f : 4 } ) ;
10
11 l ogapp . addFormat ( "Now" , "#walltime" ) ;
12 l ogapp . i n f o ( logapp . $$Per f , l ogapp . $Now ) ;
13 l ogapp . enab l eCa t ego ry ( "Perf" ) ;
14 l ogapp . i n f o ( logapp . $$Per f , l ogapp . $Now ) ;

Figure 3. Running example main app code

1 //foo.js

2 con s t l o g f o o = r e q u i r e ( "logpp" ) ( "foo" ) ;
3 l o g f o o . addFormat ( "Hello2" , "Hello2 %s" ) ;
4
5 function d o i t ( ) {
6 l o g f o o . i n f o ( l o g f o o . $He l lo2 , "foo.js" ) ;
7 }
8
9 l o g f o o . s e tOu t pu t L ev e l ( l o g f o o . L e v e l s . TRACE ) ;
10 module . e x po r t s . d o i t = d o i t ;

Figure 4. Running example submodule code

logging level for the main app (the call to setOutputLevel
on line 9). We also allow the root logger to enable/disable
log outputs from these subloggers.
To support these features the Log++ logger keeps a list

of all created loggers and a special root logger which is the
first logger created in the main module of the application.
When updating logging levels or creating a new logger we
check if the action is coming from the root logger and, if
not, either convert the call to a nop or look at the root logger
configuration to see if we need to override any parameters.
These features cover the needs of controlling logging from
multiple modules as described in Design Principle 5.
In our running example the state manager will intercept

the creation of the logger on line 2 in foo.js. Since the
logger created here is not the root logger we intercept this
construction, set the in-memory log level to the overridden
(default) WARN level instead of the standard value of DETAIL,
prevent the modification of the emit-level on line 9, and will
store the newly created logger in a list of subloggers.
Tracking the list of all created sub-loggers allows a de-

veloper to share a single logger between several files in the
same module. The name parameter in the logger construc-
tor is keyed with the logger and, if the same key is used in
multiple places, the same logger object will be returned.
Finally, the state manager is responsible for maintaining

information on the current emit levels, the enabled/disabled
categories, and the sublogger override information. Each
logger has an independent level at which it can write into
the in-memory log. However, the state manager maintains a
global set of enabled/disabled categories for all loggers and
a global logging level for eventual emit processing, which
only the root logger is allowed to update.
In our running example the main application has a log

statement on lines 12 and 14 in the Perf category to put
a message with the current walltime in the log. The first
log statement happens before the Perf category has been
enabled it will not be processed. After enabling the Perf cate-
gory on line 13 the log operation on line 14 will be processed
and results in a message saved to the in-memory log.

Message Formats To improve performance and support
machine parsing of the log output we adopt a semantic log-
ging approach where the log call copies the format informa-
tion and message arguments to a secondary location instead
of formatting them immediately. This implementation choice
supports the needs of Design Principle 2. Since the copy op-
eration is low cost this minimizes the performance impact
on the main thread and allows the formatter to build up a
parser for all the messages it emits which can be later used
to parse the log. Modern software development also favors
the use of consistent styles and data values in the log. Thus,
Log++ encourages developers to split the logging action into
two components:

• Format definition using an addFormat method which
takes a format string or JSON format object, processes
it into an optimized representation, and then saves it
for later use.

• Use a previously defined format in a log statement by
passing the previously generated format identifier and
the list of arguments for processing.

In addition to programmatically processing single log for-
mats, as shown on line 3 in Figure 3, we also allow the pro-
grammer to load formats in bulk from a JSON formatted file.
This allows a team to have a unified set of logging messages
that can be loaded/processed quickly on startup and then
used repeatedly throughout the applications execution. Once
loaded all format objects are saved in the Formats compo-
nent in Figure 2 where they can be loaded as needed when
processing a log statement.

The format for a logger message is:
1 {
2 formatName : s t r i n g , //name of the format

3 f o rma t S t r i n g : s t r i n g , //raw format string

4 f o rm a t t e r E n t r i e s : {
5 kind : number , //tag indicating the entry kind

6 a r g P o s i t i o n ? : number , // position in argument list

7 expandDepth ? : number , //JSON expand depth

8 expandLength ? : number //JSON expand length

9 } [ ]
10 }



DLS ’18, November 6, 2018, Boston, MA, USA Mark Marron

This representation allows us to quickly scan and process
arguments to a log statement as described in the In-Memory
Message Processing section. The kind information is used
for both identifying what type of value is expected when
formatting an argument, e.g. number, string, etc., but we
also use it to support format macros.
To support the easy/efficient logging on a number of

common values that are not easily (or cheaply) computable
we provide format macros. Classic examples include adding
the current walltime or the hostname as part of a log mes-
sage. In JavaScript these require explicitly calling expensive
compound API sequences new Date().toISOString() or
require(’os’).hostname(). Instead we allow a developer
to use special macros #walltime, as seen on line 11 in Fig-
ure 3, or #host in their format strings and then the logger has
optimized internal paths to get the needed values. In these
cases the kind field is set to the enumeration for the macro
and the argPosition is undefined. The list of supported
macro formatters includes:

• #host – name of the host
• #app – name of the root application
• #logger – name of the logger
• #source – source location of log statment (file, line)
• #wallclock – wallclock timestamp (ISO formatted)
• #timestamp – logical timestamp
• #request – the current request id (for http requests)

A common logging practice is to include raw objects, for-
matted as JSON, into the message. This is a convenient way
to include rich data in a message but can lead to unexpect-
edly excessive logging loads when, what the developer ex-
pected to be a small object, turns out to be quite large. To
prevent this we have a specialized JSON-style processor that
will bound the depth/length of object expansion during for-
matting. The expandDepth and expandLength arguments
provide control over this depth/length and can be adjusted
in the format string when a developer want to capture more
(or less) information than what is provided by the defaults.

In-Memory Message Processing The in-memory buffer is
implemented as a linked-list of block structures:
1 {
2 t a g s : Uint8Array ,
3 da t a : F l oa t 64Ar ray ,
4 s t r i n g s : s t r i n g [ ] ,
5 p r o p e r t i e s : map<number , s t r i n g >
6 }

To allow efficientmarshalling of the data from our JavaScript
logger frontend to the C++ N-API code that handles the for-
matting we encode all values into 64bit based representations
(stored in the data property). We use a set of enumeration
tags (stored in the tags property) to track what the kind of
the corresponding 64bit value is. We have special handling
for string and object property values, described below, that
use the strings array and the properties map.

When implementing a sematic logging system the key
invariant that needs to be preserved is that the values of
each argument must not be changed between the time when
the log call happens and when the argument is processed for
formatting. Certain values including booleans, numbers, and
strings, are immutable according to the language semantics
so we can just copy the values/references directly into our
in-memory array. However, in cases where the argument
is a mutable object we must take explicit actions. A simple
solution would be to JSON stringify the argument immedi-
ately, and while this prevents mutation and allows semantic
formatting, it compromises possible performance gains we
are looking for. Instead we recursively flatten the object into
the in-memory buffer with the code below:
1 function addExpandedObjec t ( obj , depth , l e ng t h ) {
2 //if the value is in a cycle

3 i f ( th i s . j s o nCy c l e S e t . has ( ob j ) ) {
4 th i s . addTagEntry ( CycleTag ) ;
5 return ;
6 }
7
8 i f ( depth === 0 ) {
9 th i s . addTagEntry ( DepthBoundTag ) ;
10 return ;
11 }
12
13 //Set processing as true for cycle detection

14 th i s . j s o nCy c l e S e t . add ( ob j ) ;
15 th i s . addTagEntry ( LParenTag ) ;
16
17 l e t l engthRemain = l eng t h ;
18 f o r ( c on s t p in ob j ) {
19 i f ( l engthRemain <= 0 ) {
20 th i s . addTagEntry ( LengthBoundTag ) ;
21 break ;
22 }
23 l engthRemain −−;
24
25 th i s . a ddP rope r tyEn t ry ( p ) ;
26 th i s . addGenera lEn t ry ( ob j [ p ] , depth − 1 , l e ng t h ) ;
27 }
28
29 //Set processing as false for cycle detection

30 th i s . j s o nCy c l e S e t . d e l e t e ( ob j ) ;
31 th i s . addTagEntry ( RParenTag ) ;
32 }

This code is part of the transition from the formats and
logger call arguments that is performed in the Message pro-
cessing component shown in Figure 2. This code starts off
by checking if we are either in a cycle or the depth bound
has been reached. If either of these occur we put a special
tag, CycleTag or DepthBoundTag respectively, into the tags
array and return. If not we continue with the pre-order tra-
versal of the object graph by updating the cycle info, adding
the special LParenTag to the buffer, and enumerating the
object properties. For each property we check if the length
bound is met, adding the special LengthBoundTag and break-
ing if needed, if not we add the property and value infor-
mation to the in-memory buffer. The property value p is a
special string value which is very likely to be repeated so
we use a map from properties to unique numeric identifiers
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to compress and convert them into a number which can
be stored in the data component of the in-memory buffer
via the addPropertyEntry function. The value associated is
recursively processed via the addGeneralEntry call which
switches on the type of the value, booleans and numbers
are converted directly to Float64 representations, strings
are mapped by index in the strings array, and Date ob-
jects are converted to 64bit timestamps using the valueOf
method. Similar to standard JSON formatting other values
are simplified but, instead of just dropping them, we use a
special OpaqueValueTag. After all the properties have been
processed we update the cycle tracking information and add
a closing RParenTag.

To illustrate how this code works in practice consider the
case of processing the object argument:

{
f : 3 ,
g : 'ok' ,
o : { g : ( x ) => x }

}

The resulting state of the in-memory buffer is shown in
Figure 5. In this example we can see how the object structure
has been flattened into the buffer with the '{' and '}' tags
denoting the bounds of each object. Each of the properties
has been registered in the map (with a fresh numeric iden-
tifier) and this is stored in the data array. For example the
property g is mapped to 1 and in both occurrences in the
object structure the entry in the tags array is set to 'p' for
property and the value in the data array is set to match
the corresponding numeric identifier 1. The numeric and
boolean values are mapped in the obvious way, directly for
the number and to 0/1 for the boolean with the appropriate
tag values set. Similar to the properties the string value 'ok'

is mapped to an integer index, index 0, in the strings array.
Finally, since functions are not serializable, the value asso-
ciated with the id property is dropped and we simply store
the OpaqueValueTag ('?') in the corresponding position of
the tags array.

Message Staging The in-memory design allows us to sup-
port Design Principle 3 by buffering a window of high detail
messages, in case they are needed for diagnostics, and then
asynchronously filtering and flushing out high level teleme-
try messages to stable storage. Whenever a message is writ-
ten into the in-memory buffer we do a simple writeCount
check, to limit the flush rate, on the number of messages
written since the last flush. If more than this threshold have
been written we schedule an asynchronous flush process on
the event-loop. The flush code filters the messages based on
the current emit level and processes all messages that exceed
the specified age or memory thresholds. The implementation
of the filter/process step from Figure 2 is:
1 function processMsgs ( pos , bu f f , de s t , age , s i z e ) {
2 l e t now = new Date ( ) ;
3 l e t cpos = pos ;

t a g s : [ { , p , n , p , s , p , { , p , ? , } , } ]
d a t a : [ _ , 0 , 3 , 1 , 0 , 2 , _ , 1 , _ , _ , _ ]

s t r i n g s : [ 'ok' ]
props : { f −> 0 , g −> 1 , o −> 2 }

Figure 5. In-Memory buffer processing example

4 while ( cpos < bu f f . ent ryCount ( ) ) {
5 i f ( ! ageCheck ( bu f f , cpos , now , age ) | |
6 ! s i z eCheck ( bu f f , cpos , s i z e ) ) {
7 return ;
8 }
9
10 i f ( ! i s Em i t L e v e l En ab l e d ( b u f f . d a t a [ cpos ] ) ) {
11 cpos = scanAndDiscardMsg ( bu f f , cpos ) ;
12 }
13 e l se {
14 cpos = copyMsg ( bu f f , cpos , d e s t ) ;
15 }
16 }
17 }

This code works by looping over the messages in the in-
memory buffer passed in, buff, and will process messages in
the buffer until the ageCheck or sizeCheck conditions no longer
hold. These conditions check if a message is older than the
specified age measured from the current time and that over-
all memory consumption is less than size respectively. The
intent behind the age limit is to prevent the overly eager dis-
carding of log messages that might be relevant for debugging.
While the intent behind the size condition is to ensure that
an application which has a heavy burst of logging will not
cause excessive memory consumption even if the messages
have not aged out yet.

If an issue, currently defined as an unhandled exception or
an exit with non-zero code, is encountered during execution
the logger will immediately flush all the logger messages to
the serializer regardless of age or level. This ensures that
there is maximal detail for the developer when trying to
diagnose the issue. Log++ also supports programatic force-
flushing of the log, with the forceFlush method, for cases
where there is an issue that the developer wants to under-
stand but does not result in a hard failure.

Emit Callback Once the in-memory buffer has been pro-
cessed the logger passes the filtered set of log messages to
the background Async Formatter (described in Section 3.3)
which, when formatting is complete, will default to invoking
a callback into the JavaScript application. For common cases
we provide the simple default callback that writes to stdout
or, if a stream is provided, to write the logs out through it.
In the most general case a user can configure the logger with
a custom callback, called with the formatted log data, which
can perform any desired post processing and send the data
to arbitrary (or multiple) sinks.
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3.3 Native Formatting and Optional Native Emit
The background Async Formatter in Figure 2 is implemented
in Native code using the N-API [18] module. This code is not
part of the GC managed host JavaScript engine so we must
fully copy any data needed before starting the background
processing (a limitation we discuss relaxing in Section 3.5).
However, once the data copy is done the formatting thread
can run in parallel to the main JavaScript thread and can use
an optimized C++ formatting implementation. This allows
us to reduce the overall formatting cost and also to move
this cost entirely off the hot-path of JavaScript execution.

In addition to background formatting Log++ also supports
background emitting shown as the Async Transport block
in Figure 2. Instead of moving formatted data back into the
JavaScript engine to output we can directly write this logging
data directly to a file, stdout, or a remote URL provided at
configuration time from the native code layer. This allows
us to skip re-marshaling the formatted data into a JavaScript
string as well as reduces the number of JavaScript callbacks
and associated time spent on the main thread there.

By default the native formatter produces JSON compliant
output. However, this can be verbose to send and store so
we offer serialization format and compression options for
optimization. In addition to JSON a user can configure the
logger to format to a simple binary encoding format which is
not human readable but more compact and computationally
efficient to encode into. With either format the logger can
also be configured to compress the formatted data as well
using the zlib library already included in Node.js core.

3.4 Logging APIs
As described in Design Principle 4 there are frequent cases
where a simple call to a log statement is insufficient and
a developer would normally need to add explicit logging-
specific logic. To avoid this clutter, and potential source of
errors, we provide a richer set of logging primitives:

• conditional logging which allows a user to specify a
condition that guards the execution of the log state-
ment. This eliminates the need to introduce logging
specific control flow into the code.

• child loggers which create a logger object that prefixes
all log operations called on it with a specified value
(used frequently for logging in a subcomponent).

• request specific logging which allows a developer to set
a different logging level and enabled categories for a
specific RequestID. This is a common need for cloud-
based applications, particularly when participating in
a sampling distributed logging system.

• interval bounding which writes a log message at the
start of an interval and accepts a payload which can be
accessed when writing the end event for the interval.
This allows the transparent, instead of explicit, propa-
gation of the relevant data between the log actions.

An example of the utility of these loggers, conditional
logging, is in Figure 1 where the condition on line 14 was
introduced solely for logging purposes. Using our conditional
logging APIs this check and log combo can be replaced by a
single line logger.warnIf(!ok, "Error...").

3.5 Custom Runtime Implementation
The previous sections described the Log++ logger as it can
be implemented as a purely userspace module in Node.js and
as it is publicly available. However, there are issues, opti-
mizations, and improvements that require close interaction
with the runtime and/or compiler. This section describes
these and how we have explored their implementation in
Node-ChakraCore [20], the version of Node.js running the
ChakraCore JavaScript engine from Microsoft.

Format andMutability Checking Two programming er-
rors that are specific to logging are mismatched arguments
used for the provided format specifiers and accidental side-
effects in logging related code. Log++ takes the view that
logger calls should, if all possible, not cause an application
failure and instead note invalid arguments in the output for-
matting. Previous work [28] has shown how to include static
type checking for log arguments as well. A similar approach
can be taken to combine work on purity analysis [5, 16] to
ensure that any code executed in a log statement does not
modify externally visible state. These features require at least
support in a linter, such as eslint [8], or integration with the
language itself.

Zero-Cost Disabled Logging Developers have low trust
that logging disabled by setting levels or categories will not
continue to impact performance. Thus, projects often expe-
rience frequent code churn as logging is added for a task
and then removed afterwards to avoid performance issues.
This wastes substantial developer time, creates opportuni-
ties to introduce accidental regressions, and prevents the
development of a comprehensive base of logging code in an
application.

To ensure that disabled log statements truely are zero-cost
requires cooperation with the language spec and the JIT. To
avoid parasitic costs of evaluating log arguments that will
be immediately discarded, like line 8 in Figure 1, we must
lazily evaluate them after the level, category, and (optional)
condition checks have completed. We also want the JIT to
be particularly aware of the guards around log statements,
aggressively optimizing the guard paths, and performing
dead-code-elimination or motion on computations that are
only used for log arguments.

Fast Handling for Strings and Properties JavaScript ob-
ject properties and strings are frequently occurring values in
parts of a log message. If we are limited to a purely JavaScript
and N-API interface we are forced to treat the properties as
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strings and we must defensively copy the strings when pro-
cessing them in the emit processor staging phase otherwise
the JavaScript engine GC may move them while the format-
ter is accessing the underlying memory creating a data race
and corruption.

Modern JavaScript engines use internal numeric Property
Identifiers instead of strings when dealing with object prop-
erties. These are much more compact and efficient to process
for both the engine and, in our logger, would allow us to
copy a single integer into our in-memory buffer instead of
creating our own indexing scheme. Thus, we expose a new
JavaScript API, loggerGetPropertyId, which returns the
internal numeric identifier for a property string to use in the
message staging.

To avoid costs associated with data marshaling and copy-
ing string data in the formatter we need to introduce three
APIs. The first is a pair of methods, loggerRefString in
JavaScript which will tell the JavaScript engine that it needs
to reference count, flatten, and intern a string (if needed)
with a unique numeric value (which is returned), and a
method loggerReleaseString which decrements the refer-
ence count and unpins the string if needed. These allow us to
avoid copies when marshaling the string in the message stag-
ing phase. As various JavaScript engines use different inter-
nal widths for characterswe add getNativeStringCharSize
to determine if strings are utf8 or utf16 encoded. In combi-
nation with the methods getRawBytes to get the underlying
buffer and createStringWithBytes to create a string this
allows us to avoid any encoding conversions during the for-
matting.

Priority Aware I/O Management The final optimization
we look at is to ensure that logging related I/O and compu-
tation do not interfere with high-priority code responding
to user actions. In our implementation the message staging
and uploading of formatted log data is done on the UV event
loop. This loop does not have any notion of priority so we
may accidentally block code responding to a user action with
code that is processing log data. To avoid this we could add
a special log work queue to the existing Node event loop pro-
cessing algorithm but we believe that the notion of priority is
fundamentally valuable and should be added to Node explic-
itly [14]. This priority promise construction makes it trivial
to add logging related callbacks at a background task level
to ensure that logging activities are completed in a timely
manner without impacting user responsiveness.

4 Evaluation
Given the implementation of Log++ from Section 3 this sec-
tion focuses on evaluating the resulting system and how it
meets the design goals outlined in Section 2.

For the evaluation we use four microbenchmarks, listed
below, which are each run for 10k iterations. We also use a

Table 1. Timings for each logging framework on 10k iterations
with given format. Speedup is the min-max speedup relative to the
other logging frameworks.

Program Basic String Compound Compute

Console 883 ms 852 ms 1064 ms 1239 ms
Debug 202 ms 200 ms 282 ms 469 ms
Bunyan 477 ms 531 ms 603 ms 920 ms
Pino 188 ms 190 ms 296 ms 630 ms
Log++ 89 ms 93 ms 155 ms 304 ms
Speedup 2.1-9.9× 2.0-9.2× 1.8-6.9× 2.1-4.1×

server based on the popular express [9] framework which
provides a REST API for querying data on S&P 500 compa-
nies. All of the benchmarks are run on an Intel Xeon E5-1650
CPU with 6 cores at 3.50GHz, 32GB of RAM, and SSD. The
software stack is Windows 10 (17134) and Node v10.0.

//Basic

l o g . i n f o ( "hello world -- logger" )

// String

l o g . i n f o ( "hello %s" , "world" )

// Compound

l o g . i n f o ( "hello %s %j %d" , "world" , { o b j : true } , 4 )

// Compute

l o g . i n f o ( "hello at %j with %j %n -- %s" ,
new Date ( ) , [ "i" , { f : i , g : "#" + i } ] ,
i − 5 , ( i % 2 === 0 ? "ok" : "skip" ) )

4.1 Microbenchmarks
Our first evaluation is with current state of the art Node.js
logging approaches. These include the builtin consolemeth-
ods, the debug [6] logger, the bunyan [3] logger, and the
pino [23] logger. Each benchmark was run 10 times discard-
ing the highest and lowest times and reporting the average
of the remaining runs.
The results in Table 1 show the wide performance vari-

ation across logging frameworks (spanning nearly a factor
of 10×). Across all benchmarks Log++ is consistently the
fastest logger, by a factor of at least 1.8-2.1×, when compared
to the best performing of the existing logging frameworks.

4.2 Logging Optimization Impacts
To understand how much each of our design choices and
optimizations contributed to this performance we look at the
performance impacts of specific features in Log++. Table 2
shows the Log++ baseline, the logger when we disable the
background formatting thread (Sync-Lazy), the logger when
we disable background formatting and disable batching of
log messages in the in-memory buffer (Sync-Strict). We also
look at how discarding before formatting and disabling log
statements via multi-level logging features impacts perfor-
mance. The Levels (50%) row shows the performance when
50% of the log statements are at the INFO level and 50% are



DLS ’18, November 6, 2018, Boston, MA, USA Mark Marron

Table 2. Baseline performance in Log++ row with disabled back-
ground format in Sync-Lazy and disabled background format &
disabled lazy batch processing in Sync-Strict. The Levels (50%) and
Levels (33%) rows show performance when 50% of log messages are
in-memory level only and when 33% are in-memory only and 33%
are entirely disabled respectively.

Program Basic String Compound Compute

Log++ 89 ms 93 ms 155 ms 304 ms
Sync-Lazy 220 ms 216 ms 389 ms 636 ms
Sync-Strict 659 ms 788 ms 1035 ms 1323 ms
Levels (50%) 67 ms 72 ms 137 ms 223 ms
Levels (33%) 61 ms 65 ms 129 ms 189 ms

Table 3. Comparison of log messages using expando formats vs.
manual computation and formatting of values for hostname, appli-
cation name, wall time, and a monotonic timestamp

.
Program Host App Wallclock Timestamp

Explicit 8533 ms 65 ms 192 ms 41 ms
Expando 33 ms 32 ms 41 ms 36 ms

at the DETAIL level (processed into the in-memory buffer
but discarded before format). The Levels (33%) row shows
the performance when 33% of the log statements are at the
INFO level, 33% are at the DETAIL level, and 33% are at the
DEBUG level (entirely disabled).
The results in the Sync-Lazy and Sync-Strict rows from

Table 2 show the impacts of the background formatting and
the in-memory batching. Disabling the background format-
ter thread shows that the speedup by offloading formatting
to the background is substantial (around 2× on the bench-
marks). However, the impact of disabling the batching and
lazy processing of the in-memory buffer is also significant. In
our benchmarks we see as much as another 3.6× slowdown.
The use of expando macros in the formats, Section 3.2,

can also play a large role in improving the performance of
logging. Table 3 examines the performance difference when
logging values using these macros vs. the cost of manually
computing, formatting, and logging them.

As seen in Table 3, in cases such as adding the hostname of
the current machine or the very common desire of including
the current date/time (wallclock), there can be huge perfor-
mance gains, 258× and 4.7× respectively, when using the
expando macros. In other cases, such as the name of the cur-
rent app or a monotonic timestamp value, the performance
gains are a smaller but non-trivial 51% and 12%. Instead the
benefit is primarily in simpler/cleaner logging code.

4.3 Logging Performance
The previous sections evaluated the performance of Log++
with respect to other loggers on core logging tasks and
explored the impacts of various design choices using mi-
crobenchmarks. This section evaluates the impact of logging
on a lightweight REST API service that supports querying

Table 4. Logging performance on the REST service server for
console.log, pino and Log++. Also modified to take advantage
of the Log++ multi-level logging functionality in the Log++ (levels)
row. Average and standard deviation values for response latencies
are shown along with the average number of requests served per
second.

Logger Latency (avg) Latency (stdev) Req./s (avg)
Console 1.18 ms 0.83 ms 6668
Pino 0.89 ms 0.70 ms 8133
Log++ 0.67 ms 0.80 ms 8645
Log++ (levels) 0.58 ms 0.77 ms 8958

data on S&P 500 companies. We use autocannon [2] in the
default load generation setting to create a consistent load for
a 10 second run on the service. For comparison we include
the builtin console methods and the pino [23] logger in
addition to Log++ in the default setting.

This application highlights the tension between using log-
ging as a telemetry source vs. a diagnostic tool. We updated
it to use two logging levels, DETAIL and INFO. In the default
runs we log at both levels and include a case, levels, where
Log++ logs in-memory for the higher detail level but only
emits at the lower level.
The results in Table 4 show that using a logging frame-

work designed for modern development needs and built with
performance in mind can have a substantial impact on an ap-
plication. In terms of responses processed per second Log++
increases the server throughput by 30% from 6668 to 8645
requests per second. Further, Log++ decreases the response
time by 43% from 1.18ms to 0.67ms. Despite using buffers
and batched processing, which could in theory increase vari-
ability of the response latency, the standard deviation of the
responses actually decreases slightly as well.
The results in Table 4 also show that, in addition to the

improvements seen by using Log++ as a drop in replace-
ment, it is possible to further improve the logger behavior
by refactoring the logging statements to take advantage of
the multi-level logging capabilities. For the Log++ (levels)
row the application is changed to write log statements that
are relevant for debugging, but not for general telemetry, at
the DETAIL level. This results in their being stored in the in-
memory buffer, if needed for diagnostics, but not formatted
and emitted. As a result the throughput increases a further
4% to 8958 and the latency goes down an additional 13% to
0.58ms on average.

4.4 Logging Data Size
The final metric we evaluate is how Log++ can be used to re-
duce the amount of storage and network capacity consumed
by logging data. Table 5 shows the log size generated per
second when running the server benchmark with compres-
sion enabled (the Compressed column) as well as the impact
of multi-level logging not needed to format/emit all log data.
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Table 5. Log data generated per second on the REST service server
for Log++ and modified to take advantage of the Log++ multi-level
logging functionality in the Log++ (levels) row. Raw logging out-
put size (Raw column) and log data size after deflate compression
(Compressed column).

Logger Raw Compressed
Log++ 2540 kb/s 137 kb/s
Log++ (levels) 1176 kb/s 84 kb/s

As shown in Table 5 both compression and the ability
to discard detailed (and noisy) messages in the multi-level
setup provide large reductions in the data sizes that need
to be transmitted and stored. As expected compression is
very effective on log data, reducing the size by 94.5% from
2.54MB/s to 0.13MB/s. The ability to discard noisymessages,
once it is determined they are not interesting for debugging,
also has a large individual impact and reduces the data size
by 53.7%. Combined these two optimizations result in a total
data size reduction of a massive 96.7% going from 2.54 MB/s
to just 0.08 MB/s.

5 Related Work
While logging is a fundamental part of many software devel-
opment workflows it has received relatively little attention
overall from the academic community and, to the best of our
knowledge, there is no prior work explicitly on the design
of core logging frameworks.

Logging State of the Art: Existing logging frameworks pro-
vide simplified versions of some of the systems described
in this work. Recently the concept of semantic logging has
appeared in loggers for Java [13] and C# [24]. However, the
prevalence of logging JSON style objects in JavaScript, v.s.,
mostly primitive values in Java or C#, presents a challenge
that we resolve efficiently with the flattening algorithm in
Section 3.2. Buffering and formatted logging are also a very
common design choices, e.g., in pino [23] or bunyan [3], but
they focus on buffering formatted data or using pure JSON
for the structuring. In contrast this work buffers compound
data + message format information in our in-memory buffer
design and allows both JSON style formats as well as parsable
printf style messages.

Logging Practices: The closest theme of prior research is
focused on empirical investigation of logging use in practice
and tools to support good logging practices [11, 32]. Using
a large scale evaluation of OSS projects [32] studied code
changes involving logging code to understand how and why
developers were using logging. Work on closed source appli-
cations [11] reached many of the same conclusions. These
studies provided valuable insights which were used in dis-
tilling the design principles used in this work.

Improved Logging: A larger area of work has been into
techniques to support best practices for logger use. From a
type system perspective [28] developed a type system and
checker to ensure format specifiers and their arguments were
well typed. Work in LCAnalyzer [4] proposes techniques to
help developers with finding poor logging uses. Other work
develops tools, such as LogAdvisor [34], LogEnhancer [33],
and ErrLog [31], which help developers identify locations
and values which should be logged to support later diagnos-
tics or analysis operations.

Log Analysis: Work on the topic of using logs to support
other software development activities is more extensive. This
work includes post mortem debugging [15, 22, 29], anomaly
detection [10], feature use studies [12], and automated analy-
sis of performance issue root causes [17]. This body of work
highlights the potential value of high quality logging data
and the opportunities for research and tooling that depends
on it.

6 Conclusion
This paper introduced a set of design principles for logging
with the view that logging is a fundamental part of the soft-
ware development and deployment lifecycle. By thinking of
logging this way and how it can be closely coupled with the
rest of the language and runtime for best performance and
usability we developed a novel logging system with several
innovative features. As a result Log++ outperforms existing
state of the art logging frameworks and represents an impor-
tant development in advancing the state of the art for modern
modern cloud, mobile, and IoT development workflows.
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