Microsoft Research

Each year Microsoft Research hosts hundreds of
influential speakers from around the world
Including leading scientists, renowned experts in
technology, book authors, and leading academics,
and makes videos of these lectures freely available.
2016 © Microsoft Corporation. All ights reserved.

Al for Large Imperfect-Information Games:
Beating Top Humans in No-Limit Poker

Noam Brown
Computer Science Department

Carnegie Mellon University

Joint work with my advisor Tuomas Sandholm

Imperfect-Information Games

Imperfect-Information Games

Imperfect-Information Games

Imperfect-Information Games

Heads-Up No-Limit Texas Hold’'em

Has become the main benchmark and challenge problem in Al for
Imperfect-information games

No-Limit Betting = Continuous Action Space
— Technically, 10%¢! situations since bets must be integers

The most popular variant of poker in the world

— Played in the World Series of Poker Main Event
— Featured in Casino Royale and Rounders

“Purest form of poker”
No prior Al has been able to beat top humans

2017 Brains vs Al

* Libratus (our 2017 Al) against four of the best heads-up
no-limit Texas Hold’em specialist pros

FINAL TABLE

*,3‘{

* 120,000 hands over 20 days in January 2017
* $5200,000 divided among the pros based on performance
* Conservative experiment design

How good are these pros?

-4

my hero's still being Ivey, Hellmuth(hero?), Ferguson, Dwan, Doyle... the
guys you could find on every poker show from the mid 2000's.

»

Who can t"‘llf_]?"lftf” me on how QOO0 1 these Dros are In comparison, to say, the meqgastars or poker? Ii I\."tj‘y and

Hellmuth were to go head to head agains this Al, do you think they would have a better shot?

Or, are the players playing against the Al a little less than stellar? Poker Pro seems Kind of subjective these days.

dabsindenvel

se player would absolutely trounce all of the 2000s heros in heads up poker.
sion III college players while these guys are all-star callibre pros.

are top pros in the heads up world and make their living playing it and similar games.

he hero's from the 2000s would

’ ‘.‘
' =

Final Result

* Libratus beat the top humans in this game by a lot

— 147 mbb/game
— Statistical significance 99.98%, i.e., p-value of 0.0002
— Each human lost to Libratus

Lengpudashi vs humans event

* 36,000 hands against 6 Chinese
poker players

— WSOP bracelet winner
— Expertise in computer science & ML

— Studied Libratus’s hand histories in
advance

* Lengudashi won by 220 mbb/game

— Won each of the 9 sessions
— Also beat each human individually Eilﬁs’e&k&?bmﬂkﬁiﬁ

— Watched live by millions of people WEmRmE (o, RIS

Why are imperfect-information games hard?

S | S [y Y) e « 00:00:27
. . Y : 5 . . . 9 i
LISl)

AlphaGo
Google Deeph e

Why are imperfect-information games hard?

Because an optimal strategy for a subgame
cannot be determined from that subgame alone

Real-time planning is important

Full AlphaGo Zero

4000

No real-time planning \

J
W
S
S
S

=
e
(U
c
O
L

N
-
-
-

Perfect-Information Games

Perfect-Information Games

Perfect-Information Games

Perfect-Information Games

¥
i
¥

Perfect-Information Games

Imperfect-Information Games

Imperfect-Information Games

Imperfect-Information Games

Imperfect-Information Games

Imperfect-Information Games

Nash Equilibrium

* Nash Equilibrium: a profile of strategies in which no player can
Improve by deviating

* |In two-player zero-sum games, playing a Nash equilibrium
ensures you will not lose in expectation

* Exploitability: Worst-case performance relative to Nash

Why care about exploitability?

Real-world Al must be robust to adversarial adaptation and exploitation
Fan Hui vs AlphaGo

OpenAl 1vl Dota2 Matches

Example game: Coin Toss

Example game: Coin Toss

Example game: Coin Toss

Example game: Coin Toss

Example game: Coin Toss

Example game: Coin Toss

P1 Information Set
P1 Information Set

P2 Information Set

Example game: Coin Toss

Imperfect-Information
Subgame

Example game: Coin Toss

Example game: Coin Toss

Heads EV = 0.5
Tails EV=1.0
Average =0.75

Example game: Coin Toss

Example game: Coin Toss

Example game: Coin Toss

Heads EV = 1.0
Tails EV =-0.5
Average =0.25

Example game: Coin Toss

Example game: Coin Toss

Heads EV = 0.5
Tails EV =-0.5
Average =0.0

Example game: Coin Toss

Example game: Coin Toss

Determining the optimal strategy in the “Play” subgame requires
knowledge of the values the opponent could receive in other subgames

Example game: Coin Toss

ldea: Estimate the values the opponent receives for actions in an equilibrium

Example game: Coin Toss

Theorem: If estimates of opponent values are off by at most 0, then
safe subgame solving has at most 6 exploitability.

Nested subgame solving

Nested subgame solving

g TNy

Nested subgame solving

Nested subgame solving

A

Nested subgame solving

Nested subgame solving

Nested subgame solving

Unsafe Subgame Solving

* Estimate the opponent’s strategy
* This gives a belief distribution over states
* Update beliefs via Bayes Rule

P
? g . ‘ ; | 5
Y\eads 7:9//5

Nested subgame solving

Unsafe Subgame Solving

* Estimate the opponent’s strategy
* This gives a belief distribution over states
* Update beliefs via Bayes Rule

P
PV ‘ 05
Y\eads 7:9//5

Unsafe Subgame Solving

* Estimate the opponent’s strategy
* This gives a belief distribution over states
* Update beliefs via Bayes Rule

i 1+
.\' ,'):-’\,",f-i|"l-‘3‘."'~/ ’

Unsafe Subgame Solving

* Estimate the opponent’s strategy
* This gives a belief distribution over states
* Update beliefs via Bayes Rule

Unsafe Subgame Solving

* Estimate the opponent’s strategy
* This gives a belief distribution over states
* Update beliefs via Bayes Rule

Unsafe Subgame Solving

* Estimate the opponent’s strategy
* This gives a belief distribution over states
* Update beliefs via Bayes Rule

Unsafe Subgame Solving

We must account for the opponent’s ability to adapt!
But, in practice, unsafe solving works pretty well sometimes

Safe Subgame Solving

Reach subgame solving

Reach subgame solving

Reach subgame solving

Reach subgame solving

Reach subgame solving
heads ‘ i
De"’ét

EV =0.0

eo °»o

~ ~
S %

EV =0.0 EV = 0.0 EV =0.0

Reach subgame solving

P= 0.5 ° 4 : 0.5
\—\eads laj/s
| D
E?ch
0 e

eo °»o

~ "
S S

tV = 0.0 EV = 0.0

Reach subgame solving

0=05 ‘ P20
\‘\eads TaI/S

Reach subgame solving

0 =05 ‘ P20
\-\eads laj/s

a"’ °'°

> ~
% S

EV =0.0 EV =0.0

Reach subgame solving

P= 0.5 ‘ P : 0.5
\—\eads Tails

D@ v /;9 fe

Reach subgame solving

0 =05 ‘ =
\\eads lails

Reach subgame solving

P= 0.5 ‘ P : 0.5
\—\eads lails

D@ ” /.8 fe

Reach subgame solving

0205 ‘ P20
\—\eads lails

Reach subgame solving

P = 0.5 ‘ P : 0.5
\—\ead‘3 Tails

D
GV/'
c?{e

Reach subgame solving

0205 ‘ P20
\—\eads Tails

Reach subgame solving

0205 ‘ P20
_\ead‘—' TaI/S

eo °'°

A ~
S S

tV = 0.0 EV = 0.0

Reach subgame solving

* For off-path actions,
we must consider how
applying subgame

. ,b'@

solving would have 0 N
changed their EVs if

those actions were
chosen instead

Solution: split “slack”
among actions by
actions’ probabilities

Experiments on medium-sized games

* Qur best reach subgame solving technique has 3x less
exploitability than the best prior safe subgame-solving technique

* Nested solving is 12x less exploitable than techniques that do
not use real-time reasoning

Reach subgame solving

* For off-path actions, . °
P
we must consider how Heads
applying subgame

: ,éxe

solving would have 0 N
changed their EVs if

those actions were
chosen instead

Solution: split “slack”
among actions by
actions’ probabilities

Experiments on medium-sized games

* Qur best reach subgame solving technique has 3x less
exploitability than the best prior safe subgame-solving technique

* Nested solving is 12x less exploitable than techniques that do
not use real-time reasoning

Why are imperfect-information games hard?

1) Because an optimal strategy for a subgame
cannot be determined from that subgame alone

Why are imperfect-information games hard?

1) Because an optimal strategy for a subgame
cannot be determined from that subgame alone

2) Because states don’t have well-defined values

Perfect-Information Games
and Single-Agent Settings

Perfect-Information Games
and Single-Agent Settings

Perfect-Information Games
and Single-Agent Settings

Remaining game is too large

Perfect-Information Games
and Single-Agent Settings

Value substituted at leaf node s
is estimate of equilibrium value ¥(s)

If estimate is perfect, local search
will find optimal policy (the equilibrium)

Depth-Limited Solving

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

Depth-Limited Solving

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

Depth-Limited Solving

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

Depth-Limited Solving

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

Depth-Limited Solving

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

Naive approach: make state values a function of the state and the entire policy
Problem: extremely expensive

Depth-Limited Solving

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

DeepStack approach: condition state values on believed state distribution of each player
Problem: still very expensive (DeepStack used 1.5 million core hours and could not beat prior top Als)

Problem: does not (currently) scale. In Texas Hold’em, input is ~2,000 floats. In five-card draw, input is ~5 billion
floats. In Stratego, input is > 104",

Depth-Limited Solving in Modicum

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

At leaf nodes, allow other player(s) one final action choosing between multiple policies for the remaining game
Step 1: Solve subgame with current set of P, leaf-node policies

Step 2: Calculate a P, best response

Step 3: Add P, best response to set of leaf-node policies

Repeat

Depth-Limited Solving in Modicum

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

At leaf nodes, allow other player(s) one final action choosing between multiple policies for the remaining game
Step 1: Solve subgame with current set of P, leaf-node policies

Step 2: Calculate a P, best response

Step 3: Add P, best response to set of leaf-node policies

Repeat

Depth-Limited Solving in Modicum

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

At leaf nodes, allow other player(s) one final action choosing between multiple policies for the remaining game
Step 1: Solve subgame with current set of P, leaf-node policies

Step 2: Calculate a P, best response

Step 3: Add P, best response to set of leaf-node policies

Repeat

Depth-Limited Solving in Modicum

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

At leaf nodes, allow other player(s) one final action choosing between multiple policies for the remaining game
Step 1: Solve subgame with current set of P, leaf-node policies
Step 2: Calculate a P, best response

Step 3: Add P, best response to set of leaf-node policies
Repeat

Depth-Limited Solving in Modicum

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

At leaf nodes, allow other player(s) one final action choosing between multiple policies for the remaining game
Step 1: Solve subgame with current set of P, leaf-node policies

Step 2: Calculate a P, best response

Step 3: Add P, best response to set of leaf-node policies

Repeat

Depth-Limited Solving in Modicum

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

At leaf nodes, allow other player(s) one final action choosing between multiple policies for the remaining game
Step 1: Solve subgame with current set of P, leaf-node policies

Step 2: Calculate a P, best response

Step 3: Add P, best response to set of leaf-node policies

Repeat

Depth-Limited Solving in Modicum

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

At leaf nodes, allow other player(s) one final action choosing between multiple policies for the remaining game
Step 1: Solve subgame with current set of P, leaf-node policies

Step 2: Calculate a P, best response

Step 3: Add P, best response to set of leaf-node policies

Repeat

Depth-Limited Solving in Modicum

* P, decision is made at each leaf information set separately

— 100 leaf infosets and 10 policies to choose from means 10'°° choices

* For P; decisions below the depth limit, we assume P; plays
according to the pre-computed approximate equilibrium

* The set of P, policies is pre-computed, not decided in real time

Exploitability Measurements

Exploitability of depth-limited solving in NLFH

LY

-—=NO Real-Time Reasoning

\ -o=Multi-Valued States

\\

A |
Number of Values Per Leaf Nodes

Head-to-head performance of Modicum

* Tartanian8 [2016 champion] Slumbot [2018 champion] * Modicum

— 2 million core hours — 250,000 core hours — 700 core hours
— 18 TB of memory — 2 TB of memory — 16 GB of memory

— No real-time reasoning — No real-time reasoning — Plays in real time with a
4-core CPU in 20 seconds
per hand

| Tartanian8 | Slumbot

Modicum (no real- -57 + 13 -11+8
time reasoning)

Modicum (just one -10+ 8
value per leaf node)

Modicum 6+ 5

Exploitability Measurements

Exploitability of depth-limited solving in NLFH

N

-=NoO Real-Time Reasoning

\ -o=Multi-Valued States

\

A |
Number of Values Per Leaf Nodes

Head-to-head performance of Modicum

* Tartanian8 12016 champion] Slumbot (2018 champion] * Modicum

— 2 million core hours — 250,000 core hours — 700 core hours
— 18 TB of memory — 2 TB of memory — 16 GB of memory

— No real-time reasoning — No real-time reasoning — Plays in real time with a

4-core CPU in 20 seconds
per hand

| Tartanian8 | Slumbot

Modicum (no real- -57 + 13 -11+8
time reasoning)

Modicum (just one -10+ 8
value per leaf node)

Modicum 6+5

Head-to-head strength of top Als

Stronger Ours Others’

Libratus (1/2017)
A

63 mbb / game

Modicum (5/2018

f;m)l)/'_:'w
Tartanian8 (12/2015) |
= ACPC 2016 winner A\ % Slumbot (12/2017)
&L = ACPC 2018 winner

Slumbot (12/2015)
~ DeepStack (12/2016)

Tartanian7 (5/2014)
= ACPC 2014 winner

Key Takeaways

* In real-time planning, you must always consider how the
opponent can adapt to changes in your policy

— Except in perfect-information games

* Imperfect-information subgames cannot be solved in isolation

* States do not have a single well-defined value in imperfect-
information games

Head-to-head strength of top Als

Stronger Ours Others’

Libratus (1/2017)
A

63 mbb / game

Modicum (5/2018

/HH)})//..H”'
Tartanian8 (12/2015) |
= ACPC 2016 winner A Slumbot (12/2017)
&L = ACPC 2018 winner

Slumbot (12/2015)
~ DeepStack (12/2016)

Tartanian7 (5/2014)
= ACPC 2014 winner

Key Takeaways

* In real-time planning, you must always consider how the
opponent can adapt to changes in your policy

— Except in perfect-information games

* Imperfect-information subgames cannot be solved in isolation

* States do not have a single well-defined value in imperfect-
iInformation games

Other work

* How do we actually solve these games? Answer: CFR
— Developed a form of CFR that is faster than the prior best by 3x

* Pruning in CFR (and Fictitious Play)

— Provably reduces computing and memory requirements
— In practice, can speed up convergence by orders of magnitude

* Determining the optimal action(s) in a continuous action space

Future Directions

* Bringing together techniques for perfect-
information and imperfect-information games

* Semi-cooperative (general-sum) games,
emergent communication

* Real-world applications: negotiations, security,
auctions

Thank You!

Noam Brown

www.noambrown.com

