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Figure 1. Hybrid HFR Depth is a high frame rate, low latency, configurable dept h camera solution built from a Kinect and a color 
camera. Depth output is 500 frames per second (maximum) and 20 milliseconds latency in (a1-2), and depth is predicted 50ms into 

the future in (b1-2). Our high frame rate, low latency depth solution supports applications sensitive to lag and framerate: (c1-3) 
illustrates interactive projection mapping, where Arbok and Pikuchu are projected onto the raft using either standard Kinect 

depth stream (Arbok) or Hybrid HFR Depth stream (Pikachu) to track the projection surface. (c1) Arbok and Pikachu are 
projected on the raft when hand is still. (c2) (c3) Arbok is off the raft and Pikachu is on the raft when hand is moving.  

ABSTRACT 
The low frame rate and high latency of consumer depth 
cameras limits their use in interactive applications. We 
propose combining the Kinect depth camera with an ordinary 
color camera to synthesize a high frame rate and low latency 
depth image. We exploit common CMOS camera region of 
interest (ROI) functionality to obtain a high frame rate image 
over a small ROI. Motion in the ROI is computed by a fast 
optical flow implementation. The resulting flow field is used 
to extrapolate Kinect depth images to achieve high frame rate 
and low latency depth, and optionally predict depth to further 
reduce latency. Our “Hybrid HFR Depth” prototype 
generates useful depth images at maximum 500Hz with 
minimum 20ms latency. We demonstrate Hybrid HFR Depth 
in tracking fast moving objects, handwriting in the air, and 
projecting onto moving hands. Based on commonly available 
cameras and image processing implementations, Hybrid 
HFR Depth may be useful to HCI practitioners seeking to 
create fast, fluid depth camera-based interactions. 
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INTRODUCTION 
Consumer depth cameras such as Microsoft Kinect have 
been useful in various HCI applications. But the frame rate 
(30Hz) and high latency (at 60-80 milliseconds) of such 
cameras can limit their use in interactive applications 
sensitive to lag and framerate. Low frame rates can 
complicate tracking, particularly for fast moving, flexible 
objects like hands. High latency during interaction can 
confuse or even nauseate users, particularly in AR and VR 
applications, or when overlaying graphics on physical 
objects that move unpredictably. 

In the absence of commercially available high frame, low 
latency depth sensors, we explore solutions involving 
commodity depth sensors and commonly available color 
cameras. We demonstrate a hybrid high frame rate depth 
(Hybrid HFR Depth) camera solution, which registers a 
Kinect v2 to a Point Grey Grasshopper 3 camera, a 
commercially available configurable, high frame rate, high 
resolution and low latency color camera. With the two 
cameras aligned, we calculate optical flow over a small 
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region of interest (ROI) of the color camera. The frame rate 
and latency of CMOS cameras such as the Point Grey camera 
is related to the size of the ROI, with small ROIs obtaining 
high frame rate (500Hz) and low latency. We apply the 
resulting flow field to warp the depth samples in the image 
plane. Our experiments demonstrate that the errors in 
measurement resulting from our approach are small. Our 
approach also allows a small amount of prediction to further 
reduce latency. 

We demonstrate three applications of Hybrid HFR Depth. 
Our applications are chosen to expose the benefits of high 
frame rate, and low or negative latency. We show Hybrid 
HFR Depth tracking a ping pong ball with dense, accurate 
samples of depth. We use Hybrid HFR Depth to track a 
fingertip, producing an accurate, dense trace useful for 
rendering and gesture recognition. Finally, we show that 
Hybrid HFR Depth is well-suited to interactive projection 
mapping applications. High latency in a projection mapping 
system can cause projected graphics to slide or shift on fast 
moving objects. Hybrid HFR Depth’s high frame rate and 
latency reduction allows projection mapping onto a moving 
hand. 

By utilizing inexpensive, commonly available cameras, and 
common computer vision image processing routines 
(OpenCV) we hope Hybrid HFR Depth enables HCI 
practitioners to create fast, fluid depth camera-based 
interactions.  

RELATED WORK 
There are a variety of previous works that seek to increase 
the frame rate and reduce the latency of depth cameras. They 
include a range of approaches including simple prediction 
using a dynamical model, modifications of existing depth 
image computation algorithms possibly involving exotic 
hardware, and highly specialized hardware. 

Prediction by Dynamical Models 
Dynamical models allow a degree of prediction in software, 
thereby reducing latency. Xia et al. [19] sought to find a 
camera and software-based approach to reduce the latency of 
touchscreen interaction. Based on collected training data, 
Xia et al. estimated touch down locations and triggered 
device interactions in advance. Knibbe et al. [8] used a 
Kalman Filter to predict the motion of a ball in flight. Kitani 
et al. [7] placed a camera inside a ball and used image 
processing to determine its speed of rotation, triggering the 
camera at precise moments to capture the scene below. At 
low frame rates, such dynamical models must be very 
accurate to make helpful predictions, limiting the utility of 
the approach. 

Specialized Depth Processing 
Other related works improve performance of depth cameras 
by exploiting low-level properties of how depth is computed. 
Such approaches tend to rely on exotic components, 
modifications of existing components, and intimate 
knowledge of how depth is computed on today’s depth 

cameras. The focus of these works is on improving frame 
rate; improvements in latency are not discussed. 

Schmidt et al. [15] presented a method to implicitly calibrate 
multi-tap 3D Time of Flight sensors, increasing the frame 
rate by a factor of two. Their prototype is a proof-of-concept 
written in Matlab. 

Stuhmer et al. demonstrated that a modified Kinect v2 
operating at 300Hz can track a fast moving ping pong ball 
accurately [17].  They modified the Kinect depth sensor to 
capture raw infrared images, and performed model-based 
tracking against these raw captures. The method requires 
models for both object and motion, and so works only for 
rigid simple shapes in simple motion. In contrast, our method 
obtains high frame rate and low latency depth map for a 
region of interest under general motion.  

Fanello et al. [3] combined an exotic high-frame rate full-
frame camera with a Kinect v1 structured light projector to 
obtain depth frames at 375Hz. They contribute a machine 
learning approach to optimize the Kinect v1 computation of 
disparity to keep up with the high frame rate camera. 

Increasing Frame Rate by Specialized Hardware 
Specialized hardware may be used to reduce latency and 
increase frame rate for a particular application. Papadakis et 
al. [14] minimized latency in head-tracking immersive 
simulations by reducing buffering latency in their display 
hardware, achieving a 50% reduction in overall system 
latency. Lumospheres [9] presented a hardware optimization 
approach to accurately project on balls under projectile 
motion. Okumura et al. [13] introduced a low latency camera 
with a series of saccade mirrors for ball tracking technology. 
Their system is purely vision based (no depth), so it can only 
track visually salient objects. 

Customized hardware generates impressive results, but the 
expense of such approaches put them out of reach of typical 
HCI practitioners. In contrast, our method uses off-the-shelf, 
affordable hardware. 

Hybrid Cameras 
Lu et al. [11] demonstrated improving the spatial resolution 
of the depth stream by calibrate the Kinect with a color 
camera. They used an edge map and optimization-based 
interpolation and optical flow to aggressively upsample 
depth. Their work demonstrated that depth is not hard to 
interpolate accurately; that current optical flow estimates are 
accurate enough to support depth interpolations; and 
registering a depth sensor with color camera can produce an 
improved depth stream.  

In contrast to previous work, our approach shows that color 
camera can empower depth camera in all aspects. Our 
approach combines off-the-shelf hardware by vision 
algorithms to reduce latency and increase frame rate. It is a 
compromise between exotic and expensive customized 
hardware approaches and limited software-based 
approaches.  
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OVERVIEW AND CONTRIBUTIONS 
Our Hybrid HFR Depth approach combines an off-the-shelf 
Xbox Kinect v2 and Point Grey Grasshopper 3 camera (see 
Figure 2(a)), and uses computer vision algorithms to create 
configurable high frame rate and low latency depth images. 
Our Grasshopper 3 GS3-U3-51S5M-C Mono supports 
configuration of region of interest, frame rate, resolution, 
shutter speed and so on. It features a Sony IMX250 CMOS, 
2/3” imager, running at 75Hz at full 2448x2048 resolution, 
and at 500Hz with a 256×256 region of interest (ROI).  

Table 1 compares Hybrid HFR Depth with the individual 
sensors used in our system. As the table shows, Hybrid HFR 
Depth inherits characteristics of both Point Grey camera and 
Kinect v2.  

 Kinect v2 Point Grey Hybrid HFR  

Frame Rate 30Hz 75-500Hz 75-500Hz 

Latency 60-93ms 10ms 22ms 

Full frame 512×424 2448×2048 410×340 

Min ROI 

Max ROI 

21×21 

170×170 

126×126 

1020×1020 

21×21 

170×170 

Table 1. Specifications of Hybrid HFR Depth and the two 
sensors used. Hybrid HFR Depth full frame dimensions are 
less than that of Kinect due to Kinect having a slightly wider 

field of view than Point Grey camera. 

A main contribution of this paper is to use off-the-shelf 
cameras to create a practical, affordable and easily accessible 
high frame rate, low latency depth image solution. Compared 
to customized hardware [9, 13, 14] and software-only 
approaches [3, 7, 8, 15, 17, 19], it is hybrid in nature. We 
evaluate high frame rate depth qualitatively and 
quantitatively and demonstrate the usefulness of our Hybrid 
HFR Depth in three application scenarios. 

 

Figure 2. (a) Our Hybrid HFR Depth uses off-the-shelf Point 
Grey camera and Kinect v2. (b) Our projection mapping 

system adds an off-the-shelf projector.  

METHOD 
Hybrid HFR Depth combines Kinect v2 and Point Grey RGB 
camera by vision algorithms. We first briefly introduce the 
pipeline and then include details of each part. First, we 
rigidly mount the two sensors together and calibrate them 
(Figure 2a). The Point Grey camera has about 6 times higher 
pixel count in each dimension than Kinect depth frames, so 

we down sample the color frames and align them with the 
depth frames. Second, we estimate the delay of each sensor 
to accurately align the two data streams in time to perform 
our vision algorithms. Third, we use GPU implementation of 
the Brox optical flow [2] to estimate the flow from Point 
Grey color images. This flow field is used to warp the Kinect 
v2 depth data in XY direction. Because the depth samples 
not only move in XY direction, but also move in Z direction 
(as depth value changes), we use linear extrapolation to 
predict movement in the Z direction. We can further reduce 
the latency due to the Point Grey camera and image 
processing. Because we have reliable high frame rate depth 
stream, we find a simple acceleration model works well to 
reduce or eliminate latency or predict future depth frames.  

Sensor Calibration 
We find that a simple, fast calibration modeling only lens 
distortion and affine transformation works well. First, we use 
OpenCV’s camera calibration routines to estimate the lens 
distortion of Kinect IR camera and Point Grey color camera. 
Then, we use RANSAC to estimate the affine transformation 
matching corresponding points in color images and IR 
images.  

Alignment in Time 
Kinect v2 and Point Grey cameras have very different 
latencies. To align the sensors in time to perform vision 
algorithms and understand the latency of the system, we 
measure the latency of each sensor. Point Grey camera 
latency is measured by recording the time between sending 
an image request and receiving an image, around 10ms 
(varies slightly according to the image size). Kinect’s latency 
is more difficult to measure. Instead we measure its latency 
relative to the Point Grey camera. We swing a scissor in 
circles like a clock (scissor is the hour hand of clock), and 
continuously take images with both Point Grey camera and 
Kinect. For each Kinect image, we find the image from Point 
Grey camera that best matches the clock (scissor in same 
rotation angle). Because all images have time stamps, it's 
easy to find that the relative latency is 50ms. Since the Point 
Grey camera has absolute latency of 10ms, the actual latency 
of each Kinect frame is about 60 milliseconds. Kinect 
generates depth frames every 33 milliseconds (30Hz), so the 
actual latency is between 60 and 93ms. With sensor latencies 
and time stamps for both data streams, we can accurately 
align Kinect depth frame and Point Grey color frame. We 
align depth frame ܦ௞ at time ݇  to color frame at time ݐ = ݇   .ݏ50݉−

Our Hybrid HFR Depth obtains a minimum 20ms latency, 
which is the sum of Point Grey camera latency and image 
processing time. Our depth stream can be as fast as 500Hz, 
so the actual minimum latency, without further prediction, is 
20+2 milliseconds.  

Region of Interest (ROI) 
A common CMOS camera can run very fast (high frame rate 
and low latency) by reducing the region of interest (ROI). 
We exploit this feature by calculating our fast depth stream 
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on a moving ROI, focusing on the object of interest. This 
strategy greatly increases effective frame rate while reducing 
computation cost. We crop the Kinect depth image to the 
corresponding ROI in software, and configure the Point Grey 
ROI using the camera’s API. Determining the ROI in an 
application is generally easy, because we need only low 
frame rate Kinect depth to determine the position of fast 
moving objects of interest. For example, if we want to focus 
on the right hand, we can use the Kinect depth to find the 
center of the right hand at 30Hz and update the Point Grey 
ROI continuously to track the center of the hand. If the full 
size depth stream is needed, we can copy the calculated ROI 
depth back to the full size Kinect depth image. This full 
frame obtains high framerate and low latency inside the ROI 
and usual Kinect performance elsewhere. 

Generating High Frame Rate Depth Images 
High frame rate depth images are computed by warping the 
latest Kinect depth image by dense optical flow of high frame 
rate Point Grey images. From color images ܫ௧ and ܫ௧ାଵ we 
obtain the flow field ܨ௧,௧ାଵ and define an image warping 
function ܫ௧ାଵ ≈  A high frame rate depth .(௧ܫ)ி೟,೟శభ݌ݎܽݓ
image  ܪ௧ାଵ is obtained by warping the latest Kinect depth 
image ܦ௞ by the flow field: ܪ௧ାଵ =  .(௞ܦ)ி೟,೟శభ݌ݎܽݓ
Subsequent frames ܪ௧ା௜, (݅ > 1) are not computed by 
warping the previous frame ܪ௧ା௜ିଵ but by updating the 
previous flow field so that it models all motion since the 
latest depth image. For ݅ > ௧,௧ା௜ܨ :1 = ௧,௧ା௜ିଵ൯ܨி೟,೟శ೔షభ൫݌ݎܽݓ + ௧ା௜ܪ ௧ା௜ିଵ,௧ା௜ܨ =  (௞ܦ)ி೟,೟శ೔݌ݎܽݓ 

where ܨ௧ା௜ିଵ,௧ା௜ is the output of optical flow computation on 
the two latest color frames. 

We use OpenCV’s GPU implementation of Brox’s algorithm 
[2]. However, even with GPU acceleration, the flow 
calculation is slow (maximum 150Hz) compared to our Point 
Grey camera (maximum 500Hz). We find that the relation 
between flow calculation time and image size is not linear: 
the flow calculation time increases much more slowly than 
image size. We can use batch processing to compute flow 
over multiple pairs of images to speed up computation at a 
small cost in latency (refer to Figure 4, increasing batch size 
by one will increase minimum 2ms latency). For example, 
with a batch size of ݊, we concatenate ݊ Point Grey images, 
run optical flow on this large image, and then split the result 
into ݊ small flow images. This approach allows Hybrid HFR 
Depth to run as fast as the Point Grey camera.  

The warping process described above operates over the 
spatial domain of the image but does not model changes in 
the depth values themselves (e.g.; an object moves closer or 
further away from the camera). To calculate accurate depth 
values for ܪ we linearly extrapolate the ܼ component of 
Kinect depth images. We find the most recent two Kinect 
depth images ܦ௞ିଵ and ܦ௞ and their corresponding color 

images ܫ௧భ and ܫ௧మ. Assuming that change in depth is constant 
over a small period, we update the ܼ component of ܪ௧ as: ܼ௧ = ௞ܦ)ி೟మ,೟݌ݎܽݓ + ௞ܦ) − ி೟భ,೟మ݌ݎܽݓ ((௞ିଵܦ) ݐ − ଶݐଶݐ −  (ଵݐ

This relationship is depicted in Figure 3. 

 
Figure 3. Generating high frame rate depth images. (a) 

Optical flow is used to estimate motion in the color images 
from ࢚ࡵ૚  and ࢚ࡵ૛ , which correspond to Kinect depth images ି࢑ࡰ૚ and ࢑ࡰ. High frame rate depth image ࢚ࡴ is generated by 

warping ࢑ࡰ by the flow ࢚ࡵ૛ to ࢚ࡵ. (b) depth values ࢆ are 
determined by linear extrapolation of the change in depth 
from ି࢑ࡰ૚ to ࢑ࡰ, following the motion in the color image. 

Prediction 
Because they are densely sampled in time, the high frame 
rate depth frames can be used to predict future frames using 
a second order model of motion. We estimate accurate 
velocity and acceleration with 30 samples, and assume the 
acceleration is constant during prediction. With the flow 
estimation and the acceleration model, we can predict future 
flows and future depth frames. We can use this approach to 
reduce latency, possibly to zero or even negative values. 
Aggressive prediction will naturally affect depth image 
accuracy, especially around discontinuities in the depth 
image. Applications that are less sensitive to inaccuracies 
around object boundaries in the depth image (e.g., object 
tracking) may benefit from significant prediction. 

CONFIGURATION DETAILS 
In this section, we consider various implementation details 
of the Hybrid HFR Depth approach. These can be configured 
to suit a given application. 

Hybrid HFR Depth specification 
There are four quantities that relate to the performance of the 
proposed technique: ROI, batch size, frame rate, and latency. 
ROI can be configured from 40 pixels in each dimension, 
enough to capture the whole hand, to 170 pixels in each 
dimension, enough to capture the whole upper body. As 
noted above, our implementation may compute optical flow 
over several images. Batch size indicates the number of 
images included in this computation. Changing batch size 
trades off latency and framerate. The relation between 
optical flow calculation time and batch size is not linear. For 
example, when the ROI is 50 pixels in each dimension and 
batch size is 1, the frame rate is around 100Hz. If batch size 
is 8, the frame rate is around 400Hz. In general, the frame 
rate varies from around 100Hz to 500Hz, depending on ROI 
and batch size, and can be configured to target a given 
application. Latency in our system is the sum of Point Grey 
camera latency and processing latency (greater with larger 
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batch sizes). When prediction is used, latency can be reduced 
to zero or even become negative. We illustrate the 
relationship between frame rate and latency without 
prediction under different ROIs and batch sizes in Figure 4.  

 

Figure 4. Batch processing optical flow calculations impacts 
frame rate and latency: when batch size increases, both frame 
rate and latency increase at a rate that depends on the size of 

the ROI. We illustrate the empirical relationship between 
frame rate and latency for four ROI sizes (P21, e.g., denotes 

an ROI 21 pixels in each direction). The first point along each 
curve indicates a batch size of one (no batching). Each point 

thereafter indicates a batch size of one more frame. In general, 
larger ROI size causes greater latency, higher frame rates 

correspond to greater latency (due to batch processing), and 
latency increases slowly with batch size, at first.   

We give the configurations of three example applications we 
present later in Table 2. The basic principle is to tune the 
most critical aspect of configuration for a given application. 
In hand writing, for example, frame rate is the most 
important factor. In tracking, both higher frame rate and 
lower latency is desirable. In projection mapping, frame rate 
similar to projector refresh rate (60Hz) is adequate, while 
aggressive prediction is needed.  

 ROI Size Batch Size Latency Frame Rate 

Writing 85ൈ85 6 40ms 200 

Tracking 75ൈ75 4 30ms 200 

Mapping 106ൈ106 1  22 (-70)ms 70 

Table 2. Hybrid HFR Depth configurations for the three 
example applications presented in this paper. With projection 

mapping, if no prediction is used, the latency is 22 
milliseconds. If prediction is used, the latency is -70 

milliseconds.  

Other Configuration Options 
Increased Field of View: Fixing the ROI while down 
sampling the input depth image sacrifices spatial resolution 
but significantly increases the effective field of view without 
impacting computation time. For example, resizing the depth 
image to 25% increases the field of view fourfold. This can 
be useful for applications that require larger field of view. 

Increased Accuracy: Optical flow calculations are subpixel 
in nature, but its accuracy is related to the resolution of the 

input images. Higher resolution images yield more accurate 
optical flow. In order to increase accuracy, we can use color 
images with resolution four times that of the depth image to 
more accurately estimate optical flow, and then down sample 
the flow. This approach will generate higher accuracy high 
frame rate depth at the cost of lower frame rate and higher 
latency.  

 

Figure 5. Example sequences of hand movement illustrate the 
quality of high frame rate depth images. Hybrid HFR Depth 
images have higher frame rate, lower latency (hands move 

ahead of Kinect depth) and quality similar to the input Kinect 
depth images. 

EVALUATION 
Figure 5 illustrates the quality of the high frame rate depth 
image on examples of hand motion. The accompanying 
video gives further examples and gives a better sense of the 
quality of the generated sequences. Depth direction hand 
motion example is not visually obvious, so we only include 
a quantitative example in Table 3.  

Quantitative Evaluation 
To evaluate the quality of the Hybrid HFR Depth images we 
would like to compare the generated 300Hz high frame rate 
depth image to an equivalently 300Hz high frame rate 
ground truth depth image. Because we have no such 300Hz 
high frame rate ground truth available, we instead use the 
30Hz Kinect depth image stream as ground truth, and take 
every tenth Kinect depth image as 3Hz input. This essentially 
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slows down the sequence by a factor of 10. During usage, we 
speed up both depth streams 10 times to simulate 300Hz 
ground truth and 30Hz input to the Hybrid HFR Depth 
algorithm (see Figure 6). In recording test sequences, we 
may take some care in producing motions that are 
approximately slowed down by a factor of 10. 

 

Figure 6. Illustration for quantitative evaluation. “Ideal 
Kinect” is simulated by capturing slow motion with Kinect 
(30Hz). “Regular Kinect” frames are meant to simulate the 
standard Kinect stream before the 10x slow simulation and 
are held for 10 frames. “Hybrid HFR Depth” takes as input 

every tenth Kinect frame. Symbols inside sample point (circle, 
rectangle and star) means the depth frames. Red dash line 

indicates comparisons reported in the text. 

Dataset 
We collected seven sequences of hand motions: three simple 
hand motions S1-3 (similar to first row of Figure 5), three 
more complex hand motions C4-6 (similar to second row of 
Figure 5) and one hand motion only in depth direction D7 
(scene is similar to first row of Figure 5 and hand moves in 
depth). In each sequence, the subject moved their hands in 
approximately one tenth normal speed. We save only frames 
that have both Kinect depth and Point Grey images, so we 
get a sequence of normal hand moving speed, and each Point 
Grey color image has a corresponding depth images. When 
these sequences are processed, we feed every Point Grey 
image and one out of ten “Ideal Kinect” depth images into 
the system, to simulate the different frame rates of two 
sensors. During evaluation, “Ideal Kinect” depth images are 
used as ground truth.  

Metrics 
To compare the generated depth image against “Ideal 
Kinect” ground truth, we calculate average absolute per pixel 
difference across the image (threshold the absolute per pixel 
error to maximum 500mm), ignoring pixels that have no 
value (black pixels in our figures).  

Results 
Pixel noise around discontinuities in depth can be large. For 
example, Figure 7(f) and (g) illustrate two successive Kinect 
frames when the subject is not moving. Figure 7(h) depicts 
the absolute value. In this example the average absolute per 
pixel difference is 15mm. Table 3 shows the error for the 
seven test sequences. In this table, “Regular Kinect” refers to 
simply using the “Regular Kinect” stream described earlier 
as the high frame rate depth image. This serves as a simple 

baseline measure of performance if one were to naively 
upsample the Kinect depth image. 

As expected, the “Hybrid HFR” and “Hybrid HFR w/ 
prediction” errors are substantially reduced from that of 
naive upsampling. “Hybrid HFR w/ prediction” refers to the 
high frame rate depth image generation with prediction to 
reduce latency to zero. This results in a slight increase in 
error compared to the regular “Hybrid HFR” which is 
synchronized with the Point Grey camera (no prediction).  

 

Figure 7. Depth errors are large around depth boundaries. (a-
e) corresponds to Figure 5a: (a) is ground truth depth U7 of 
the example from “Ideal Kinect”, (b) is the corresponding 

“Regular Kinect” depth W0, seven frames before the ground 
truth image, (c) is Hybrid HFR Depth image V7, (d) shows the 

per pixel error for “Regular Kinect”, compared to ground 
truth, (e) is the same for Hybrid HFR Depth. We evaluate the 
Kinect sensor noise in (f-h). (f) is a Kinect depth frame at time 

t, (g) is a Kinect depth frame at time t+1, (h) is the absolute 
difference between the two depth frames. 

Sequence “Regular 
Kinect” 

Hybrid HFR Hybrid HFR 
w/ prediction 

S1 14.4mm 10.3mm 10.8mm 

S2 23.6 14.2 14.8 

S3 24.4 15.6 16.5 

C4 25.5 17.6 17.9 

C5 18.0 14.9 15.3 

C6 25.0 18.9 19.6 

D7 46.9 38.3 39.2 

Table 3. Average per pixel error in millimeters (threshold to 
maximum 500mm) between calculated depth image and 

ground truth depth image. S1-S3 are simple sequences, C4-C6 
are more complex sequences, D7 includes motion in depth. 
“Regular Kinect” is described in Figure 6. “Hybrid HFR” 

refers to our high frame rate depth image with no prediction 
(minimum latency 20ms), while “Hybrid HFR w/ prediction” 

includes prediction to reduce latency to zero.  

APPLICATIONS 
Hybrid HFR Depth benefits a variety of applications that 
work better with high frame rate and/or low latency sensing. 
We show three important and representative tasks to 
demonstrate the usefulness of our system. First, we 
demonstrate that our low latency and high frame rate depth 
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stream can be used to track fast moving objects. Then, we 
demonstrate that the high frame rate depth stream can be 
used in small gesture control and hand writing interfaces. 
Finally, we demonstrate using prediction to reduce latency in 
interactive projection mapping. 

Object Tracking 
Tracking moving objects is a fundamental task in computer 
vision. Kinect can be very useful in object tracking, 
particularly when the object moves against a known 
background depth. However, the low frame rate of Kinect 
can make tracking fast moving objects accurately more 
difficult. Our Hybrid HFR Depth can provide robust high 
frame rate and no latency object tracking, even for fast 
moving objects. 

To demonstrate Hybrid HFR Depth in an object tracking, we 
give a simple but informative example of tracking a 
bouncing ping pong ball, which moves relatively quickly and 
changes direction quickly when it bounces. Tracking the 
ping pong ball throughout the bouncing motion is relatively 
easy with the high frame rate and low latency depth map. We 
record the ping pong ball bouncing events with Kinect, 
Hybrid HFR Depth and Point Grey cameras. From Figure 8, 
we find that Hybrid HFR Depth produces high quality depth 
images with high frame rate and low latency.  

 

Figure 8. A ping pong ball is tracked with both Kinect v2 and 
Hybrid HFR Depth. The Hybrid HFR Depth image exhibits 

lower latency than Kinect. The high frame rate depth image is 
far ahead of the Kinect image but is slightly behind the Point 

Grey image (due to computation time). 

Small Gesture Input 
The Kinect sensor has been popularly applied to gesture 
recognition and control interfaces. Many existing systems 
either require the users to perform large scale hand gestures 
or require the users to be near to the controller. Our system 
enables the capture of small gestures imaged from a long 
distance (1.5m to 4m). By accurately detecting fast fingertip 
gesturing and writing, we can give commands to the remote 
computer or write on the screen.  

High frame rate is particularly important for hand tracking 
systems, because fingers are flexible and fast, making them 
especially hard to track. The best open source hand tracker 
(by Oikonomidis et al.; [12]) still suffers from periods of lost 

tracking due to high computation cost and low frame rate. 
Sharp et al. introduced a new pipeline that estimates hand 
pose per frame [16]. However, tracking is performed at low 
frame rate. 

We can find the fingertip in each depth frame to obtain a 
trace of the fingertip. It often suffices to find the closest point 
in the region of the hand. A high quality trace can be difficult 
to obtain when the frame rate is low (i.e., the fingertip moves 
a lot between two frames) and the depth noise is high (i.e.; 
closest point is not always the fingertip). To combat noise, 
we can smooth the fingertip trace using a Kalman filter. 
However, such smoothing alters the shape of the trace in 
undesirable ways. Figure 9 shows a number of gestures as 
recorded by Hybrid HFR depth, and the regular Kinect image 
with and without smooth. The traces show that users can 
reliably draw simple gestures with small finger motions in 
the air at a distance of 1.5m to 4m. With a gesture recognizer 
such as the “$1 gesture recognizer” [18], traces can be 
converted to corresponding commands for a remote 
interface. This could allow for a user to control their Xbox 
with small finger movement while lying on the sofa, for 
example.  

 

Figure 9. The user may draw simple shapes in the air to 
control a remote interface. (a) shows fingertip trace captured 
by Hybrid HFR Depth, with Kalman Filter applied. (b) is the 
same motion captured by Kinect, with Kalman Filter applied. 

In this case the Kalman filter alters the shape of the input 
gesture because of aliasing. (c) is the trace of Kinect skeleton 

hand tip without a Kalman Filter. Clearly high frame rate and 
subpixel accuracy improves writing in the air.  

Besides drawing simple shapes, users may write words in 
about 2 meters away. This is a challenging task because only 
high frame rate and accurate depth stream can preserve all 
the sharp curves, small circles and other details during fast 
finger movement. Figure 10 demonstrates writing a phrase, 
using the same three techniques as above. The algorithm for 
Hybrid HFR Depth and Kinect depth hand writing are 
identical. When the finger moves slowly, the differences 
between these methods are small. However, when the finger 
moves quickly we find that Hybrid HFR Depth tracks the 
fingertip more reliably, and the resulting trace looks better.   
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Figure 10. We demonstrate the advantages of hand writing 
with Hybrid HFR Depth. (a)(b)(c) are generated from the 

same motion sequence. The task is challenging because writing 
words involves many sharp turns and curves, requiring high 

frame rate and high accuracy. (b) illustrates using the regular 
Kinect depth stream (closest point), and (c) illustrates the 

trace of the Kinect skeleton hand tip. (a) illustrates Hybrid 
HFR Depth trace, which is of noticeably higher quality due to 

greater sampling frequency.  

Interactive Projection Mapping 
Projector-camera systems afford various interaction 
possibilities, combining both natural and mixed-reality 3D 
interaction. Jones et al. [4] introduced a system to augment 
the area surrounding a television with projected 
visualizations to enhance traditional gaming experiences. 
RoomAlive [5] transformed a room into an immersive, 
augmented entertainment experience through the usage of 
video projectors.  Later, Benko et al. [1] proposed a spatial 
augmented reality system that uses dynamic projection 
mapping to support interaction with 3D virtual objects. 
However, in current projection mapping systems, 
accumulated latency from the depth sensor, image 
processing, graphics rendering and projection introduces 
errors in alignment in dynamic scenes. Projected graphics 
can seem to slip from its expected position, adversely 
impacting on the immersive experience. Recently, Knibbe et 
al. [8] and Koike et al [9] used software-based prediction to 
reduce the system latency. However, they only work with 
rigid objects in projectile motion. Our Hybrid HFR Depth 
can be used to track arbitrary motions and objects. 

A custom hardware approach such as that of Koike et al [9] 
can reduce latency, typically with some expense and 
complexity. Using fast touch sensors rather than cameras, 
Jota et al. [6] describe a custom hardware-based projection-
based drawing system that demonstrates that users are 
sensitive to surprisingly small amounts of latency 
(approximately 1ms) in direct manipulation settings such as 
that of interactive projection mapping. 

To make projection mapping work reliably for moving 
objects with non-customized hardware, we can use our high 

frame rate and no latency Hybrid HFR Depth stream. While 
systems such as [8] must predict up to 110ms + 33ms to 
eliminate constant latency and latency due to camera frame 
rate, our system can reduce the time to 70 + 4ms (10ms Point 
Grey camera latency, 10ms optical flow calculation latency 
and 50ms projection mapping system latency), making 
prediction easier. Moreover, the higher frame rate can result 
in higher quality prediction to further reduce latency. 

Calibration 
We use RoomAlive toolkit [5] to calibrate our projector-
camera setup (see Figure 2(b)). By applying extrinsic and 
intrinsic camera parameters, a point in depth image space can 
be transformed to projector space. A low or zero latency 
depth image can be used to render virtual objects into a 
similarly low-latency projection. 

Combating Latency 
To obtain the best interactive experience with our projection 
mapping system, we aim to completely eliminate latency, so 
that graphics projected onto moving objects appear to stay 
on the object. Operating system, rendering and projector 
latencies combine to an approximate total of 50ms. Given the 
20ms minimum latency of the Hybrid HFR Depth approach, 
we must apply a prediction of approximately 70ms. 

 

Figure 11. We compare dynamic projection mapping results 
with Kinect v2 and our Hybrid HFR Depth. We use Kinect v2 
depth to project a sad face or a red ball onto the hand, and use 

Hybrid HFR Depth to project a happy face or a yellow ball 
onto the hand. In (a) and (d), hand is still, in others, hand is 
moving in the direction of the yellow arrow. In (f), hand is 
moving very fast, and yellow ball is off the hand, but still 
ahead of the red ball.  In general, the Hybrid HFR Depth 

based methods stick graphics to moving hand better. 

Figure 11 shows projection mapping results with Hybrid 
HFR Depth and Kinect v2. To numerically evaluate how our 
system works, we count the number of frames in which the 
projected graphics is fully on the hand, fully off the hand, or 
partially on the hand, as in [8]. We count these frames 
manually by analyzing videos of the system in operation, and 
compare the performance of the standard Kinect depth 
stream with Hybrid HFR Depth. Table 4 shows these counts 
as a percentage of the test sequences for three speeds of 
motion. 
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 Kinect Hybrid HFR Depth 

 All  
on 

Partially 
off 

Fully 
off 

All  
on 

Partially 
off 

Fully 
off 

Slow 18.6% 23.2% 58.2% 71.1% 28% 0.9% 

Medium 13.7% 20.4% 65.9% 63.3% 35.6% 1.1% 

Fast 9.5% 16.7% 73.8% 44.2% 44.8% 11% 

Table 4. Percentage of test frames for which projected 
graphics is fully on, partially off, or fully off the user’s hand. 

We manually count the percentage from three 900 frame 
sequences of slow, medium and fast motions. 

LIMITATIONS 
Our Hybrid HFR Depth system has a number of limitations. 
First, the system requires good, stable lighting. Dim or very 
strong lighting, or rapidly changing lighting will affect the 
quality of the optical flow-based motion estimation and 
therefore impact Hybrid HFR Depth quality. The high frame 
rate of the Point Grey camera limits the effective exposure 
time and light gathering capability of the camera; for 
example, 500Hz capture leaves only 2ms to collect light. In 
our projection mapping example, rapidly changing graphics 
might significantly affect the result quality. In this case it 
may be possible to use infrared imaging, though some care 
must be taken to avoid the narrow-band illumination of the 
Kinect’s time-of-flight imager. 

Second, optical flow has other limitations that can impact 
Hybrid HFR Depth quality. For example, optical flow can 
fail when there is a lack of texture, repeating textures, or 
strong reflections in the scene. 

Third, OpenCV’s optical flow implementationis still 
computationally expensive on today’s hardware. Our current 
Hybrid HFR Depth prototype optionally employs batch 
processing of optical flow, potentially creating an 
undesirable tradeoff between latency, frame rate and ROI 
size (see Figure 4). Recently, Kroeger et al. [10] 
demonstrated a fast optical flow algorithm, which runs at 
300-600Hz on a single CPU core with high resolution 
images. This may remove the need for batch processing, help 
obtain greater than1000Hz frame rate through multi-core 
scheduling, decrease depth latency and enlarge ROI.  

Fourth, the specification of the Point Grey camera used in 
our prototype is another limitation. With Hybrid HFR Depth, 
we can reach the maximum frame rate of the Point Grey 
camera in most ROI size by manipulating batch size. A better 
color camera might allow a higher frame rate. 

Finally, latency-sensitive applications such as projection 
mapping may require as much as 70ms of prediction. Our 
prediction model uses a simple acceleration model and is 
optionally further smoothed by a Kalman filter. Prediction is 
typically adequate because our inputs have higher frame rate 
and less time needs to be predicted. However, during sharp 
turns and accelerations, predictions are likely to be 
inaccurate. We still observe that our predictions will return 
to correct values faster than Kinect depth. More sophisticated 

data-driven approach to prediction is likely to improve the 
results.  

FUTURE WORK 
Hybrid HFR Depth could be improved in a number of ways 
to make it more powerful and useful. 

One interesting direction of future work is to further exploit 
the complementary nature of the two cameras by creating 
real time super resolution depth images. This would help in 
applications where Kinect struggles to deliver adequate 
resolution. For example, when at a distance of 4m, an adult 
hand may be 15 pixels wide, making it difficult to resolve 
individual fingers. Meanwhile, our prototype’s color image 
has about six times more pixels in each dimension. 
Combining depth information from Kinect with the color 
information from Point Grey camera, we can potentially 
generate a depth map six times that of Kinect.  

While exploiting faster and more exotic cameras may enable 
higher frame rates, lower latency and a larger ROI, we also 
see the value in limiting our implementation to cameras that 
use inexpensive, commodity imagers, such as common web 
cameras. Employing an inexpensive common camera might 
broaden the appeal of the Hybrid HFR Depth approach 
among practitioners, much as the original Kinect did for 
interactive applications. CMOS imagers continue to rapidly 
advance in technology, with many smartphones able to 
record 240Hz videos. 

Regarding applications, Hybrid HFR Depth might be 
particularly useful in Augmented Reality and Virtual Reality 
systems, where higher frame rate and lower latency are 
important factors in rendering stable, accurately aligned 
graphical augmentation, and in improving user comfort. 

CONCLUSION 
This paper proposes an approach to combine off-the-shelf 
hardware to create a high frame rate, low latency 
configurable depth stream. Hybrid HFR Depth is more 
powerful than a purely software-based approach, and less 
demanding than a customized hardware approach. We 
presented detailed specifications of Hybrid HFR Depth to 
demonstrate the capability and flexibility of the system 
needed to address a variety of applications. Our evaluation 
of Hybrid HFR Depth shows that the quality of the generated 
depth image is good enough to benefit three demonstrated 
interactive applications. 
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