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ABSTRACT 

A lossless image compression technique for 16-bit single 

channel images typical of depth cameras such as Microsoft 

Kinect is presented. The proposed “RVL” algorithm 

achieves similar or better compression rates as existing 

lossless techniques, yet is much faster. Furthermore, the 

algorithm’s implementation can be very simple; a prototype 

implementation of less than one hundred lines of C is 

provided. The algorithm’s balance of speed and compression 

make it especially useful in interactive applications of 

multiple depth cameras on local area networks. RVL is 

compared to a variety of existing lossless techniques, and 

demonstrated in a network of eight Kinect v2 cameras. 
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INTRODUCTION 

The Microsoft Kinect sensor is a popular device for building 

interactive spaces. Multiple sensors can be used to 

instrument larger interactive spaces, or to address sight line 

limitations of a single camera [6]. However, the use of 

multiple sensors is complicated by the need to calibrate the 

cameras to the same coordinate system. Another pragmatic 

concern is that a PC can host only one Kinect v2 device. This 

restriction is due to the fact that for every depth image, the 

camera sends multiple images to the PC which are combined 

on the GPU [13]. 

A workaround to the one camera per PC limit is to use 

multiple networked PCs, each hosting a camera and 

transmitting sensor data over the local area network. The 

RoomAlive Toolkit [12], for example, provides a server that 

sends depth images, color images, skeleton data, etc. Using 

multiple networked PCs has the added benefit that image 

processing tasks such as smoothing and background 

subtraction can be distributed to the hosting PCs. 

Networking multiple cameras will be limited by network 

bandwidth. For example, transmitting the full HD color 

image from a single Kinect sensor at video rate will require 

more than 1.4Gbps network bandwidth. High quality JPEG 

compression (Q=50%) of each color image can reduce the 

bandwidth required to 30.7Mbps (30Hz) or 15.4Mbps (15Hz 

low light mode), allowing for multiple cameras on a typical 

1Gbps local area network. More sophisticated video 

compression techniques such as H.264 or HEVC can reduce 

this bandwidth dramatically, and hardware encoders are 

commonly available on modern GPUs. 

Kinect depth images are smaller and can be practically sent 

over a local area network at video rates (30Hz) without 

compression. Kinect depth images are 512 × 424, where each 

16-bit pixel value directly encodes depth in the range of

80mm to 8000mm (13 bits). Each depth image is thus 424kB

or 104Mbps. Transmitting both JPEG compressed color and

uncompressed depth at 30Hz requires about 134Mbps. A

1Gbps network can support seven cameras in theory.

Saturating a network in this way can add as much as 33ms

latency to each image transmission.

Compressing the depth image may allow for the possibility 

of more than seven cameras, reduce latency, and leave 

network bandwidth available for other payloads (e.g., audio). 

Unfortunately, there appears to be no commonly available 

lossy image compression technique that does not adversely 

affect the geometric interpretation of depth images. For 

example, lossy compression can result in unacceptable 

artifacts at depth discontinuities, as near the edges of objects, 

and when valid depth pixels are adjacent to invalid depth 

values, which are typically zero. 

Popular lossy compression techniques are optimized for 

color images and do not support 13bpp or 16bpp formats. 

Splitting 13-bit depth values across multiple color channels 

is a poor strategy, as errors due to lossy compression in the 

channel holding the most significant bits will cause large 

artifacts in the reconstructed depth image. Certain H.264 

profiles support 14-bit color depth, and HEVC Version 2 

supports 16-bit monochrome images, but neither handle 

depth discontinuities appropriately. Recent extensions to 

HEVC for 3D and multiview scenarios may be applicable.  

Lossless techniques naturally avoid the problem of artifacts 

dramatically impacting depth images, yet there are few 

lossless implementations that are optimized for depth 
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images. This paper presents a lossless compression technique 

that achieves similar compression rates as commonly 

available lossless techniques, yet runs significantly faster, 

making it suitable for real time, latency-sensitive interactive 

applications employing multiple Kinect cameras. It has the 

further benefit of being so simple that in the spirit of [16], its 

C implementation is included in the appendix. 

RELATED WORK 

Most previous work investigating Kinect depth image 

compression focuses on lossy techniques.  

One strategy is to adapt existing video codecs. Pece et al. 

[11], propose a novel transform on depth image data that 

minimizes the impact of lossy compression when packing 

16-bit depth image values into three channels for H.264 and 

VP8 codecs. Their technique suffers from noise at depth 

discontinuities. Liu et al. [7] evaluate using lossless 

compression on the most significant bits of the depth image, 

while using H.264 to encode the remaining bits. While 

existing lossy video compression techniques are not aware of 

contours, input depth image data may be pre-processed in 

certain ways to minimize artifacts around edges [3, 10].  

Another approach is to address the geometrical interpretation 

of depth image data in the compression technique. Modi et 

al. approximate the scene as a series of planar surfaces [9], 

for example, while Jafarabad et al use “geometrical 

wavelets” to model surfaces in depth image [5]. Meanwhile, 

recent extensions to HEVC address 3D TV and multiview 

applications but seem to have not been applied to Kinect 

images. Such techniques typically are computationally 

expensive, particularly at the encoding stage. 

A number of proposed techniques address the problem of 

edge artifacts by explicitly modeling contours in the depth 

image [17, 4, 15]. These techniques are also computationally 

expensive. 

There are few published lossless or near-lossless depth image 

compression techniques. Perhaps the work that is most 

similar to the present work is that of Mehrotra et al., which 

similarly combines run length encoding and variable length 

encoding schemes to achieve lossless compression [8]. The 

approach proposed in this paper is simpler still, runs notably 

faster and achieve similar or better compression rates. 

Finally, there are informally reported results indicating that 

some degree of filtering (e.g., median filtering) and simple 

run length encoding or Lempel-Ziv encoding, in combination 

with frame-to-frame differencing, achieves good 

compression [2]. 

RVL COMPRESSION 

The proposed “RVL” compression scheme is a mixture of 

Run length encoding and Variable Length encoding 

schemes. 

Consider a depth image as alternating runs of zero and non-

zero values in raster scan order. Without loss of generality, 

assume that the image begins with a run of zeros (possibly of 

zero length). Each successive pair of zero and non-zero runs 

is encoded in order as 

• the number of zeros, 

• the number of non-zeros, 

• differences (deltas) of successive non-zero pixel values, 

where the difference for the first pixel in a run of non-zeros 

is based on the last pixel in the previous run of non-zeros 

The number of zeros and non-zeros are positive integers 

written to the compressed bitstream with a base-8 variable 

length encoding scheme: starting with the least significant 

bits, the integer is broken into successive groups of three bits 

until all set bits are consumed. A fourth continuation bit is 

added to each group of three indicating whether it is the last 

group. For example, the 16 bit value 42 is encoded as 8 bits: 

42 =  0000000000101010 →  0010, 1101 

where continuation bits are underlined. 

Deltas are similarly variable-length encoded, but with the 

following elaboration to address both positive and negative 

values. Two’s-complement representation of negative 

integers means that the highest bit of a negative delta value 

will be set, and the variable length encoding will always 

require the maximum number of groups of three bits, 

regardless of value (for example, the 32-bit representation of 

-1 will require 11 groups of three bits or 44 bits total). To 

avoid this, negative and positive deltas 𝑑 are uniquely 

mapped to positive values 𝑢 by “zigzag” encoding, 

𝑢 = {
2𝑑, 𝑑 ≥ 0

−2𝑑 − 1, 𝑑 < 0
 

which maps small negative and small positive values to small 

positive values suitable for variable-length encoding. This 

encoding is efficiently implemented in C without branching 

as  

int u = (d << 1) ^ (d >> 31) 

with 32-bit signed integer d and the arithmetic right shift 

operator (note that right shift with negative numbers is not 

specified by the ISO C standard, and is compiler-specific). 

The main feature of the variable length coding scheme is that 

it can encode any positive integer (and zero) with encoded 

length proportional to its value. Thus, in regions of the depth 

image with gradual changes, pixel delta values will be small 

and stored compactly. The smallest zigzag encoded delta will 

require four bits (4x compression), while the largest will 

require 20 bits. By considering runs of zeros independently 

from runs of non-zeros, large delta values near zeros in the 

depth image are avoided. In fact, the value chosen to indicate 

an invalid depth value is unimportant: it need only be unique. 

Decompression is straightforward given the lengths of 

alternating runs of zeros and non-zeros. Zigzag encoding can 

be efficiently reversed in C with 

int d = (u >> 1) ^ -(u & 1) 
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EVALUATION 

To evaluate RVL, the following lossless compression 

techniques are compared, focusing on compression ratio and 

speed of encoding and decoding: 

• RVL: our prototype implementation, compiled for x64 

with speed optimizations enabled (/O2). See appendix for 

C code listing. 

• JPEG-LS: CharLS implementation [1], compiled for x64, 

with speed optimizations enabled. 

• JPEG-XR: Windows Imaging Component built-in codec, 

configured for lossless compression, 16bpp. 

• RLGR: 64-bit library provided by authors of [8], lossless. 

• PNG: Windows Imaging Component built-in codec, 

configured for 16bpp. 

The Windows Imaging Component TIFF codec also supports 

16bpp with lossless compression; however, its in-memory 

compression performance was not competitive, and was 

omitted as a comparison technique. 

Additionally, two image filtering techniques were applied to 

the test images, resulting in three filtering conditions: 

• Raw: no pre-processing of the image 

• Filtered: single bilateral filtering [14] pass, with spatial 

weighting Gaussian with σ = 3 pixels, intensity weighting 

Gaussian with σ = 40mm, and a 7×7 window 

• Quantized: every pixel value is divided by 4. Such 

quantization may be acceptable given the application and 

sensor noise, which is influenced by multiple factors 

including ambient light and distance. A simple experiment 

was conducted to estimate noise by setting the camera in 

front of a flat featureless wall about 1.5m away. Depth 

mean and standard deviation was computed at each pixel 

location over 1000 frames. The average standard deviation 

across all pixel locations was 2.5mm. 

A series of 1000 consecutive test depth images was collected. 

The indoor scene includes clutter, areas of flat empty walls, 

and regions of invalid depth data (see Figure 1). To provide 

some variation in the test set, the camera was moved 

continuously through the capture session. Note that the 

presence of motion in the sequence has no bearing on 

compression, since all of the techniques tested work with 

single images only. 

   

Figure 1. Two depth images from the test set. 

 

Encoding and decoding times were measured on a Windows 

10 PC with an Intel Core i7-3770K @ 3.50GHz. In all cases, 

compression was performed in memory. Timing did not 

include filter processing. Compression ratios were calculated 

against the 16-bit uncompressed version of the depth image. 

Mean and standard deviation of timing and compression ratio 

measures were logged to disk. 

RESULTS 

Compression ratio, compression time and decompression 

time means and standard deviations across compression 

technique and filtering condition are presented in Figure 2. 

 

 

 

Figure 2. Compression ratio, compression time and 

decompression time across all comparison techniques and filter 

conditions. Error bars display ±1 standard deviation. 

Our experiments show that the RVL algorithm achieves 

compression ratios comparable to existing commonly 

available lossless image compression techniques, as well as 

the experimental implementation of RLGR. It tends to 

perform better than JPEG-XR, RLGR and PNG, and 

sometimes JPEG-LS. 

RVL has the lowest compression times (1.2ms without 

filtering), about four times faster than the next fastest 

technique (RLGR, 5.6ms), and the lowest decompression 

times (0.99ms), about twice as fast the next fastest technique 
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(PNG, 1.8ms). In our application setting every compressed 

image must be uncompressed, so it is meaningful to consider 

the sum of both. In this case RVL is about five times faster 

than the comparison techniques. 

Filtering 

Filtering improved compression ratios, with quantization 

showing the most improvement. The histogram over the 

number of 4-bit nibbles used in encoding non-zero pixel 

values for one sample image shows that many more were 

encoded with a single nibble when filtering is performed (see 

Figure 3). Filtering also had a slight impact on compression 

and decompression times. 

 

Figure 3. Histogram of number of 4-bit nibbles used to encode 

non-zero pixels, across filter conditions, for one sample image. 

DISCUSSION 

An important caveat in drawing conclusions from the 

evaluation is that developers of the comparison techniques 

may not have prioritized encoding and decoding speed, 

particularly when these codecs are commonly used with 

images on disk. Likewise, except for RLGR, the comparison 

techniques are not tuned for depth images in any way. 

Conversely, RVL has not been tested with a more general set 

of images, and may not perform well in comparison to other 

techniques designed for more general application. 

Compression and Decompression Time 

Without further detailed analysis, it is difficult to know why 

RVL runs much faster than the comparison techniques. 

However, in general it appears that the comparison 

techniques are more complex and therefore likely perform 

more instructions per pixel. JPEG-LS and RLGR use 

Golomb-Rice encoding, which involves bit-level 

manipulation, while RVL deals in four bit nibbles that easily 

pack into 32 bit words. The remaining techniques use 

entropy encoding methods such as Huffman or Lempel-Ziv 

encoding, which likely adds more instructions and memory 

bandwidth requirements. 

Compression Ratio 

Again, without further detailed analysis it is difficult to know 

why RVL achieves comparable compression ratios as the 

comparison techniques, despite the algorithm’s simplicity. 

RLGR, the algorithm most like RVL, features a more 

complex encoding scheme, yet appears to not handle 

transitions to and from zero values in any special way. Such 

transitions will be expensive to encode, as Golomb-Rice 

encoding uses unary encoding in part.  

JPEG-LS uses more sophisticated context-sensitive 

prediction techniques. Preliminary experiments with a 

simple linear prediction technique in our prototype RVL 

implementation showed little difference in compression 

performance even in the filtered conditions. 

Latency Complexity 

Minimizing latency is critical in real time interactive 

applications. Compression time, network load and 

decompression time can increase depth image latency in 

different ways. For example, compression happens at each of 

the networked PCs and is thus fully parallelized. Network 

transport time will increase with more cameras or lower 

compression ratios. Decompression can be parallelized on 

multiprocessor architectures. More formally, the complexity 

of depth image latency is 𝑂(𝐶 +
𝑛

𝑐
𝑇 +

𝑛

𝑚
𝐷) where 𝐶 denotes 

compression time, 𝑇 network transmission time for an 

uncompressed image, 𝐷 decompression time, 𝑛 the number 

of cameras, 𝑐 compression ratio and 𝑚 the number of cores 

on the PC assembling the final scene. Further,  

• If 𝑛 < 𝑚, the image can be split into multiple subimages 

that can be parallelized to keep 𝑚 cores busy. 

• More complex compression techniques might achieve 

greater compression ratio 𝑐 at the expense of 

compression and decompression time. This could be a 

good tradeoff if 𝑛 or 𝑇 is sufficiently large. 

• RVL will give the lowest overall latency, but of the 

remaining techniques, PNG has rather high compression 

times, but second lowest decompression time and 

therefore is probably the best choice after RVL. 

Temporal Coherence 

In most interactive space applications the camera is statically 

mounted and the image does not change frame to frame aside 

from sensor noise. In these cases great improvements in 

compression might be gained by exploiting frame to frame 

coherence of the image. A preliminary RVL implementation 

encoding frame differences showed inferior compression to 

simply compressing each frame separately. This may be due 

to the fact that zeros in the depth image are typically in noisy 

regions of the image, and therefore will generate large frame 

to frame deltas; these might have appeared in a run of zeros 

if the image were coded singly. 

Another strategy to exploit temporal coherence is to create 

two images; one modeling the static parts of the scene which 

is only transmitted occasionally, and another which has only 

moving objects. The latter image will likely be dominated by 

runs of zeros and will therefore highly compress. These two 

images could be composited on the client. This approach has 

the added benefit in that sensor noise on the static parts of 

the scene can be greatly reduced by simple frame to frame 

averaging. This is left for future work. 
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APPLICATION 

The RVL codec was demonstrated in an interactive space 

equipped with eight Kinect v2 cameras. Each camera is 

hosted by an Intel NUC PC. The cameras were calibrated 

using the RoomAlive Toolkit [12]. Depth and JPEG 

compressed color images from each camera are transmitted 

over a 1Gbps network to a client PC which converts the depth 

images into textured meshes and renders them in real time 

(see Figure 4). 

Without RVL compression, network bandwidth measured at 

the client PC exceeds 800Mbps, and many depth and color 

images are dropped. With RVL compression, few depth and 

color images are dropped, and network bandwidth is less 

than 500Mbps (see accompanying video figure).  

CONCLUSION 

RVL is a simple lossless image compression technique for 

16-bit single channel images typical of depth cameras such 

as Microsoft Kinect. The technique’s speed, competitive 

lossless compression rates, and simple implementation make 

it especially appropriate for practitioners building larger 

interactive spaces involving multiple networked depth 

cameras.  
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APPENDIX 

RVL source code is licensed under the MIT License: 

int *buffer, *pBuffer, word, nibblesWritten; 

void EncodeVLE(int value) 
{ 

do 

{ 
int nibble = value & 0x7; // lower 3 bits 
if (value >>= 3) nibble |= 0x8; // more to come 
word <<= 4; 
word |= nibble; 
if (++nibblesWritten == 8) // output word 
{ 
 *pBuffer++ = word; 

nibblesWritten = 0; 
word = 0; 

} 
} while (value); 

} 

int DecodeVLE() 
{ 

unsigned int nibble; 
int value = 0, bits = 29; 
do 
{ 

if (!nibblesWritten) 
{ 

word = *pBuffer++; // load word 
nibblesWritten = 8; 

} 
nibble = word & 0xf0000000; 
value |= (nibble << 1) >> bits; 
word <<= 4; 
nibblesWritten--; 
bits -= 3; 

} while (nibble & 0x80000000); 
return value; 

} 

int CompressRVL(short* input, char* output, int numPixels) 
{ 

buffer = pBuffer = (int*)output; 
nibblesWritten = 0; 
short *end = input + numPixels; 
short previous = 0; 
while (input != end) 
{ 

int zeros = 0, nonzeros = 0; 
for (; (input != end) && !*input; input++, zeros++); 
EncodeVLE(zeros); // number of zeros 
for (short* p = input; (p != end) && *p++; nonzeros++); 
EncodeVLE(nonzeros); // number of nonzeros 
for (int i = 0; i < nonzeros; i++) 
{ 

short current = *input++; 
int delta = current - previous; 
int positive = (delta << 1) ^ (delta >> 31); 
EncodeVLE(positive); // nonzero value 
previous = current; 

} 
} 
if (nibblesWritten) // last few values 

*pBuffer++ = word << 4 * (8 - nibblesWritten);
return int((char*)pBuffer - (char*)buffer); // num bytes 

} 

void DecompressRVL(char* input, short* output, int numPixels) 
{ 

buffer = pBuffer = (int*)input; 
nibblesWritten = 0; 
short current, previous = 0; 
int numPixelsToDecode = numPixels; 
while (numPixelsToDecode) 
{ 

int zeros = DecodeVLE(); // number of zeros 
numPixelsToDecode -= zeros; 
for (; zeros; zeros--) 

*output++ = 0;
int nonzeros = DecodeVLE(); // number of nonzeros 
numPixelsToDecode -= nonzeros; 
for (; nonzeros; nonzeros--) 
{ 

int positive = DecodeVLE(); // nonzero value 
int delta = (positive >> 1) ^ -(positive & 1); 
current = previous + delta; 
*output++ = current;
previous = current;

} 
} 

} 

105

https://github.com/Microsoft/RoomAliveToolkit



