
Fast Lossless Depth Image Compression

 Andrew D. Wilson

Microsoft Research

Redmond, WA

awilson@microsoft.com

ABSTRACT

A lossless image compression technique for 16-bit single

channel images typical of depth cameras such as Microsoft

Kinect is presented. The proposed “RVL” algorithm

achieves similar or better compression rates as existing

lossless techniques, yet is much faster. Furthermore, the

algorithm’s implementation can be very simple; a prototype

implementation of less than one hundred lines of C is

provided. The algorithm’s balance of speed and compression

make it especially useful in interactive applications of

multiple depth cameras on local area networks. RVL is

compared to a variety of existing lossless techniques, and

demonstrated in a network of eight Kinect v2 cameras.

Author Keywords

Depth image compression; interactive spaces

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

INTRODUCTION

The Microsoft Kinect sensor is a popular device for building

interactive spaces. Multiple sensors can be used to

instrument larger interactive spaces, or to address sight line

limitations of a single camera [6]. However, the use of

multiple sensors is complicated by the need to calibrate the

cameras to the same coordinate system. Another pragmatic

concern is that a PC can host only one Kinect v2 device. This

restriction is due to the fact that for every depth image, the

camera sends multiple images to the PC which are combined

on the GPU [13].

A workaround to the one camera per PC limit is to use

multiple networked PCs, each hosting a camera and

transmitting sensor data over the local area network. The

RoomAlive Toolkit [12], for example, provides a server that

sends depth images, color images, skeleton data, etc. Using

multiple networked PCs has the added benefit that image

processing tasks such as smoothing and background

subtraction can be distributed to the hosting PCs.

Networking multiple cameras will be limited by network

bandwidth. For example, transmitting the full HD color

image from a single Kinect sensor at video rate will require

more than 1.4Gbps network bandwidth. High quality JPEG

compression (Q=50%) of each color image can reduce the

bandwidth required to 30.7Mbps (30Hz) or 15.4Mbps (15Hz

low light mode), allowing for multiple cameras on a typical

1Gbps local area network. More sophisticated video

compression techniques such as H.264 or HEVC can reduce

this bandwidth dramatically, and hardware encoders are

commonly available on modern GPUs.

Kinect depth images are smaller and can be practically sent

over a local area network at video rates (30Hz) without

compression. Kinect depth images are 512 × 424, where each

16-bit pixel value directly encodes depth in the range of

80mm to 8000mm (13 bits). Each depth image is thus 424kB

or 104Mbps. Transmitting both JPEG compressed color and

uncompressed depth at 30Hz requires about 134Mbps. A

1Gbps network can support seven cameras in theory.

Saturating a network in this way can add as much as 33ms

latency to each image transmission.

Compressing the depth image may allow for the possibility

of more than seven cameras, reduce latency, and leave

network bandwidth available for other payloads (e.g., audio).

Unfortunately, there appears to be no commonly available

lossy image compression technique that does not adversely

affect the geometric interpretation of depth images. For

example, lossy compression can result in unacceptable

artifacts at depth discontinuities, as near the edges of objects,

and when valid depth pixels are adjacent to invalid depth

values, which are typically zero.

Popular lossy compression techniques are optimized for

color images and do not support 13bpp or 16bpp formats.

Splitting 13-bit depth values across multiple color channels

is a poor strategy, as errors due to lossy compression in the

channel holding the most significant bits will cause large

artifacts in the reconstructed depth image. Certain H.264

profiles support 14-bit color depth, and HEVC Version 2

supports 16-bit monochrome images, but neither handle

depth discontinuities appropriately. Recent extensions to

HEVC for 3D and multiview scenarios may be applicable.

Lossless techniques naturally avoid the problem of artifacts

dramatically impacting depth images, yet there are few

lossless implementations that are optimized for depth

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

ISS '17, October 17–20, 2017, Brighton, United Kingdom

© 2017 Copyright is held by the owner/author(s). Publication rights
licensed to ACM. ACM ISBN 978-1-4503-4691-7/17/10…$15.00

https://doi.org/10.1145/3132272.3134144

100

mailto:awilson@microsoft.com

images. This paper presents a lossless compression technique

that achieves similar compression rates as commonly

available lossless techniques, yet runs significantly faster,

making it suitable for real time, latency-sensitive interactive

applications employing multiple Kinect cameras. It has the

further benefit of being so simple that in the spirit of [16], its

C implementation is included in the appendix.

RELATED WORK

Most previous work investigating Kinect depth image

compression focuses on lossy techniques.

One strategy is to adapt existing video codecs. Pece et al.

[11], propose a novel transform on depth image data that

minimizes the impact of lossy compression when packing

16-bit depth image values into three channels for H.264 and

VP8 codecs. Their technique suffers from noise at depth

discontinuities. Liu et al. [7] evaluate using lossless

compression on the most significant bits of the depth image,

while using H.264 to encode the remaining bits. While

existing lossy video compression techniques are not aware of

contours, input depth image data may be pre-processed in

certain ways to minimize artifacts around edges [3, 10].

Another approach is to address the geometrical interpretation

of depth image data in the compression technique. Modi et

al. approximate the scene as a series of planar surfaces [9],

for example, while Jafarabad et al use “geometrical

wavelets” to model surfaces in depth image [5]. Meanwhile,

recent extensions to HEVC address 3D TV and multiview

applications but seem to have not been applied to Kinect

images. Such techniques typically are computationally

expensive, particularly at the encoding stage.

A number of proposed techniques address the problem of

edge artifacts by explicitly modeling contours in the depth

image [17, 4, 15]. These techniques are also computationally

expensive.

There are few published lossless or near-lossless depth image

compression techniques. Perhaps the work that is most

similar to the present work is that of Mehrotra et al., which

similarly combines run length encoding and variable length

encoding schemes to achieve lossless compression [8]. The

approach proposed in this paper is simpler still, runs notably

faster and achieve similar or better compression rates.

Finally, there are informally reported results indicating that

some degree of filtering (e.g., median filtering) and simple

run length encoding or Lempel-Ziv encoding, in combination

with frame-to-frame differencing, achieves good

compression [2].

RVL COMPRESSION

The proposed “RVL” compression scheme is a mixture of

Run length encoding and Variable Length encoding

schemes.

Consider a depth image as alternating runs of zero and non-

zero values in raster scan order. Without loss of generality,

assume that the image begins with a run of zeros (possibly of

zero length). Each successive pair of zero and non-zero runs

is encoded in order as

• the number of zeros,

• the number of non-zeros,

• differences (deltas) of successive non-zero pixel values,

where the difference for the first pixel in a run of non-zeros

is based on the last pixel in the previous run of non-zeros

The number of zeros and non-zeros are positive integers

written to the compressed bitstream with a base-8 variable

length encoding scheme: starting with the least significant

bits, the integer is broken into successive groups of three bits

until all set bits are consumed. A fourth continuation bit is

added to each group of three indicating whether it is the last

group. For example, the 16 bit value 42 is encoded as 8 bits:

42 = 0000000000101010 → 0010, 1101

where continuation bits are underlined.

Deltas are similarly variable-length encoded, but with the

following elaboration to address both positive and negative

values. Two’s-complement representation of negative

integers means that the highest bit of a negative delta value

will be set, and the variable length encoding will always

require the maximum number of groups of three bits,

regardless of value (for example, the 32-bit representation of

-1 will require 11 groups of three bits or 44 bits total). To

avoid this, negative and positive deltas 𝑑 are uniquely

mapped to positive values 𝑢 by “zigzag” encoding,

𝑢 = {
2𝑑, 𝑑 ≥ 0

−2𝑑 − 1, 𝑑 < 0

which maps small negative and small positive values to small

positive values suitable for variable-length encoding. This

encoding is efficiently implemented in C without branching

as

int u = (d << 1) ^ (d >> 31)

with 32-bit signed integer d and the arithmetic right shift

operator (note that right shift with negative numbers is not

specified by the ISO C standard, and is compiler-specific).

The main feature of the variable length coding scheme is that

it can encode any positive integer (and zero) with encoded

length proportional to its value. Thus, in regions of the depth

image with gradual changes, pixel delta values will be small

and stored compactly. The smallest zigzag encoded delta will

require four bits (4x compression), while the largest will

require 20 bits. By considering runs of zeros independently

from runs of non-zeros, large delta values near zeros in the

depth image are avoided. In fact, the value chosen to indicate

an invalid depth value is unimportant: it need only be unique.

Decompression is straightforward given the lengths of

alternating runs of zeros and non-zeros. Zigzag encoding can

be efficiently reversed in C with

int d = (u >> 1) ^ -(u & 1)

101

EVALUATION

To evaluate RVL, the following lossless compression

techniques are compared, focusing on compression ratio and

speed of encoding and decoding:

• RVL: our prototype implementation, compiled for x64

with speed optimizations enabled (/O2). See appendix for

C code listing.

• JPEG-LS: CharLS implementation [1], compiled for x64,

with speed optimizations enabled.

• JPEG-XR: Windows Imaging Component built-in codec,

configured for lossless compression, 16bpp.

• RLGR: 64-bit library provided by authors of [8], lossless.

• PNG: Windows Imaging Component built-in codec,

configured for 16bpp.

The Windows Imaging Component TIFF codec also supports

16bpp with lossless compression; however, its in-memory

compression performance was not competitive, and was

omitted as a comparison technique.

Additionally, two image filtering techniques were applied to

the test images, resulting in three filtering conditions:

• Raw: no pre-processing of the image

• Filtered: single bilateral filtering [14] pass, with spatial

weighting Gaussian with σ = 3 pixels, intensity weighting

Gaussian with σ = 40mm, and a 7×7 window

• Quantized: every pixel value is divided by 4. Such

quantization may be acceptable given the application and

sensor noise, which is influenced by multiple factors

including ambient light and distance. A simple experiment

was conducted to estimate noise by setting the camera in

front of a flat featureless wall about 1.5m away. Depth

mean and standard deviation was computed at each pixel

location over 1000 frames. The average standard deviation

across all pixel locations was 2.5mm.

A series of 1000 consecutive test depth images was collected.

The indoor scene includes clutter, areas of flat empty walls,

and regions of invalid depth data (see Figure 1). To provide

some variation in the test set, the camera was moved

continuously through the capture session. Note that the

presence of motion in the sequence has no bearing on

compression, since all of the techniques tested work with

single images only.

Figure 1. Two depth images from the test set.

Encoding and decoding times were measured on a Windows

10 PC with an Intel Core i7-3770K @ 3.50GHz. In all cases,

compression was performed in memory. Timing did not

include filter processing. Compression ratios were calculated

against the 16-bit uncompressed version of the depth image.

Mean and standard deviation of timing and compression ratio

measures were logged to disk.

RESULTS

Compression ratio, compression time and decompression

time means and standard deviations across compression

technique and filtering condition are presented in Figure 2.

Figure 2. Compression ratio, compression time and

decompression time across all comparison techniques and filter

conditions. Error bars display ±1 standard deviation.

Our experiments show that the RVL algorithm achieves

compression ratios comparable to existing commonly

available lossless image compression techniques, as well as

the experimental implementation of RLGR. It tends to

perform better than JPEG-XR, RLGR and PNG, and

sometimes JPEG-LS.

RVL has the lowest compression times (1.2ms without

filtering), about four times faster than the next fastest

technique (RLGR, 5.6ms), and the lowest decompression

times (0.99ms), about twice as fast the next fastest technique

102

(PNG, 1.8ms). In our application setting every compressed

image must be uncompressed, so it is meaningful to consider

the sum of both. In this case RVL is about five times faster

than the comparison techniques.

Filtering

Filtering improved compression ratios, with quantization

showing the most improvement. The histogram over the

number of 4-bit nibbles used in encoding non-zero pixel

values for one sample image shows that many more were

encoded with a single nibble when filtering is performed (see

Figure 3). Filtering also had a slight impact on compression

and decompression times.

Figure 3. Histogram of number of 4-bit nibbles used to encode

non-zero pixels, across filter conditions, for one sample image.

DISCUSSION

An important caveat in drawing conclusions from the

evaluation is that developers of the comparison techniques

may not have prioritized encoding and decoding speed,

particularly when these codecs are commonly used with

images on disk. Likewise, except for RLGR, the comparison

techniques are not tuned for depth images in any way.

Conversely, RVL has not been tested with a more general set

of images, and may not perform well in comparison to other

techniques designed for more general application.

Compression and Decompression Time

Without further detailed analysis, it is difficult to know why

RVL runs much faster than the comparison techniques.

However, in general it appears that the comparison

techniques are more complex and therefore likely perform

more instructions per pixel. JPEG-LS and RLGR use

Golomb-Rice encoding, which involves bit-level

manipulation, while RVL deals in four bit nibbles that easily

pack into 32 bit words. The remaining techniques use

entropy encoding methods such as Huffman or Lempel-Ziv

encoding, which likely adds more instructions and memory

bandwidth requirements.

Compression Ratio

Again, without further detailed analysis it is difficult to know

why RVL achieves comparable compression ratios as the

comparison techniques, despite the algorithm’s simplicity.

RLGR, the algorithm most like RVL, features a more

complex encoding scheme, yet appears to not handle

transitions to and from zero values in any special way. Such

transitions will be expensive to encode, as Golomb-Rice

encoding uses unary encoding in part.

JPEG-LS uses more sophisticated context-sensitive

prediction techniques. Preliminary experiments with a

simple linear prediction technique in our prototype RVL

implementation showed little difference in compression

performance even in the filtered conditions.

Latency Complexity

Minimizing latency is critical in real time interactive

applications. Compression time, network load and

decompression time can increase depth image latency in

different ways. For example, compression happens at each of

the networked PCs and is thus fully parallelized. Network

transport time will increase with more cameras or lower

compression ratios. Decompression can be parallelized on

multiprocessor architectures. More formally, the complexity

of depth image latency is 𝑂(𝐶 +
𝑛

𝑐
𝑇 +

𝑛

𝑚
𝐷) where 𝐶 denotes

compression time, 𝑇 network transmission time for an

uncompressed image, 𝐷 decompression time, 𝑛 the number

of cameras, 𝑐 compression ratio and 𝑚 the number of cores

on the PC assembling the final scene. Further,

• If 𝑛 < 𝑚, the image can be split into multiple subimages

that can be parallelized to keep 𝑚 cores busy.

• More complex compression techniques might achieve

greater compression ratio 𝑐 at the expense of

compression and decompression time. This could be a

good tradeoff if 𝑛 or 𝑇 is sufficiently large.

• RVL will give the lowest overall latency, but of the

remaining techniques, PNG has rather high compression

times, but second lowest decompression time and

therefore is probably the best choice after RVL.

Temporal Coherence

In most interactive space applications the camera is statically

mounted and the image does not change frame to frame aside

from sensor noise. In these cases great improvements in

compression might be gained by exploiting frame to frame

coherence of the image. A preliminary RVL implementation

encoding frame differences showed inferior compression to

simply compressing each frame separately. This may be due

to the fact that zeros in the depth image are typically in noisy

regions of the image, and therefore will generate large frame

to frame deltas; these might have appeared in a run of zeros

if the image were coded singly.

Another strategy to exploit temporal coherence is to create

two images; one modeling the static parts of the scene which

is only transmitted occasionally, and another which has only

moving objects. The latter image will likely be dominated by

runs of zeros and will therefore highly compress. These two

images could be composited on the client. This approach has

the added benefit in that sensor noise on the static parts of

the scene can be greatly reduced by simple frame to frame

averaging. This is left for future work.

103

APPLICATION

The RVL codec was demonstrated in an interactive space

equipped with eight Kinect v2 cameras. Each camera is

hosted by an Intel NUC PC. The cameras were calibrated

using the RoomAlive Toolkit [12]. Depth and JPEG

compressed color images from each camera are transmitted

over a 1Gbps network to a client PC which converts the depth

images into textured meshes and renders them in real time

(see Figure 4).

Without RVL compression, network bandwidth measured at

the client PC exceeds 800Mbps, and many depth and color

images are dropped. With RVL compression, few depth and

color images are dropped, and network bandwidth is less

than 500Mbps (see accompanying video figure).

CONCLUSION

RVL is a simple lossless image compression technique for

16-bit single channel images typical of depth cameras such

as Microsoft Kinect. The technique’s speed, competitive

lossless compression rates, and simple implementation make

it especially appropriate for practitioners building larger

interactive spaces involving multiple networked depth

cameras.

REFERENCES

1. CharLS, a C++ JPEG-LS library implementation.

https://github.com/team-charls/charls.

2. Drossaers, M. Data Compression For the Kinect.

https://thebytekitchen.com/2014/03/24/data-

compression-for-the-kinect/.

3. Fu, J., Miao, D., Yu, W., Wang, S., Lu, Y., & Li, S.

(2013). Kinect-like depth data compression. IEEE

Transactions on Multimedia, 15(6), 1340-1352.

4. Gautier, J., Le Meur, O., & Guillemot, C. (2012, May).

Efficient depth map compression based on lossless edge

coding and diffusion. In Picture Coding Symposium

(PCS), 2012 (pp. 81-84).

5. Jafarabad, M. Y., Kiani, V., Hamedani, T., & Harati, A.

(2014, May). Depth image compression using

geometrical wavelets. 6th Conference on Information

and Knowledge Technology (IKT), 2014.

6. Jones, B., Rajinder Sodhi, R., Murdock, M., Mehra, R.,

Benko, H., Wilson, A., Ofek, E., MacIntyre, B.,

Raghuvanshi, N., and Shapira, L. 2014. RoomAlive:

magical experiences enabled by scalable, adaptive

projector-camera units. In Proc of the 27th annual ACM

symposium on User interface software and technology

(UIST '14). ACM, New York, NY, USA, 637-644.

Figure 4. Rendering of live depth and color data from eight Kinect v2 cameras mounted in the ceiling to cover a conference room.

Without depth image compression, the 1Gbps network is saturated, and many frames are dropped. With RVL compression, less

than one half of the 1Gbps network bandwidth is used, and few frames are dropped (see accompanying video figure).

104

https://github.com/team-charls/charls
https://thebytekitchen.com/2014/03/24/data-compression-for-the-kinect/
https://thebytekitchen.com/2014/03/24/data-compression-for-the-kinect/

7. Liu, Y., Beck, S., Wang, R., Li, J., Xu, H., Yao, S., ... &

Froehlich, B. (2015, September). Hybrid lossless-lossy

compression for real-time depth-sensor streams in 3D

telepresence applications. In Pacific Rim Conference on

Multimedia (pp. 442-452).

8. Mehrotra, S., Zhang, Z., Cai, Q., Zhang, C., & Chou, P.

A. (2011, October). Low-complexity, near-lossless

coding of depth maps from Kinect-like depth cameras.

In Multimedia Signal Processing (MMSP), 2011 IEEE

13th International Workshop on (pp. 1-6).

9. Kanika Modi, Prem K. Kalra, and Subodh Kumar. 2014.

Compression of Noisy Depth Image using Planes. In

Proceedings of the 2014 Indian Conference on

Computer Vision Graphics and Image Processing

(ICVGIP '14). ACM, New York, NY, USA.

10. Lan, C., Xu, J. and Wu, F., 2012, July. Improving depth

compression in HEVC by pre/post processing. In

Multimedia and Expo Workshops (ICMEW), 2012

IEEE International Conference on (pp. 611-616).

11. Pece, F., Kautz, J., Weyrich, T.: Adapting standard

video codecs for depth streaming. In: Proceedings of

EGVE-JVRC 2011, pp. 59–66, Aire-la-Ville,

Switzerland. Eurographics Association (2011)

12. RoomAlive Toolkit.

https://github.com/Microsoft/RoomAliveToolkit.

13. Stuhmer, J., Nowozin, S., Fitzgibbon, A., Szeliski, R.,

Perry, T., Acharya, S., Cremers, D., and Shotton, J.

2015. Model-Based Tracking at 300Hz using Raw

Time-of-Flight Observations. In ICCV, pp. 3577--3585.

14. Tomasi, C., and Manduchi, R. (1998). Bilateral filtering

for gray and color images. In Sixth International

Conference on Computer Vision (pp. 839-846).

15. Varadarajan, K. M., Zhou, K., & Vincze, M. (2012,

November). RGB and depth intra-frame Cross-

Compression for low bandwidth 3D video. In Pattern

Recognition (ICPR), 2012 21st International Conference

on (pp. 955-958).

16. Wobbrock, J. O., Wilson, A., and Li, Y. 2007. Gestures

without libraries, toolkits or training: a $1 recognizer for

user interface prototypes. In Proc. of the 20th annual

ACM symposium on User interface software and

technology (UIST '07). 159-168.

17. Yuan, Y., Cheung, G., Frossard, P., Le Callet, P., &

Zhao, V. H. (2015, October). Contour approximation &

depth image coding for virtual view synthesis. In

Multimedia Signal Processing (MMSP), 2015 IEEE

17th International Workshop on (pp. 1-6).

APPENDIX

RVL source code is licensed under the MIT License:

int *buffer, *pBuffer, word, nibblesWritten;

void EncodeVLE(int value)
{

do

{
int nibble = value & 0x7; // lower 3 bits
if (value >>= 3) nibble |= 0x8; // more to come
word <<= 4;
word |= nibble;
if (++nibblesWritten == 8) // output word
{
 *pBuffer++ = word;

nibblesWritten = 0;
word = 0;

}
} while (value);

}

int DecodeVLE()
{

unsigned int nibble;
int value = 0, bits = 29;
do
{

if (!nibblesWritten)
{

word = *pBuffer++; // load word
nibblesWritten = 8;

}
nibble = word & 0xf0000000;
value |= (nibble << 1) >> bits;
word <<= 4;
nibblesWritten--;
bits -= 3;

} while (nibble & 0x80000000);
return value;

}

int CompressRVL(short* input, char* output, int numPixels)
{

buffer = pBuffer = (int*)output;
nibblesWritten = 0;
short *end = input + numPixels;
short previous = 0;
while (input != end)
{

int zeros = 0, nonzeros = 0;
for (; (input != end) && !*input; input++, zeros++);
EncodeVLE(zeros); // number of zeros
for (short* p = input; (p != end) && *p++; nonzeros++);
EncodeVLE(nonzeros); // number of nonzeros
for (int i = 0; i < nonzeros; i++)
{

short current = *input++;
int delta = current - previous;
int positive = (delta << 1) ^ (delta >> 31);
EncodeVLE(positive); // nonzero value
previous = current;

}
}
if (nibblesWritten) // last few values

*pBuffer++ = word << 4 * (8 - nibblesWritten);
return int((char*)pBuffer - (char*)buffer); // num bytes

}

void DecompressRVL(char* input, short* output, int numPixels)
{

buffer = pBuffer = (int*)input;
nibblesWritten = 0;
short current, previous = 0;
int numPixelsToDecode = numPixels;
while (numPixelsToDecode)
{

int zeros = DecodeVLE(); // number of zeros
numPixelsToDecode -= zeros;
for (; zeros; zeros--)

*output++ = 0;
int nonzeros = DecodeVLE(); // number of nonzeros
numPixelsToDecode -= nonzeros;
for (; nonzeros; nonzeros--)
{

int positive = DecodeVLE(); // nonzero value
int delta = (positive >> 1) ^ -(positive & 1);
current = previous + delta;
*output++ = current;
previous = current;

}
}

}

105

https://github.com/Microsoft/RoomAliveToolkit

