EzPC: Programmable, Efficient, and Scalable
Secure Two-Party Computation for Machine Learning

Nishanth Chandran
MSR India
nichandr@microsoft.com

Rahul Sharma
MSR India
rahsha@microsoft.com

ABSTRACT

We present EzPC: a secure two-party computation (2PC) frame-
work that generates efficient 2PC protocols from high-level, easy-
to-write programs. EzZPC provides formal correctness and security
guarantees while maintaining performance and scalability. Previ-
ous language frameworks, such as CBMC-GC, ObliVM, SMCL, and
Wysteria, generate protocols that use either arithmetic or boolean
circuits exclusively. Our compiler is the first to generate protocols
that combine both arithmetic sharing and garbled circuits for better
performance. We empirically demonstrate that the protocols gen-
erated by our framework match or outperform (up to 19x) recent
works that provide hand-crafted protocols for various functionali-
ties such as secure prediction and matrix factorization.

1 INTRODUCTION

Today it is hard for developers to program secure applications
using cryptographic techniques. Typical developers lack a deep un-
derstanding of cryptographic protocols, and cannot be expected to
use them correctly and efficiently on their own. Ideally, a developer
would declare the functionality in a general purpose, high-level
programming language and a tool, e.g. a compiler, would generate
an efficient protocol that implements the functionality securely,
while hiding the cryptography behind-the-scenes.

This paper presents such a framework for Secure Two-party
Computation (2PC), a powerful cryptographic technique that al-
lows two mutually distrusting parties to compute a publicly known
joint function of their secret inputs in a way that both the parties
learn nothing about the inputs of each other beyond what is re-
vealed by their (possibly different) outputs. For example, 2PC can
be used for secure prediction ([3, 9, 40, 44, 56]), where one party (the
server) holds a proprietary classifier to predict a label (e.g., a disease,
genomics, or spam detection), and the other party (the client) holds
a private input that it wants to run the classifier on. Using 2PC
guarantees that the server learns nothing about the client’s input
or output, and that the client learns nothing about the classifier,
beyond what is revealed by the output label.

To understand the state-of-the-art, let us consider an example un-
derlying many secure prediction algorithms. Suppose Alice wants
to write a 2PC protocol to securely compute w'x > b. Here w (a
vector) and b (a scalar) constitute the server classifier, and x is the
client’s input vector. Further, -7 is the matrix transpose operator,
and wTx denotes the inner product of w! and x. Alice has the
following options.

Divya Gupta
MSR India
t-digu@microsoft.com

Aseem Rastogi
MSR India
aseemr@microsoft.com

Shardul Tripathi
IIT Delhi
shardul.511@gmail.com

She can program the computation in one of the several program-
mer friendly, domain-specific languages (such as Fairplay [41], Wys-
teria [51], ObliVM [39], CBMC-GC [29], SMCL [47], Sharemind [8],
[43] etc.) that would automatically compile it to a 2PC protocol.
However, all of these frameworks use cryptographic backends that
take as input the computation expressed either as a boolean cir-
cuit ([23, 58]) or as an arithmetic circuit ([15, 20, 21]). The efficiency
of the generated 2PC protocol is thus bounded by the efficiency
of representing the computation in one of these representations.
For instance, multiplication of two £-bit integers can either be ex-
pressed as a boolean circuit of size O(£2), or as an arithmetic circuit
with 1 multiplication gate. It is well-known that boolean circuits
are not suitable for doing arithmetic operations such as integer
multiplications but are unavoidable for boolean operations such
as comparison [18, 27, 34, 40, 44, 52]. For better efficiency, Alice
would ideally like to compute w’ x using an arithmetic circuit, and
the comparison with b using a boolean circuit.

Unfortunately, none of the above frameworks support combina-
tions of arithmetic and boolean circuits, and using different tools for
different parts of the computation is cumbersome and error-prone.

Alternatively, Alice can use a tool such as ABY (Demmler et
al. [18]) that allows the computation to be expressed as a com-
bination of arithmetic and boolean circuits. However, here, the
programming interface is quite low-level: the programmer is re-
quired to first manually split the computation into arithmetic and
boolean components, and then write the circuits for all the compo-
nents manually, including the appropriate inter-conversion gates
between them. Clearly, writing correct and efficient protocols in
such a framework is beyond an average programmer who does not
understand the various trade-offs between arithmetic and boolean
circuits, and even for an expert cryptographer, writing large com-
putations in such a framework can be tedious (a sentiment echoed
by Demmler et al. [18] themselves).

A third option for Alice is to earn a PhD in cryptography, and
design and implement specialized, efficient 2PC protocols (similar
to [9, 40, 48, 56]) for her tasks.

This paper presents EzZPC, the first “cryptographic-cost aware”
compiler that generates efficient and scalable 2PC protocols using
combinations of arithmetic and boolean circuits. EzPC is backed by
a formal model that enables it to choose arithmetic or boolean rep-
resentations for different parts of the program, while automatically
inserting inter-conversion gates as necessary. In addition to guiding

Read as “easy peasy”, stands for Easy 2 Party Computation.

1 uint w[30] = input1(); uint b = inputi();
uint x[30] = input2();
3 uint acc = ©Q;
foriin[0:30] {acc = acc + (w[i] x x[i]); }
output2((acc > b)?1 : @) //only to party 2

@

Figure 1: EzPC code for w'x > b

the compiler, the formal model also provides strong correctness and
security theorems. Our comprehensive evaluation shows that the
automatically generated protocols have performance comparable
to or better than the custom, specialized protocols from previous
works [9, 22, 40, 44, 48, 56]. In fact, these papers (and others) cite
the inefficiency of generic 2PC as the major motivation behind the
design of specialized protocols. Using EzPC, we empirically demon-
strate that generic 2PC implementations are much more efficient
than what they were believed to be. Below we describe the salient
features of EzPC.

Ease of programming. EzPC source programs are ideal function-
alities that describe “what” computation needs to be done, rather
than “how” to do it. In particular, the programmer writes the high-
level computation without thinking about the underlying cryp-
tographic details. For example, Figure 1 shows an EzPC source
program for w! x > b. The program is quite similar to what a pro-
grammer might write in C++ or Java. The simplicity of the language
comes with the usual benefits: it is easily accessible to the devel-
opers, there are fewer avenues for making mistakes, developers
don’t bear the burden of getting cryptographic details right, code
optimizations can be left to the compiler, and it is easy to main-
tain and modify the programs. Needless to say, frameworks that
expose low-level circuit APIs to the programmer do not enjoy these
benefits.

Cryptographic-cost aware compiler. The EzZPC compiler com-
piles a source program to a hybrid computation consisting of public
and secret parts. In the example above, for instance, EzZPC com-
piler realizes that the array index i is public, and generates non-
cryptographic code for the array accesses. Further, within the secret
parts, EzZPC compiler is aware of the cryptographic costs of arith-
metic and boolean representations of the source language operators.
Based on these costs, the compiler automatically picks arithmetic
or boolean representations for different sub-parts, and generates
the corresponding circuits along with the required inter-conversion
gates. The outcome is an efficient 2PC protocol combining arith-
metic and boolean circuits, while the programmer remains oblivious
of all these cryptographic details. Indeed, EzPC is the first such
cryptographic-cost aware compiler.

Scalability (secure code partitioning). 2PC tools often do not
scale to large functionalities. The reason is that most 2PC imple-
mentations use a circuit-like representation as an intermediate
language. Hence, the largest compute that can be done securely is
upper-bounded by the largest circuit that can fit in the machine
memory?. This is a show-stopper for applications like secure ma-
chine learning, secure prediction, etc. that operate on large amounts
of data. EzPC addresses the scalability concern using a novel tech-
nique that we call secure code partitioning (or partitioning in short).
At a high level, we decompose the original program into a sequence

2Using swap and disk space is feasible but it causes huge slowdown.

of small sub-programs, which are then sequentially processed by
EzPC, while appropriately threading the intermediate outputs along.
While this addresses the scalability concern (i.e., the circuit sizes
of the sub-programs are now small enough to fit in the memory),
we still have to address the security risk of revealing the intermedi-
ate outputs. EZPC comes to the rescue; it automatically inserts the
required instrumentation to ensure security of these intermediate
outputs (Section 5). As we show in our evaluation, partitioning
allows us to program large applications in EzPC.

Formal guarantees. We prove formal correctness and security
theorems for our compiler. The correctness theorem relates the
“trusted third party” semantics of a source program and the “proto-
col” semantics (the distributed 2PC semantics that relies on circuit
evaluation) of the corresponding compiled program. The theorem
guarantees that for all well-typed source programs, the two seman-
tics successfully terminate (e.g., there are no array index out-of-
bounds errors) with identical observable outputs. For the security
theorem, we formally reduce the security of our scheme against
semi-honest (or “honest but curious") adversaries to the semi hon-
est security of the 2PC back-end. The theorem provides protection
against side-channels arising from conditionals and memory ac-
cess patterns. We also prove a formal security theorem against
semi-honest adversaries for our partitioning scheme (Section 4
and Section 5).

Evaluation. We have implemented EzPC using ABY [18] as the
cryptographic back-end. We compare EzPC with Yao-based compil-
ers in Section 2.1 and with specialized protocols in Section 7. We
evaluate EzPC by implementing a wide range of secure prediction
benchmarks including linear and naive bayes classifiers, decision
trees, deep neural networks, state-of-the-art classifiers from Tensor-
flow [1] and Bonsar1 [36], and also the matrix factorization example
from Nikolaenko et al. [48]. Our results demonstrate three key
points. First, EzZPC makes it convenient for general programmers to
write 2PC protocols. E.g. we provide the first 2PC implementation of
BonsarI [36], and it was programmed in the high-level EzPC source
language by a non-cryptographer. Second, the performance of the
protocols generated by EzPC are comparable to or better than (up
to 19x) their state-of-the-art, hand-crafted implementations. Finally,
we demonstrate the usefulness of partitioning by implementing an
application that requires more than 300 million gates (Section 6
and Section 7).

Related Work. Before ABY [18], several works have proposed
combining secure computation protocols based on homomorphic
encryption and Yao’s garbled circuits (e.g. [3, 6, 10, 19, 31, 48, 49, 53]),
and some have also developed tools that allow writing such combi-
nations (e.g. [7, 27, 34, 54]). However, as Demmler et al. [18] observe,
due to the high conversion cost between homomorphic encryption
and Yao’s garbled circuits, these combined protocols do not gain
much performance over a single protocol. Additionally, these prior
works provide informal languages or libraries that lack formal se-
mantics and static guarantees. Finally, we focus on the language
features necessary to implement machine learning applications. In
particular, we do not discuss declassification of intermediate values
or indexing into arrays at secret indices. Handling them requires ad-
ditional complexity. For example, Wysteria [51] handles the former
using dependent types and ObliVM [39] uses Oblivious RAM for

EzPC
Source Executable
program Compller code
(Calls the ABY API) Runs
2PC
protocol
Outputs «-— Circuit

Private inputs
Figure 2: EzPC toolchain

the latter. These situations seldomly arise in the machine learning
applications that we consider: intermediate values don’t need to be
declassified and arrays are traversed in an oblivious manner. We
provide a detailed survey of related work in Section 8.

2 EZPC OVERVIEW

Figure 2 shows an overview of the EzZPC toolchain. We give a

brief overview of each of these phases below.
Source language. Consider the example w’x > b from Section 1,
where w and b are the server’s input (a classifier) and x is the client’s
input vector. Figure 1 shows the EzPC code for this example. The
code first reads the server’s (resp. client’s) input using input1 (resp.
input2). It then uses a for loop to compute acc, the inner product
of w and x. Finally, the code compares acc with b and outputs this
only to the client using output2.

EzPC source language is a simple, imperative language that
enables the programmers to express 2PC computations in terms of
their “ideal” functionalities, without dealing with any cryptographic
details. The language provides multi-dimensional arrays with public
indices, conditional expressions (the ternary ? : operator), for loops,
if statements, and special syntax for input/output from each party.
EzPC compiler. EzZPC compiler takes as input a source program
and produces a C++ program as output. Figure 3 shows the output
code for the example in Figure 1 - this is also how a program written
directly in ABY would look like. The output program contains
party-specific code for inputs and outputs (role == SERVER and
role == CLIENT), and common code for the computation.

The compiler splits the input program into public and secret
components. The public components translate into regular C++
code, while the secret components translate into API calls into our
2PC back-end (ABY). For example, in Figure 1, the EzPC compiler
realizes that the array index i in the inner product loop is public,
and hence the access locations need not be hidden. Therefore, it
compiles the for loop into a C++ for loop that will be executed
in-clear (line 11).

Within the secret components, the EZPC compiler is “crypto-
graphic cost-aware”, and appropriately picks either arithmetic or
boolean circuit representations for different sub-components. For
example, the compiler realizes that the inner product computation
is more efficient in the arithmetic representation, and therefore it
builds the corresponding circuit using the arithmetic circuit builder
acirc (lines 12 and 13). On the other hand, since the compari-
son with b, and the conditional expression computation are more
efficient in the boolean representation, the EzZPC compiler uses
the Yao circuit builder ycirc to build the corresponding circuits

(lines 19 to 24) (in our usage of ABY, boolean is synonymous with
Yao, we elaborate in Section 6). We elaborate on cryptographic cost
awareness in Section 3.

Using both arithmetic and boolean representations requires con-
versions between them. The EzZPC compiler also instruments these
conversion gates accordingly. For example, in line 17, the compiler
converts a_acc to a boolean representation, before it is input to the
comparison and multiplexer circuits.

//circuit builders for arithmetic and boolean
Circuit =ycirc = s[S_YAQ] — GetCircuitBuildRoutine();
Circuit *acirc = s[S_ARITH] — GetCircuitBuildRoutine();

if(role == SERVER) {

//Put gates to read w and b
} else { //role == CLIENT

//Put gates to read x
}

for(uint32_ti = @;i < 30; i=1i+1){ //acc = w'x
share *a_t_0 = acirc — PutMULGate(a_w[i], a_x[i]);
a_acc = acirc — PutADDGate(a_acc, a_t_o);

}

//convert acc and b from arithmetic to boolean

7 share #y_acc = ycirc — PutA2YGate(a_acc);

share =y_pred = ycirc — PutGTGate(y_acc, y_b);
uint32_tone=1;

share #y_1 =ycirc — PutCONSGate(one, bitlen);
uint32_t zero = 0;

share #y_0 = ycirc — PutCONSGate(zero, bitlen);
share = y_t = ycirc — PutMUXGate(y_pred, y_1, y_0);

share #y_out = ycirc — PutOUTGate(y_t, CLIENT);
party — ExecCircuit();

if(role == CLIENT){ //only to the client
uint32_t_o = y_out — get_clear_value(uint32_t)();
}

Figure 3: EzZPC compiler (partial) output for Figure 1

Circuit generation and evaluation. The next step in EzPC is to
compile the output C++ code and execute it. Doing so evaluates
away the public parts of the program, including the array accesses,
and generates a circuit comprising of arithmetic and boolean gates,
with appropriate conversion gates. The circuit is then evaluated
using a 2PC protocol.

Advantages of EzZPC We can now concretely see the advantages
of EzPC. Unarguably, it is easier for a developer to program and get
the code right in Figure 1, rather than the code in Figure 3. EZPC
also enables the programmer to easily modify their code, while the
compiler takes care of efficiency. For example, consider in Figure 1
a change from multiplication to bitwise-or in the for loop. It turns
out that in this case, it is more efficient to do both the addition
and bitwise-or using boolean circuits (if the addition is done using
arithmetic, the conversion cost starts to take over). In EzPC, the
programmer simply needs to change one operator in the source
code, and the compiler generates efficient code that uses boolean
addition. Whereas, if the programmer was writing ABY code, she
either has to sacrifice performance, or would have to revisit many
parts of the circuit and change them. In summary, EzPC raises the

level of abstraction for the programmer, and generates efficient
2PC protocols automatically, while its metatheory provides strong
correctness and security guarantees.

2.1 Comparison with garbled circuits

We show that it is critical to use a mix of arithmetic and boolean
circuits for performance. Previous works have observed that Yao’s
garbled circuits do not scale to machine learning examples that
require a large number of multiplications [18, 27, 34, 40, 44, 52].
Indeed, this is one of the main drivers behind the development
of various specialized 2PC protocols in previous works [9, 40, 44]
(we compare against them in Section 7) . Here, we empirically
demonstrate the performance benefits of mixed computations over
boolean-only compute by comparing with state of the art Yao-based
compilers CBMC-GC [29] and ObliVM [39].

The largest benchmark in CBMC-GC is a multiplication of two
8 X 8 matrices for which it generates about a million gates and takes
about ten seconds to run. In contrast, EZPC uses arithmetic sharing,
generates 1218 gates, and runs in less than 0.1 seconds. When we
tried multiplying two 20 X 20 matrices with CBMC-GC, it timed out
after 5 hours. Our benchmarks require much bigger computations
(e.g., multiplying a 64 X 576 matrix with a 576 X 1024 matrix). Unlike
CBMC-GC, ObliVM can scale to larger benchmarks (because it uses
Yao-pipelining [30]). We evaluated the program in Figure 1 with
vectors of lengths varying between 10% and 10° using both EzZPC
and ObliVM. EzPC evaluates the inner-product in arithmetic and,
empirically, is at least 25x faster than ObliVM.

3 CRYPTOGRAPHIC COST-AWARENESS

In this section, we explain various heuristics that EzZPC uses to
split the computation in a program into arithmetic and boolean
parts. Since finding an optimum split is an NP-hard problem (the
predicates in if statements can have arbitrary non-linear arith-
metic), EZPC uses heuristics that perform well in practice (Sec-
tion 7).

The split between arithmetic and boolean requires knowing
the cost of individual operations (addition, multiplication, inter-
conversion between arithmetic and boolean, etc.). Demmler et
al. [18] document these costs by running microbenchmarks for
basic operations and interconversions (Figures 2 and 3 in [18]).
EzPC heuristics are based on their results.

Converting an arithmetic share to a boolean share requires com-
puting a garbled circuit for addition. The size of this circuit grows
linearly in the bit-width of the inputs. Similarly, converting from
boolean to arithmetic requires computing a garbled circuit for sub-
traction, which is also linear. Since each conversion has roughly
the same cost as a boolean addition, EzZPC performs addition using
a boolean circuit if the operands are boolean shared, else it uses an
arithmetic circuit.

For multiplication, EZPC always chooses an arithmetic circuit,
as the cost of a boolean multiplication is much higher than the cost
of converting the operands from boolean to arithmetic, performing
an arithmetic multiplication, and then converting the result back to
boolean (~ 9x more time & ~ 20x more communication in a LAN
setting). The size of a boolean multiplication circuit is quadratic in

the bit-width, which causes this performance gap. Roughly, multi-
plying two 64-bit integers using arithmetic sharing requires only 2
multiplications, whereas Yao requires at least 4096 AES operations
in the online phase. Since this gap is quite large, we believe that
this choice is optimal for realistic network settings. Finally, EzZPC
chooses boolean circuits for all the operations lacking arithmetic
support in ABY, e.g., comparisons, bit-shifts, etc. Further implemen-
tation details can be found in Section 6.

4 FORMAL DEVELOPMENT

In this section we prove correctness and security of our EzZPC
compiler. The readers who are interested in using the compiler as a
black box can move directly to Section 5 without loss of continuity.
We first formalize our source language (an example program being
Figure 1), and its runtime semantics. This semantics describes the
“trusted third party" execution semantics of the source programs
and generates observations corresponding to the values revealed to
the parties. We then present the compilation rules that type check
a program in the source language and generate a program in the
intermediate language (an example program being Figure 3). Next,
we present the runtime semantics of our intermediate language that
evaluates to a circuit by “evaluating away” the public parts and the
arrays. Crucially, this step does not have access to the secret inputs;
those are processed by our distributed circuit semantics that model
the 2PC back-end. Evaluation in this distributed setting involves the
parties running an interactive protocol. This step, like the source
semantics, emits observations corresponding to the values revealed
to the parties.

To prove the correctness of EzPC, we prove that the observa-
tions in source semantics and the distributed circuit semantics are
identical (Theorem 4.1). We combine this correctness theorem and
the security of the 2PC back-end to prove security of the protocols
generated by EzPC (Theorem 4.2). We present only selected parts
of our formalization. Full definitions and auxiliary lemmas can be
found in Appendix C. We will also release complete typeset proofs
in a tech report.

x[e1] := ey | if(e, 51, 52) | out e | 51552
whilex < ndos

Base type o == uint | bool
Type ¢ == o |o[n]
Constant ¢ == n|T|L
Expression e == clx|eixXey|leg>exle?e te3
| [eida | x[e]] in,
Statement s = Yx=e|x:=e|forxin[ny, ny]dos
|
|

Figure 4: Source language syntax

Source language. Our language is a simple imperative language
shown in Figure 4. Types ¢ consist of the base types o, and arrays
of base types o[n], where n is the array length. Though we model
only one dimensional arrays, our implementation supports multi-
dimensional arrays as well. Expressions e in the language include
the integer constants n, bool constants T and L, variables x, binary
operations ej Xez and e; > e (we support several other operators in
the implementation, detailed in Section 6), conditionals e ? e; : ey,
array literals [¢;],>, and array reads x[e]. The expression in 1 de-
notes input from party j. The statements s in the language comprise

3We write € (and similarly for other symbols) to denote a sequence of expressions.
The length of the sequence is usually clear from the context.

of variable declarations, assignments, for loops, array writes, if
statements, and sequence of statements. The statement out e de-
notes revealing the value of e to the parties?. The while statement
is an internal syntax that is not exposed to the programmer.

‘pl—ellv‘ ‘pl—sUpI;O
E-ConD
prelc
c=T>e=¢
E-Murt c=l=>e=¢
E-VAR Vie(l,2).pte n; preslcs
prxlpx) prexeln xn, pre?e :elcs
E-ReaD

prxllciln, E-Arr
preln n<n; Vie[n]l.pre; Jc; EIne

PFX[G]UCn p"[?i]nu[?i]n P’-injllc
E-DEcL E-LoorT
prelo p(x)>n
pryx=el p,x—uv;- prwhilex <ndos| p;-

E-Loorl E-Ir
p(x)<n
ptslpi;01
P2 = [p1ldom(p) [x = p1(x) +1]
p2 Fwhilex <ndos | p3;0;

prelc
c=T=>s8=58
c=1l=s=3s
prslp;0
prwhilex <ndos| p3;01,0, prif(e, s1,52) U p1;0

E-For E-Out
p,x = ny Fwhilex < npdos | p;;0 prelc

ptrforxin[ng,ny]dos | pr—{xs0 proutel p;c

Figure 5: Source semantics

Source semantics. The runtime semantics for the source language
is shown in Figure 5. These semantics show how a “trusted third
party” computes the outputs when given the inputs of both the
parties. Values v, runtime environments p, and observations O are
defined as follows:

Value o == c|[ciln
Runtime environment p == -|p,xP 0
Observation O = | c

Values consist of constants and array of constants, runtime envi-
ronment p maps variables to values, and observations are sequences
of constants.

The judgment p e || v denotes the big-step evaluation of an
expression e to a value v under the runtime environment p. Rule
(E-VAR) looks up the value of x in the environment. Rule (E-MuLT)
inductively evaluates e; and ey, and returns their product. Rule
(E-READ) evaluates an array read operation. It first evaluates x to an
array value [C;]p,, and e to a uint value n. It then returns cy, the n-
th index value in the array, provided n < ny, the length of the array.
Rule (E-InP) evaluates to some constant ¢ denoting party j’s input.
An array input can be written in the language as [in;],, which can
then evaluate using the rule (E-ARRr) (the notation Vi € [n] is read
as Vi € {0...n — 1}). The remaining rules are straightforward, and
are elided for space reasons.

The judgment p + s || p1; O represents the big-step evaluation of
a statement s under environment p, producing a new environment
p1 and observations O. Rule (E-DEcL) evaluates the expression e
to v, and returns the updated environment p, x = v, with empty

40ur language also has statements out; e (resp., out e) to reveal value of e to only
the first (resp., second) party. We omit these for brevity.

observations. The for statements evaluate through the internal
while syntax. Specifically, the rule (E-For) appends p with x — nj,
evaluates whilex < nydos to p;; O, and returns p; — {x} (removing
x from p1) and O. Rule (E-Loorl) shows the inductive case for while
statements, when p(x) < n. The rule evaluates s, producing p1; O;.
It then restricts p1 to the domain of p ([p1]dom(p)) to remove the
variables added by s, increments the value of x, and evaluates the
while statement under this updated environment. Rule (E-LoopT)
is the termination case for while, when p(x) > n. Finally, the
rule (E-OuT) evaluates the expression, and adds its value to the
observations.

Secret label m = A|B
Label ¢ = Plm
Type 7 == o' |a’[n]
Expression e == c|x|eiXeey|er >pex|x[e]l|[eiln
| e%e & lin? [(Cem)e
Statement s = rtx=¢e|x:=e|---|sys2]|...

Figure 6: Intermediate language syntax

Intermediate language. Figure 6 shows the intermediate lan-
guage of our compiler. The syntax follows that of the source lan-
guage, except that the types and operators are labeled. A label £ can
be the public label # or one of the secret labels A or B, which de-
note arithmetic and boolean respectively. Types 7 are then labeled
base types o and arrays of labeled base types o [n]. Most of the ex-
pression forms e are same as e, except that the binary operators, and
the conditional forms are annotated with labels €. Looking ahead,
the label determines how the operators are evaluated: P-labeled
operators are evaluated in-clear, A-labeled operators generate arith-
metic circuits, and B-labeled operators generate boolean circuits.
The form (£ > m) e denotes coercing e from label ¢ to label m.
Source to intermediate compilation. We provide the compila-
tion rules in Figure 7. We present the rules in a declarative style,
where the rules are non-syntax directed, and the labels ¢ are cho-
sen non-deterministically. Section 6 describes the label inference
scheme in our implementation.

The judgment I + e : 7 ~» ¢, where I maps variables x to types
7, says that under T, e (in the source language) compiles to € (in
the intermediate language), where ¢ has type 7. Rules (T-UINT) and
(T-Boou) assigns the label P to the constants, as the constants are
always public. Rule (T-MuLT) compiles a multiplication to either
a public multiplication (Xp), or a secret arithmetic multiplication
(X 7). As our compiler is cryptographic cost aware, it never com-
piles the multiplication to boolean multiplication X g (Section 6).
In a similar manner, rule (T-GT) compiles e; > e3 to either public
comparison, or secret boolean comparison > g (and never > #). The
rule for conditional (T-CoND) has two cases: when the conditional
expression e is of type bool?, both the branches have a base type
o’1, for an arbitrary ¢1, and the conditional is compiled to a public
conditional, whereas when the conditional expression has type
boolB, {1 is also B, and the conditional is compiled to a secret
conditional using a boolean circuit. Note that we restrict the type of
the branches to be of base type. Rule (T-READ) type checks an array
read. It checks that the array index e is public, and uses a static
bounds checking judgment |= e < n to prove that the array index is
in bounds °. Rule (T-INP) picks a label m for the input. Finally, the

5Section 6 discusses our implementation of this check.

Tre:Tt~e Trs~3s |
T-BooL

T-UINT c=TVe=1 T-Inp

Irn:uint” ~n Tre:bool” ~ ¢ Trinj:o™~ i}

T-MuLt T-GT
Vie{l,2).Tre;:uint ~ & Vie{1,2}.TFe;:uintl ~ &
(E=P)Vv(£=A) (t=P)V(L=8)

The xXey:uint! ~ & xp8 Tkep > ep:booll ~ g >p &

T-REaD T-ConD
Trx:ol[n]~ x T+e:booll ~ &
Tte:uintP ~& Vie{L,2).Tre;:0ll ~> g

Fe<n =PV ({=BAl =8B)

Ttx[e]:0f~ x[e] Tre?e :

e:0ll~E%e 6

T-ARr T-Sus
Vie[n].Tre :ol~ & Tre:ocl~e

Tr[eln:of[n]~ [eiln TFe:c™ ~ (Eom)e

T-AssGN
T-DEcL I'(x)=o"
Tre:y‘~e Tre:ol~e

Ttyx=e~y’x=¢|lLx:tr Trxi=e~>x:=2¢|T

T-For
T, x:uint” Fwhilex < nydos ~> whilex < ny dos | _

T+ for x in [ny, nz] dos ~ for x in [ny, ny]dos | T

T-WRITE
l"r—x:(rf[n]'\»x
Tre :uint” ~ g
Tre:ol~é T-Out
EFe <n Tre:cm™m~ e

Trx[e]]:i=e;~ x[e1]:=e; |T Troute~oute|T

T-Ir) T-SeQ
T+e:bool” ~ & Trksp~ 5 |
Yie{1,2}).TFs;~> 3 |_ Nits;~> 5|0

I'+if(e, s1,82) ~ if(€ 51, 52) IT Trsise ~ 535 | I

T-WHILE
I(x) =uint® Trs~5|_ x ¢modifies(s)

I'twhilex < nydos~» whilex <nydos|T

Figure 7: Source compilation

rule (T-Su) is the subsumption rule that coerces an expression of
type ol toan expression of type o™ using the coerce expression.
It is important for security that the secrets cannot be coerced to
public values and indeed (T-Sus) does not permit it.

Judgment T + s : 7 ~ 5 | [} compiles a statement s resulting
in the statement s and type environment I;. Rule (T-DEcL) picks a
label ¢, and adds the binding for x to the environment (if = o,
Yt = of, else if ¥ = o[n], y¢ = o[n]). Rule (T-AssicN) looks
up the type of x in T’ and compiles e to é of same type. Note that
in this rule we restrict the type of variable x to be of base type.
Rule (T-For) adds the loop counter x to T at type uint?, and del-
egates type checking to the while form. Rule (T-OuT) types the
expression e at some secret label m. Rule (T-IF) checks that the
conditional expression is public, and rule (T-SEQ) sequences the
type environments. Finally, the typing rule for the (internal) while
form ensures that x is mapped in T at type uint®, and that the
statement s does not modify x (x ¢ modifies(s))—-this is necessary
for ensuring termination.

Wireid w
Circuit gate g w [in?* [mult g1 g2 | gt g1 g2
Mmux g g1 gz [(€>m)yg|c
gl [_gi]n
- |bindgw |outg | xi; x2

Sub-circuit ¥
Circuit y

Figure 8: Circuits syntax

As mentioned earlier, the intermediate language models the code

such as in Figure 3 output by our compiler. Next, a program in the
intermediate language is evaluated to a circuit that can be executed
in the distributed runtime later. The evaluation to a circuit computes
away the public parts of the program and also flattens the arrays so
that the circuits are unaware of the array structure. Crucially, this
phase of the semantics does not have access to the secret inputs.
Below, we first provide the language for the circuits followed by
the evaluation rules.
Evaluation to Circuits. Figure 8 shows the syntax of circuits.
A wire id range w denotes a set of circuit wires that carry the
runtime value of a variable with a secret label (we will concretely
define these runtime values later as part of the circuit semantics).
Circuit gates g are wires w, input gates inj’.”, multiplication gates
mult, comparison gates gt, and multiplexer mux gates, coerce gates
(€>my), and constants. Sub-circuits v (generated from e) then consist
of gates and arrays of gates. A circuit y is either empty, bind-ing
of a circuit gate g to wire w, out gate, or a sequence of circuits.

[preus| [prsbpux]
S-READ
S-PMuLT prxl [wiln
S-VAR Vie{l,2).pre;n; prelln n<m

prxlpx) prexpelnxn, prxle]llw,

S-SMurt S-SGt
Vie{,2}.pre g Vie{,2}.preilgi

prexaelmiltgi gy pre>gelgtgge

S-SConD S-COERCE
Vie{1,2,3).pre; g prelg

pre’ge :ealmuxgigegs pr{feomyel(f>m)g

S-PCoND
prele

c=T=e=¢ c=1l=e3=¢
preslo S-Inp

=~ = . = ~ = som | i.m
pre?pe el v prinj Ulnj

S-DectC

_ prelo S-DECLCKT _
(0=7¢)V(v=[ciln) prelg fresh w
prrx=elp,x—>2;- prrx=elp x> wbindgw
S-DECLCKTA

prelgiln S-Out
Vi € [n]. fresh w; prelyg

prrx=el p,x [wil,;bindg; w; proutel p;outg

S-Ir
prelc S-WRITECKT
c=T=>5=35 prxl[wiln prelm
c=1L>5=%§ ny<n freshw prelg
prslpux p1 = plx o ((Wiln[n — w])]

prif(e s, s) U pux prx[e]=2el pi;bindgw

Figure 9: Evaluation of Intermediate Language to Circuit

Figure 9 shows the judgments for the evaluation of the inter-
mediate language to a circuit. The circuit generation environment
maps variables to sub-circuits:

Circuit generation environment p == -|[p, x>0

We first focus on the expression evaluation judgment p + e ||
©. Rules (S-PMuLt) and (S-SMutr) illustrate the significance of
the operator labels. In particular, the rule (S-PMurT) evaluates a
public multiplication e; Xp € to ny X ng, similar to the source
semantics of Figure 5. In contrast, the rule (S-SMurT) evaluates
a secret multiplication €; X # €2 to an arithmetic multiplication
gate mult g1 g2. As mentioned above, the intermediate language
expressions generated by our compiler never have e; X g €3, as our
compiler is aware that X is more performant using an arithmetic
circuit compared to a boolean one [18]. Rules (S-PConD) and (S-
SConbD) are along similar lines. Rule (S-PConD) evaluates a public
conditional to the sub-circuit from one of the branches, while the
rule (S-SConD) evaluates to a multiplexer mux gate that takes as
input the sub-circuits from the guard (¢g;) and both the branches
(g2 and g3). Recall, for performance reasons, the expressions in
the intermediate language generated by our compiler do not have
e1 ?.# e2 : e3. Rules (S-CoEeRrcE) and (S-INp) evaluate to coerce and
input gates respectively.

Statement evaluation p + 5 |} p1; y evaluates a statement s under

the environment p to produce a new environment p1, and a circuit
x- Rules (S-DecLC), (S-DEcLCKT), and (S-DECLCKTA) show the
variable declaration cases. Rule (S-DecLC) shows the case when ¢
evaluates to v, where v is either a constant or an array of constants.
In this case, the mapping x +— v is added to the environment, and
the resulting circuit is empty. When ¢ evaluates to a sub-circuit g,
rule (S-DEcLCKT) picks a fresh wire w, adds the mapping x - w
to the environment p, and outputs the circuit bind g w. The rule
(S-DECLCKTA) is analogous for e evaluating to an array of sub-
circuits. The variable assignment rules (not shown in the figure)
are similar. The rule (S-WRITECKT) shows the case for writing to
an array, where the array contents are secret. Finally, rule (S-OuT)
compiles to an out circuit.
Circuit semantics. Evaluating a program in the intermediate lan-
guage produces a circuit to be computed using a distributed 2PC
protocol. With our circuit semantics, we model the functional as-
pect of a 2PC protocol, parametrized by cryptographic encoding
and decoding functions.

During the circuit evaluation, the wire ids w are mapped to (ran-
dom) strings b. The semantics of these strings is given by pairs
of encode-decode algorithms, written as &, and Dy, (where m is
either A or B). More concretely, Ep,(c) returns a pair of strings
(b1, b2) with the property that Dy, (b1, b2) = c. The string b; de-
notes the ji" party’s share of c. We assume that the underlying
2PC protocol instantiates &, and D, appropriately. For ABY pro-
tocol [18], algorithms (E #, D #) (resp. (Eg, Dg)) correspond to
the arithmetic (resp. boolean) secret-sharing and reconstruction
algorithms.

Figure 10 gives the judgments for evaluation of circuits by the
two parties using a 2PC protocol. The circuit environment is a map
from wires to shares:

Circuit environment p == -|p,wb

prparglbibe| | puprx PO
C-COERCE_
C-In P, P2+ gl by, by

(b1, bz) = Em(c)
p1, p2 inl" U by, by

(b1, b3) = Em(Dom, (b1, b2))
P P2 F(my>m) g | b, b

C-MuLt R
Vi e (1,2}. pr, pa+ gi U bii, b2i ny = Da(buy, bay)
(b1, b) = Ea(ny X nz)

p1, p2 Fmult gi gz U by, by

C-Gt o
Vie (1,2} p, p2+ gi U bii, bai ni = Dg(bui, bai)
(b1, by) = Eg(n1 > n2)

P p2rgtg1g2l by, by

C-Mux o
Vi€ {1,2,3}. pi, pa+ gi U bii, bai i = Dg(bii, bai)
(c1 =T) = ((b1, b)) = Eg(c2)) (e1 = 1) = ((by, b2) = Eg(c3))

P1. p3 Fmux g1 g2 g3 U by, by

C-Binp C-Our _
_ Pl,Pngﬂbl,ﬁz p1 P2+ gl by, by
P =pilw i bl py = pa[w > by ¢ =Dy(by, by)

P p2 Fbindgw U py, pys - p1, p2 Fout g |l pi, pasc

Figure 10: Circuit semantics in a distributed runtime

We use p; to denote the circuit environment for party j. We give

the judgments p1, p2 + g | b1, b2, and py, p2 + x U py, py; O, where
O are the observations (similar to source semantics). The former
judgment evaluates a gate under the environments p; and generates
shares b; of the gate’s output. Rule (C-IN) evaluates the input gate
inj'.", and creates the m-type shares of the value ¢ input by party j.
Rule (C-Mutrt) illustrates the pattern for evaluating circuit gates g.
To evaluate mult g; go, the rule first evaluates g; to (b11, b21) and
g2 to (bi2, ba2). Shares (b11, b21) are then combined using D 4 to
n1, and similarly (b12, bpp) are combined to ny. The final output of
the mult gate is then & #(n1 X n2). Note that this is a functional
description of how the mult gate evaluates, of course, concretely nq
and ny are not observed by the parties. Rule (C-COERCE) creates the
new shares using &, (the corresponding rule for coercion from $
is similar). The evaluation of bind updates the mapping of w in the
input environments, and the rule (C-OuT) outputs the clear value ¢
to the observations.
Correctness Theorem. We prove that all well typed programs
always terminate successfully (array indices are always in bounds,
there are no unbounded loops, etc.) and the 2PC protocol produces
the same outputs as the source program. That is, if a source state-
ment s is well-typed, and compiles to s in the intermediate language,
then s terminates in the source semantics with observations O, s
evaluates to circuit y, and y terminates in the circuit semantics
with the same observations O. Formally, the correctness theorem
is as follows (the environments on the left of +- are empty and we
elide the environments on the right of + for brevity):

THEOREM 4.1 (CORRECTNESS). Y's,5, if F s ~> s | _ then 30, y,
strsl 0, ksl sy, andr x| _,_;0.

We prove the theorem in Appendix C.
Security theorem. The protocols we generate provide simulation-
based security against a semi-honest adversary, in the framework
of [12, 13, 23] and provide provable security against all side-channel
attacks. At a very high level, in this framework, parties are modeled

as non-uniform interactive Turing machines (ITMs), with inputs
provided by an environment Z. An adversary A, selects and “cor-
rupts” one of the parties - however, A still follows the protocol
specification. A interacts with Z that observes the view of the
corrupted party. At the end of the interaction, Z outputs a single
bit based on the output of the honest party and the view of the
adversary. Two different interactions are defined: the real world and
an ideal world. In the real interaction, the parties run the protocol
I in the presence of A and Z. Let REAL 4 7 denote the distribu-
tion ensemble describing Z’s output in this interaction. In the ideal
interaction, parties send their inputs to a trusted functionality that
performs the desired computation truthfully. Let S (the simulator)
denote the adversary in this ideal execution, and IDEAL# g 7 the
distribution ensemble describing Z’s output after interacting with
the ideal adversary S. A protocol IT is said to securely realize a func-
tionality ¥ if for every adversary A in the real interaction, there is
an adversary S in the ideal interaction, such that no environment
Z, on any input, can tell the real interaction apart from the ideal
interaction, except with negligible probability (in the security pa-
rameter x). More precisely, the above two distribution ensembles
are computationally indistinguishable.

We shall assume a cryptographic 2PC backend that securely im-
plements any circuit y that is output by our compiler (see Figure 8).
This means that for any well-typed source program s, let y be the
circuit generated as in Theorem 4.1. We assume that there exists
a 2PC protocol IT that securely realizes the functionality y and let
Sapc be the corresponding simulator (that runs on y, input of the
corrupt party and the output obtained from trusted functionality for
x). We note that ABY [18] provides such a protocol IT and simulator
Sape for all circuits y output in our framework. We now state and
prove our security theorem.

THEOREM 4.2 (SECURITY). Let s be a well typed program in our
source language that generates a circuit y (as defined in Theorem
4.1). Let protocol II be the two-party secure computation protocol that
securely realizes y (as defined above). Then, I1 securely realizes s.

Proof. Our simulator S simply runs our compiler on program s
to obtain y. It is crucial that this compilation to circuits does not
require the secret inputs of the parties. Next, S sends the input of
the corrupt party to the trusted functionality of s to obtain outputs
0O1. Note that O; is same as the observations in the source seman-
tics. By Theorem 4.1, these outputs O; are identical to outputs (or
observations) Oz of y under circuit semantics. Next, S runs Szp¢
on y, input of the corrupt party and Oz. From the security of II, we
have that the simulated view output by Sz is indistinguishable
from the real view. Hence, the security follows.

5 SECURE CODE PARTITIONING

In this section, we describe our “secure code partitioning” tech-
nique that allows EzPC to execute programs that require large
circuits. Our techniques take inspiration from the idea of pipelining
Yao’s garbled circuits described in FastGC [30]. However, unlike
FastGC, we do not operate at a circuit level and partitioning is
independent of the specific 2PC protocol. Let s be a program in
our source language that generates a circuit y. For some programs,

the circuit y can be larger than the memory size® and fail to exe-
cute. Partitioning enables us to execute such programs via a source
to source transformation that is oblivious to the underlying 2PC
backend. Partitioning decomposes the program s into a sequence of
smaller EzZPC programs t1, to, . . ., t} (as defined below) such that
the circuit size requirement for each of the ¢; itself is manageable.
We compile and execute each ¢; sequentially, feeding the outputs of
t; as state information to t;+1. We prove our partitioning scheme to
be correct (s and sequential execution of t1, t3, . . ., fx compute the
same functionality) and secure (sequential execution of 1, to, . . ., tg
does not reveal any more information than s). More formal details
follow, while an example illustrating the technique of secure code
partitioning is provided in Appendix A.

Let s be a program that takes (secret) inputs x from Alice and y
from Bob and produces an output z to both parties. Let s1][s2]] . . . ||sg
be a decomposition of s such that the following holds. Define g = L
(the public empty state). For all 1 < i < k — 1, s; takes inputs x, y
and q;—1 and outputs state g;. Finally, s; takes inputs x, y and qz_;
to output z. It is possible to decompose any program s into such
sills2ll ... |Isg. If EzZPC generates circuit y; from s;, the parties can
execute y1, 2, - .. Xk sequentially (in a distributed setting) to ob-
tain q1, . . ., qk_1, and finally output z. At the i* step, the parties
only need to store information proportional to x,y,q;—1 and y;
(which is much smaller than y). However, this execution enables
the parties to learn g; (for all 1 < i < k — 1), which completely
breaks the security.

To overcome this problem, we define a sequence of new programs
t; (1 < i < k) as follows. Once again, define go = L. Without loss
of generality, let all g; be values in some additive ring (Z, +) (e.g.,
the additive ring (Zys4, +), i.e., the additive ring of integers modulo
204). Let ry,- -+, r_q be a sequence of random values sampled from
the same ring (Z, +) by Alice (in our implementation, all r; values
are generated by a pseudorandom function). Let t; be the program
that takes as input x, r1 from Alice and y from Bob (and empty state
qo), and runs s; (as defined above) to compute g; and then outputs
01 =q1+ryonlyto Bob’. Alice’s output from tq is r1. Next, every t;
(2 <i £ k—1) takes as inputs x, rj_1, r; from Alice and y, 0;—1 from
Bob, runs s; on inputs x, y and state q;—1 = (0;—1 — ri—1) (Where —
denotes subtraction in the ring (Z, +)) and then outputs g; + r; to
Bob and r; to Alice. The last program ¢ takes inputs x, y, .1, 0g_1,
runs sg on inputs x, y and state qx_; = (0x_1 — rx—1) and outputs
z to both parties. Although we have used arithmetic sharing here,
Boolean sharing can be used to achieve the same effect.

Thus, given a decomposition of s into s1||sz2|| . . . ||sx, we can use
the construction above to generate programs t1, t2, . . ., t, that can
be sequentially executed, using the unmodified underlying 2PC
backend. We prove the following theorem for code partitioning:

THEOREM 5.1 (CORRECTNESS AND SECURITY OF PARTITIONING).
Ifsilisall .. . sk is a decomposition of a program s, then there exists
a sequence of programs ti,ta, ..., ty and protocols I11, Iz, ..., I}

®In fact, there is an upper limit of 22 — 1 gates for the circuit size in ABY but for most
machines the memory limit is hit first.

"While the description of the scheme here assumes that the underlying backend
supports only one party receiving output, this is only a simplifying assumption, and
we can easily modify our protocol in the case where both parties must receive the
same output.

such that for all i, I1; securely realizes t; and I1 = 111,11y, ..., IIg
securely realizes s.

Proof. Let t1, . . ., t;. be the sequence of programs as defined above
corresponding to the decomposition s = s1||s2]| . . . ||sg. For every
1 < i < k,letII; be the 2PC protocol output by our framework for ;.
Our construction for programs ¢; ensures that if s is well-typed, then
for each 1 < i < k, t; is well-typed. By Theorem 4.2, I1;, the 2PC
protocol that evaluates the circuit generated by t;, securely realizes
t;. That is, for every 1 < i < k — 1, the II; provides observations
ri to Alice and o; to Bob. Protocol IT; provides observation z to
both Alice and Bob. Finally, since r; and 0; (1 < i < k — 1) are
individually uniformly random (in (Z, +), outputs received by the
adversary can be simulated given the final output z.

Implementing code partitioning. We use partitioning for pro-
grams that require large circuits. Specifically, we first decompose

the program s into a sequence of small programs s1|| .. . ||sg. And
then, EzPC generates sequence of programs t1,. ..t automati-
cally. We then compile and execute the k programs t1, ta, .. ., f§

sequentially, freeing up memory usage after execution of each t;.
Automating the decomposition step requires an analysis that can
statically estimate the resource usage of a EzZPC program. Resource
analysis of high-level programs is a well-known hard problem [28]
and we describe a heuristic analysis.

To build s1, we consider the longest prefix of s whose compu-
tation size is below the threshold enforced by the available mem-
ory of the machine. If s = s;;s, then we recurse on s, to obtain
$2,...,Sk. For a program u, to estimate size(u), we need to dis-
cuss three important cases: if u = uy; uy then size(u) = size(up) +
size(uz); ifu = if(e1, u1, uz) then size(u) = max(size(uy), size(uz));
if s = for i in [ny,n2] do u;y then size(u) = (n2 — ny)size(u). If
(n2 — ny)size(up) is above the threshold then we replace u by

ni +ny . ni + np
Jdoug;foriin|

foriin [ny, ,n2] doug
and recurse to find the prefix again. This heuristic analysis is suffi-
cient for the benchmarks discussed in our evaluation.

6 IMPLEMENTATION

We discuss some implementation details of EzZPC. The EzPC com-
piler is written in Python and compiles each of our benchmarks in
under a second to C++ code that makes calls to the ABY library [18].
ABY provides support for Arithmetic computations based on [34],
and boolean computations based on GMW [23] as well as Yao’s
garbled circuits [58]. Although EzPC can generate code for both
kinds of boolean computations, we have observed better perfor-
mance when using garbled circuits and use it in our evaluation.
Hence, EzPC generated code uses Arithmetic computations and
garbled circuits based boolean computations. We use 128 bits of
security and OT extension-based arithmetic multiplication triplets
generation. ABY provides multi-threading support (for the offline
phase of the 2PC protocol); we leverage the support and use at most
four threads in our evaluation.

EzPC programs can have the following operators: addition, sub-
traction, multiplication, division by powers of two, left shift, logical
and arithmetic right shifts, bitwise-(and, or, xor), unary negation,
bitwise-negation, logical-(not, and, or, xor), and comparisons (less
than, greater than, equality). Because of their high cost, integral

division and floating-point operators are not supported natively by
EzPC. However, we have implemented integral division in 30 lines
of EzPC, while the floating-point support in ABY is under active
development [17].

Some of our benchmarks require accessing arrays at secret in-
dices. While EzPC enforces the array indices to be public, secret
indices can be encoded in EzPC using multiplexers. For example,
consider the expression A[x] where A is an array of size 2 and x is
secret-shared. The developer can express this functionality in EzZPC
asx > 0? A[1] : A[0]. In general, a secret access to an array of size
n requires n — 1 multiplexers in EzPC.

We use an off-the-shelf solver (SeaHorn [26]) to check that the
array indices are within bounds (= e < nin (T-Reap) and (T-WRITE),
Figure 7). We take the EzPC source program and translate it as an
input C program to the solver. The solver takes less than a minute
on our largest benchmark to verify that all the array accesses are in-
bounds. This C program also enables validation of EzZPC generated
protocols via differential testing [42, 46].

Our implementation assigns the type labels (rule T-DEcL) con-
servatively. Only the variables that govern the control flow, i.e.,
variables in if-conditions and for-loop counters are assigned pub-
lic labels. All other variables are assigned arithmetic labels (that
can later be coerced to boolean). We leave a more sophisticated
type inference procedure for future work.

The compilation rules of Figure 7 can introduce repeated co-
ercions from arithmetic to boolean and vice versa. Since EzPC is
aware of the cryptographic costs associated with these coercions,
it tries to minimize them using several optimizations, e.g., by the
standard “common subexpression elimination" optimization [2]. On
each coercion, EZPC memorizes the pair of arithmetic share and
boolean share involved in the coercion. EzPC invalidates such pairs
when the variables corresponding to the shares are overwritten
by assignments. In subsequent coercions, EzPC reuses valid pairs
(if available) instead of inserting code to recompute them afresh.
These optimizations are standard compiler optimizations [2], and
we rely on their correctness (optimizations preserve outputs and
well-typedness) to maintain the security of the optimized programs.

7 EVALUATION

We evaluate EzPC on a variety of problems that can fall under
the umbrella of secure prediction, where one party (the server) has
a machine learning model, and the other party (the client) has an
input. The goal is to compute the output of the model on client’s
input, with the guarantee that the server learns nothing about the
input, and the client learns nothing about the model beyond what
is revealed from the output.

To begin, we first implement the benchmarks from Bost et al. [9]
and MINIONN [40] (both of which study the same setting), and
show that the performance of the high-level code written in EzPC is
comparable to their hand-crafted protocols. Next, we demonstrate
the generality and programmability aspects of EzZPC by implement-
ing state-of-the-art machine learning models from Tensorflow [1]
and Bonsar [36]. Indeed, we provide the first 2PC implementation
of Bonsar. We implement a Deep Neural Network (DNN) for CIFAR-
10 dataset [35] from MINIONN [40] and matrix factorization [48]
to evaluate partitioning.

Prev | Prev
Dataset d | time | comm LAN | WAN | Comm | Num LOC
) | ®B) (s) (s) (KB) | gates
Breast cancer | 30 | 0.3 36 0.1 0.3 25 727 20
Credit 47| 0.3 41 0.1 0.3 36 795 20

Table 1: Linear classification results. We compare EzPC
(LAN, WAN, Comm) with [9] (Prev time, Prev comm).

Prev | Prev
Dataset | n | F | time | comm L(I:)N V{?)N (i;[‘%‘)n I;::; LOC
(s) | (MB)
Nursery | 5| 9| 15 0.2 0.1 0.4 0.6 73k 50
Audiology | 24 |70 | 3.9 2.0 1.5 2.9 37 4219k | 50

Table 2: Naive Bayes results. We compare EzPC (LAN, WAN,
Comm) with [9] (Prev time, Prev comm).

Prev | Prev
Dataset | d | N | time | comm LAN | WAN | Comm | Num LOC
) (KB) (s) (s) (KB) | gates
Nursery | 4 | 4 0.3 102 0.1 0.3 32 3324 20
ECG 41| 6 0.4 102 0.1 0.4 49 5002 20

Table 3: Decision tree benchmarks.We compare EzPC (LAN,
WAN, Comm) with [56] (Prev time, Prev comm).

We present the numbers for two network settings, a LAN setting
and a cross-continent WAN setting. The round trip time between
the server and the client machines in the two settings is 1ms and
40ms respectively. Each machine has an Intel(R) Xeon(R) CPU E5-
2673 v3 processor running at 2.40GHz with 28 GBs of RAM. When
we compare our execution times with prior protocols, we match
our system and network parameters with those of the prior work
(as the code for works such as Bost et al. [9] and MINTONN [40]
are not publicly available). Most of our benchmarks are related to
machine learning and we set up (largely standard) notation and
describe our benchmarks in Appendix B.

7.1 Secure prediction

Standard classifiers. We evaluate the three standard classifiers,
linear, Naive Bayes, and decision trees, from [9] on the following
data sets from the UCI machine learning repository [38]: the Wis-
consin Breast Cancer data set, Credit Approval data set, Audiology
(Standardized) data set, Nursery data set, and ECG (electrocardio-
gram) classification data from [3].

The results for linear classification are in Table 1. The input and
the model are both vectors of length d. The columns “Prev. time” and
“Prev. comm” show the time and the total network communication
reported by Bost et al. [9] for a network setting with 40ms round
trip time, which is same as our WAN setting. The total execution
time of EzZPC generated code in the LAN and the WAN setting is
reported next, followed by the total communication. We observe
that the EzPC code performance matches the hand-crafted protocol
of Bost et al.,, and the programmer effort in EzPC is just 20 lines
(last column in the table) of high-level code in the EzPC source
language.

The results for Naive Bayes are in Table 2. As before, n denotes
the number of classes and F is the number of features. As before, we
compare with Bost et al. [9] and observe that EzZPC generated code

10

Prev | Prev
DNN time | comm LAN | WAN | Comm | Num Mf)del LOC
©) | (MB) (s) (s) (MB) | gates | size
SecureML | 1.1 15.8 0.7 1.7 76 366k | 119k 78
Cryptonets | 1.3 47.6 0.6 1.6 70 316k 86k 88
CNN 9.4 | 657.5 5.1 11.6 501 9480k | 35k 154

Table 4: DNN benchmarks. We compare EzPC (LAN, WAN,
Comm) with [40] (Prev time, Prev comm).

has better performance, despite using a generic 2PC, as opposed
to custom designed protocols developed by Bost et al. Moreover,
they remark that in their setup, generic Yao-based 2PC did not
scale to the smallest of their Naive Bayes classifiers, so they had to
scale down the prediction task, and even then Yao-based 2PC was
500x slower. Whereas, we show that by using a cryptographic-cost
aware compiler, we can scale generic 2PC to real prediction tasks,
and get performance competitive to or better than the specialized
protocols. Table 3 compares against the more recent work of [56]
on decision trees and further validates this claim.

Deep neural nets. We evaluate EzZPC on the DNNs described in
SecureML [44], Cryptonets [22], and the CNN from MINIONN [40].
For comparison, we consider their implementations from MIN-
IONN [40], which outperforms their previous implementations. Ta-
ble 4 shows the results®. We note that for each of these DNNs, MiN-
1IONN provides a specialized protocol, while EzPC uses a generic
2PC protocol (auto) generated from high-level code.

The first benchmark is the DNN described in SecureML [44]
(Figure 10 in [40]). It has three fully connected layers with square
as the activation function. Next, we implement the DNN described
in Cryptonets [22] (Figure 11 in [40]) in EzPC. This DNN also
uses square as the activation function and has one convolution
(with 5 output channels) and one fully connected layer. Finally,
we implement CNN from MINIONN (Figure 12 in [40]), that has
two convolutions (with 16 output channels each) and two fully
connected layers. In contrast to the previous two DNNS, it uses
ReLU for activation and has significantly higher number of boolean-
and gates. Note that square activation can be implemented entirely
using arithmetic gates but ReLU requires boolean-and gates. For a
complete description of these benchmarks and their accuracies, we
refer the reader to the original references.

In Table 4, the column “Model size” is the number of parameters
in the trained model. We observe that our performance is compet-
itive with specialized MINIONN protocols, for both the LAN and
the WAN settings. Further, lines of EzPC source code required is
still small. We note that while the MINIONN implementation is
based on the ABY framework, it does not use ABY “off-the-shelf”
and performs application-specific optimizations. In contrast, EzZPC
focuses on generic 2PC and directly exploits the existing perfor-
mant implementations in ABY. MINIONN also reports performance
results on a bigger DNN with 7 convolution layers. In EzPC, this
benchmark requires partitioning and we discuss it in Section 7.2.
State-of-the-art classifiers. Tensorflow [1] is a standard machine
learning toolkit. Its introductory tutorial describes two predic-
tion models for handwritten digit recognition using the MNIST
dataset [37]. Each image in this dataset is a greyscale 28 X 28 im-
age of digits 0 to 9. The first model that the tutorial describes is a

8MINIONN does not report the network round-trip time nor the bit-length of their
inputs (we use 32-bit inputs).

Classifi LAN | WAN | Comm | Num | Num | Num | Model LOC
assther (s) (s) (MB) | And | Mul | gates | size
Regression | 0.1 | 0.7 5 2k 8k 35k 8k 38
CNN 30.5 | 60.3 2955 | 6082k | 4163k | 42104k | 3226k | 172
Table 5: Tensorflow tutorial benchmarks
LAN | WAN | Comm | Num | Num | Num
Dataset ©) ©) (MB) | And | Mul | gates depth | LOC
Chars4k | 0.1 0.7 2 18k 3k 85k 1 89
USPS 0.2 0.9 4 62k 2k 285k 2 156
WARD 0.3 1.1 9 106k 8k 506k 3 283

Table 6: Bonsai benchmarks

softmax regression that provides an accuracy of 92%. The classifier
evaluates argmax W - x + b. Here, x is a 784 length vector obtained
from the input image, W is a 10 X 784 matrix, and b is a 10 length
vector. We implement this classifier in EzZPC and present the results
in the first row of Table 5.

The next classifier in the Tensorflow tutorial is a convolution
neural net with two convolutions (with 32 output channels) and two
fully connected layers with ReLU as the activation function. This
DNN is both bigger and more accurate than the DNNs presented in
the previous section. In particular, it has an accuracy of 99.2%. Since,
we are not aware of any other tools that have used this model as a
benchmark, we only report numbers for EzZPC. We observe that this
DNN can take a minute per prediction in the WAN setting and is
the largest benchmark that we have evaluated without partitioning.

We next present Bonsar [36] results on three standard datasets:
character recognition (Chars4k [16], accuracy 74.71%), text recogni-
tion (USPS [32], accuracy 94.4%), and object categorization (WARD
[57], accuracy 95.7%). We implement the trained classifiers in EzZPC
for all the benchmarks from [36], and show the representative re-
sults in Table 6. Out of all the benchmarks from [36], the dataset
WARD requires the largest model. The column “depth” shows the
depth of the tree used by Bonsar. The size of EzZPC program grows
with the depth of the tree, as the straightforward EzPC implemen-
tation requires a loop for each layer of the tree®.

To summarize, by providing first 2PC implementations of state-
of-the-art classifiers, we have demonstrated the expressiveness of
EzPC. We discuss scalability next.

7.2 Secure code partitioning

The largest benchmark of MINIONN [40] is a DNN for CIFAR-10
dataset [35]. The classifier’s task is to categorize colored (32 X 32)
images into 10 classes. A secure evaluation of this DNN needs more
memory than what is available on our machines. Therefore, we
use partitioning and divide the computation into seven stages. The
first step does a convolution with 64 output channels and a ReLU
activation. The next four stages together perform a convolution
that involves multiplying a 64 X 576 matrix with a 576 X 1024 matrix.
The sixth stage performs a ReLU and a convolution. The final stage
has four convolutions, five ReLUs, and a fully connected layer. The
total number of lines of EzPC code for this benchmark is 336 lines.

9We remark here that our current language does not support functions (which we
leave for future work) and with this support, LOC would be lower and independent of
depth.

11

Comm Num Num Num

LAN(s) WAN (5) (MB) And Mul gates

Total 265.6 647.5 40683 21m 61m 337m
Stage 6 55.2 122.6 6744 12m 10m 98m

Table 7: Partitioning results for CIFAR-10. MINIONN takes
544 seconds and communicates 9272 Mb.

Comm Num
Stage | LAN(s) | WAN(s) (MB) depth gates LOC
1 175 662 29816 16370 33m 500
2 193 1095 31945 30916 37m 516
3 178 627 29810 16369 32m 478
Total 546 2384 91571 = 102m 1494

Table 8: Partitioning results for matrix factorization. The
time reported by [48] for this computation is 10440 seconds.

200

150

Time (s)
[y
o
o

1 2 3 4 5 6 7 8 9
Layers in DNN

10

®No partitioning With partitioning

Figure 11: Comparison of EzZPC code with and without par-
titioning. x-axis denotes the number of layers in the DNN,
while y-axis denotes time in seconds for the secure protocol.

Table 7 shows the end-to-end numbers as well as the numbers
for the sixth stage, which is the heaviest. The number of gates
are in millions, hence the suffix ‘m’ in the last three columns. As
with Table 4, EzZPC generated generic 2PC protocol is competitive
with MINIONN here as well. Therefore, we believe that with parti-
tioning, EzZPC can scale to large computations while maintaining
performance competitive with existing specialized protocols. In
particular, for a large enough DNN, MINIONN could run out of
memory but an appropriately partitioned EzZPC implementation
would still succeed.

Scalability. To illustrate the scalability of partitioning, we evaluate
a sequence of DNNs with and without partitioning in Figure 11.
All layers are identical and partitioning places each layer in a sep-
arate stage. For DNNs with up to 4 layers, the performance, with
and without partitioning, is almost identical and the lines overlap,
thereby illustrating that partitioning does not cause any noticeable
performance overheads. Memory issues start showing up in the
non-partitioned implementation of the 5 layer DNN and it is slower.
Performance degrades rapidly thereafter and DNNs with 6 or more
layers fail to execute (terminate with a “bus error"). However, the
partitioned implementation scales well to even these large DNNs.

7.3 Matrix factorization

EzPC is not tied to secure prediction and can express more gen-
eral computations. To demonstrate this expressiveness, we imple-
ment secure matrix factorization [48]. Abstractly, given a sparse
matrix M of dimensions n X m and M non-zero entries, the goal
is to generate a matrix U of dimension n X d and a matrix V of
dimension d X m such that M ~ UV. This operator is useful in
recommender systems. In particular, Nikolaenko et al. [48] shows
how to implement a movie recommender system which does not
require users to reveal their data in the clear, i.e., the ratings the
users have assigned to movies are kept secret. The implementation
is a two party computation of an iterative algorithm for matrix fac-
torization (Algorithm 1 in [48]). This algorithm is based on gradient
descent and iteratively converges to a local minima. We implement
this algorithm in EzPC.

To ensure that the algorithm converges to the right local minima,
Nikolaenko et al. require 36 bits of precision. Since ABY supports
either 32-bit or 64-bit integers, our EzZPC implementation manipu-
lates 64-bit variables. For the matrix M of user data, Nikolaenko
et al. consider n = 940 users, m = 40 most popular movies, and
M = 14683 ratings from the MovieLens dataset. The time reported
in [48] for one iteration is 2.9 hours!. This computation is large
enough that we partition each iteration into three stages. The first
stage involves a Batcher [4] sorting network followed by a linear
pass. The second stage involves sorting and gradient computations
and is the heaviest stage. The third stage is similar to the first stage.
The results are presented in Table 8. These circuits have a large
depth (column “depth"); the circuits for secure prediction had depth
below 100.

We observe that in the LAN setting, we are about 19 times faster
than [48] and in the WAN setting we are about 4 times faster. The
main source of these significant speedups is that, unlike [48], EzPC
does not need to convert the functionality into boolean circuits.
However, this benchmark requires more lines of code than the
previous benchmarks because of Batcher’s sort (450 lines of EzPC
code in each stage). However, the current programmer effort seems
minuscule compared to the mammoth implementation effort put in
by Nikolaenko et al. (Section 5 of [48]) to scale a boolean circuits
based backend to this benchmark.

7.4 Subsequent Work

Subsequent to our work, Juvekar et al. [33] have presented
GAZELLE, a specialized protocol for DNNs. GAZELLE use a lattice-
based packed additively homomorphic encryption scheme (PAHE)
for arithmetic computations and garbled circuits for boolean com-
putations. GAZELLE can evaluate the CNN benchmark of Table 4 in
0.8 seconds, as opposed to 5.1 seconds taken by EzPC with the ABY
backend. Such advances in cryptographic backends are orthogonal
to our contributions. In particular, once GAZELLE is available, we
could add it as another cryptographic backend to EzPC. Further-
more, the authors of GAZELLE remark: “A final, very interesting and
ambitious line of work would be to build a compiler that allows us
to easily express arbitrary computations and automatically factor
the computation into PAHE and two-party primitives” - the exact
problem that EzPC solves.

10 [48] does not report the network round-trip time.

12

8 RELATED WORK

EzPC falls into the category of frameworks that compile high
level languages to 2PC protocols. We discuss other such frameworks
next. Fairplay’s Secure Function Definition Language (SFDL) [5,
41] and CBMC-GC [29] compile C or Pascal like programs into
boolean circuits that are then evaluated using garbled circuits [58].
ObliVM [39] protects access patterns using an oblivious RAM [24,
50] and also uses garbled circuits for compute. In Secure Multi-
party Computation Language (SMCL) [47], Java like programs are
compiled into arithmetic circuits that are then evaluated using
the VIFF framework [15]. Wysteria [51] enables programmers to
write n-party mixed-mode programs that combine local, per-party
computations with secure computations. It compiles secure compu-
tations to boolean circuits and uses a GMW-based backend [14, 23].
Mitchell et al. [43] allow the user to select between Shamir’s se-
cret sharing [20] and fully homomorphic encryption [21]. Unlike
EzPC, all these tools use either an arithmetic backend or a boolean
backend but not a combination of both.

Next, we discuss tools that expose libraries which developers can
use to describe 2PC protocols. To generate efficient protocols for
a functionality, the programmer must break the functionality into
components and call the appropriate library functions. For example,
ABY [18] falls in this category. The TASTY tool [27] allows mix-
ing homomorphic encryption based arithmetic computations and
garbled circuits based boolean computations and the interconver-
sions between the two are inserted by the programmer explicitly.
The work of Kerschbaum et al. [34] provides a scheme to auto-
matically assign homomorphic encryption or garbled circuits to
each operator in a computation that is expressed as a sequence of
dyadic operations. They conjecture that the problem is NP hard
and gave a linear programming based solution and a quadratic
time greedy heuristic. These techniques are not directly applicable
to EzPC programs because of for-loops and if-conditions. How-
ever, we are exploring if these ideas can be extended to yield better
type inference. Other examples include the VIFF framework [15] for
arithmetic computations and Sharemind [8] (secure 3-party boolean
computation).

2PC backends have made tremendous progress in the last decade.
For example, the circuits can be optimized for depth [11, 17], large
garbled circuits can be pipelined [30, 39], online complexity can
be reduced at the cost of offline complexity [25], encrypted values
output from a garbled circuit can be reused [45] and oblivious
RAM [24, 50] can be used to hide access patterns of MIPS code [55].
Incorporating these backends would only improve the performance
and scalability of EzPC implementations.

Many works have designed specialized protocols for various
2PC tasks. This requires deep knowledge of cryptography to ensure
security. Examples include [3, 6, 9, 10, 19, 31, 40, 44, 48, 49, 56].

9 CONCLUSION AND FUTURE WORK

We presented EzPC, the first cryptographic-cost aware frame-
work that generates efficient and scalable 2PC protocols from high-
level programs. The generated protocols comprise combinations
of arithmetic and boolean circuits and have performance compa-
rable to, or better than the previously known custom specialized

protocols from previous works. The compiler is backed by formal
semantics that help it maintain correctness, security, and efficiency.

Currently, we are working on a front-end to translate Tensorflow
code to EzPC. The aim here is to provide a push button implementa-
tion that generates secure implementations for existing Tensorflow
models. In the future, we would like to extend our security guaran-
tees to malicious adversaries. The cryptographic backends continue
to improve and the modular design of EzZPC makes it easy to inte-
grate with the best available backends. However, we are currently
unaware of a maliciously secure 2PC implementation for combina-
tions of arithmetic and boolean circuits. Finally, we will explore the
possibility of mechanically verifying the compiler implementation.

REFERENCES

(1]

[10]

(11

[12]

[13]

[15]

ABADI, M., AGARWAL, A., BARHAM, P., BREVDO, E., CHEN, Z., CITRO, C., CORRADO,
G. S.,Davrs, A, DEAN, J., DEVIN, M., GHEMAWAT, S., GOODFELLOW, L. J., HARP, A.,
IRVING, G., ISARD, M., J14, Y., JOZEFOWICZ, R., KAISER, L., KUDLUR, M., LEVENBERG,
J., MANE, D., MoNGa, R., MOORE, S., MURRAY, D. G., OLAH, C., SCHUSTER, M.,
SHLENS,]., STEINER, B., SUTSKEVER, L., TALWAR, K., TUCKER, P. A., VANHOUCKE,
V., VASUDEVAN, V., VitGas, F. B,, VinvaLs, O., WARDEN, P., WATTENBERG, M.,
WICKE, M., YU, Y., AND ZHENG, X. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. CoRR abs/1603.04467 (2016).

Amno, A. V., Lam, M. S., SETHI, R, AND ULLMAN, J. D. Compilers: Principles,
Techniques, and Tools (2Nd Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2006.

BARNI, M., FAILLA, P., KOLESNIKOV, V., LAZZERETTI, R., SADEGHI, A., AND SCHNEI-
DER, T. Secure evaluation of private linear branching programs with medical
applications. In Computer Security - ESORICS 2009, 14th European Symposium on
Research in Computer Security, Saint-Malo, France, September 21-23, 2009. Proceed-
ings (2009), pp. 424-439.

BATCHER, K. E. Sorting networks and their applications. In Proceedings of the
April 30-May 2, 1968, Spring Joint Computer Conference (1968), AFIPS 68 (Spring),
pp. 307-314.

BEN-DAVID, A., N1sAN, N., AND PINKkas, B. Fairplaymp: a system for secure multi-
party computation. In Proceedings of the 2008 ACM Conference on Computer and
Communications Security, CCS 2008, Alexandria, Virginia, USA, October 27-31,
2008 (2008), pp. 257-266.

BLANTON, M., AND GASTI, P. Secure and efficient protocols for iris and fingerprint
identification. In Computer Security - ESORICS 2011 - 16th European Symposium on
Research in Computer Security, Leuven, Belgium, September 12-14, 2011. Proceedings
(2011), pp. 190-209.

BoGpanov, D., LAuD, P., AND RANDMETS, J. Domain-polymorphic language
for privacy-preserving applications. In Proceedings of the First ACM Workshop
on Language Support for Privacy-enhancing Technologies (2013), PETShop ’13,
pp- 23-26.

BocpaNov, D., LAUR, S., AND WILLEMSON, J. Sharemind: A framework for fast
privacy-preserving computations. In Computer Security - ESORICS 2008, 13th
European Symposium on Research in Computer Security, Malaga, Spain, October
6-8, 2008. Proceedings (2008), pp. 192-206.

BosT, R, Popa, R. A, Tu, S., AND GOLDWASSER, S. Machine learning classification
over encrypted data. In 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015 (2015).
BRICKELL, J., PORTER, D. E., SHMATIKOV, V., AND WITCHEL, E. Privacy-preserving
remote diagnostics. In Proceedings of the 14th ACM Conference on Computer and
Communications Security (2007), CCS *07, pp. 498-507.

BUSCHER, N., HOLZER, A., WEBER, A., AND KATZENBEISSER, S. Compiling low
depth circuits for practical secure computation. In Computer Security - ESORICS
2016 - 21st European Symposium on Research in Computer Security, Heraklion,
Greece, September 26-30, 2016, Proceedings, Part II (2016), pp. 80-98.

CANETTI R. Security and composition of multiparty cryptographic protocols. 7.
Cryptology 13, 1 (2000), 143-202.

CANETTL R. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA (2001), pp. 136-145.

CHor, S. G, HwaNg, K., Karz, J., MALKIN, T., AND RUBENSTEIN, D. Secure multi-
party computation of boolean circuits with applications to privacy in on-line
marketplaces. In Topics in Cryptology - CT-RSA 2012 - The Cryptographers’ Track
at the RSA Conference 2012, San Francisco, CA, USA, February 27 - March 2, 2012.
Proceedings (2012), pp. 416-432.

DAMGARD, I, GEISLER, M., KROIGAARD, M., AND NIELSEN, J. B. Asynchronous
multiparty computation: Theory and implementation. In Public Key Cryptography
- PKC 2009, 12th International Conference on Practice and Theory in Public Key
Cryptography, Irvine, CA, USA, March 18-20, 2009. Proceedings (2009), pp. 160-179.

13

[16]

(17]

(18]

[20

[21]

[22]

(23]

[24]

[25]

[26]

[28

[29]

(30]

(31]

[32

[33

(34]

DE Camros, T. E., BABU, B. R., AND VARMA, M. Character recognition in natural
images. In VISAPP 2009 - Proceedings of the Fourth International Conference on
Computer Vision Theory and Applications, Lisboa, Portugal, February 5-8, 2009 -
Volume 2 (2009), pp. 273-280.

DEMMLER, D., DEssoUKY, G., KOUSHANFAR, F., SADEGHI, A., SCHNEIDER, T., AND
ZEITOUNL, S. Automated synthesis of optimized circuits for secure computation.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, October 12-6, 2015 (2015), pp. 1504-1517.
DEMMLER, D., SCHNEIDER, T., AND ZOHNER, M. ABY - A framework for efficient
mixed-protocol secure two-party computation. In 22nd Annual Network and
Distributed System Security Symposium, NDSS 2015, San Diego, California, USA,
February 8-11, 2015 (2015).

Franz, M., DEISEROTH, B., HAMACHER, K., JHA, S., KATZENBEISSER, S., AND
SCHRODER, H. Secure computations on non-integer values with applications
to privacy-preserving sequence analysis. Inf. Secur. Tech. Rep. 17, 3 (Feb. 2013),
117-128.

GENNARO, R., RABIN, M. O., AND RaBIN, T. Simplified VSS and fact-track multi-
party computations with applications to threshold cryptography. In Proceedings
of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 98, Puerto Vallarta, Mexico, June 28 - July 2, 1998 (1998), pp. 101-111.
GENTRY, C. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009 (2009), pp. 169-178.

GiLAD-BACHRACH, R., DowLIN, N., LAINE, K., LAUTER, K. E., NAEHRIG, M., AND
WERNSING, J. Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy. In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016 (2016),
pp. 201-210.

GoLDREICH, O., MICALL S., AND WIGDERSON, A. How to play any mental game
or A completeness theorem for protocols with honest majority. In Proceedings of
the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New
York, USA (1987), pp. 218-229.

GoLDREICH, O., AND OSTROVSKY, R. Software protection and simulation on
oblivious rams. J. ACM 43, 3 (1996), 431-473.

GROCE, A., LEDGER, A., MALOZEMOFF, A. J., AND YERUKHIMOVICH, A. Compgc:
Efficient offline/online semi-honest two-party computation. IACR Cryptology
ePrint Archive 2016 (2016), 458.

GURFINKEL, A., Kausal, T., KOMURAVELLI, A., AND Navas, J. A. The seahorn
verification framework. In Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
1(2015), pp. 343-361.

HEeNECkA, W.,, KOGL, S., SADEGHI, A., SCHNEIDER, T., AND WEHRENBERG, I. TASTY:
tool for automating secure two-party computations. In Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS 2010, Chicago,
Illinois, USA, October 4-8, 2010 (2010), pp. 451-462.

HOFFMANN, J., Das, A., AND WENG, S. Towards automatic resource bound
analysis for ocaml. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017 (2017), pp. 359-373.

HovzER, A., FRANZ, M., KATZENBEISSER, S., AND VEITH, H. Secure two-party com-
putations in ANSI C. In the ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012 (2012), pp. 772-783.
HuaNg, Y., Evans, D., KaTz, J., AND MALKA, L. Faster secure two-party compu-
tation using garbled circuits. In Proceedings of the 20th USENIX Conference on
Security (Berkeley, CA, USA, 2011), SEC’11, USENIX Association, pp. 35-35.
HUANG, Y., MALKA, L., Evans, D., AND KaTz, J. Efficient privacy-preserving
biometric identification. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2011, San Diego, California, USA, 6th February - 9th
February 2011 (2011).

HulL, J. J. A database for handwritten text recognition research. IEEE Trans.
Pattern Anal. Mach. Intell. 16, 5 (1994), 550-554.

JUVEKAR, C., VAIKUNTANATHAN, V., AND CHANDRAKASANI, A. GAZELLE: A low
latency framework for secure neural network inference. In USENIX Security 18
(2018).

KERSCHBAUM, F., SCHNEIDER, T., AND SCHROPFER, A. Automatic protocol selection
in secure two-party computations. In Applied Cryptography and Network Security
- 12th International Conference, ACNS 2014, Lausanne, Switzerland, June 10-13,
2014. Proceedings (2014), pp. 566—-584.

KRIZHEVSKY, A. Learning multiple layers of features from tiny images. Tech.
rep., 2009.

KuMAR, A., GOYAL, S., AND VARMA, M. Resource-efficient machine learning in
2 KB RAM for the internet of things. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017 (2017), pp. 1935-1944.

LECUN, Y., AND CorTEs, C. MNIST handwritten digit database.

LicamAN, M. UCI machine learning repository, 2013.

Liu, C., WANG, X. S., NaYaK, K., HUANG, Y., AND SHI, E. Oblivim: A programming

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

framework for secure computation. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015 (2015), pp. 359-376.

Liv,], JuuTt, M, Lu, Y., AND AsoKAN, N. Oblivious neural network predictions
via minionn transformations. In Proceedings of the 24th ACM Conference on
Computer and Communications Security, CCS 2017, Dallas, Texas, USA, October 30
- Nov 3, 2017 (2017).

MarLkHI, D., N1saN, N., PINKAs, B, AND SELLA, Y. Fairplay - secure two-party
computation system. In Proceedings of the 13th USENIX Security Symposium,
August 9-13, 2004, San Diego, CA, USA (2004), pp. 287-302.

McKEeemAN, W. M. Differential testing for software. Digital Technical Journal 10,
1(1998), 100-107.

MITCHELL, J. C., SHARMA, R., STEFAN, D., AND ZIMMERMAN, J. Information-flow
control for programming on encrypted data. In 25th IEEE Computer Security
Foundations Symposium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012 (2012),
pp. 45-60.

MOHASSEL, P., AND ZHANG, Y. Secureml: A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017 (2017), pp. 19-38.

Moonb, B., GuprTa, D., BUTLER, K. R. B., AND FEIGENBAUM,]. Reuse it or lose it:
More efficient secure computation through reuse of encrypted values. CoRR
abs/1506.02954 (2015).

Moop, B., GUPTA, D., CARTER, H., BUTLER, K. R. B., AND TRAYNOR, P. Frigate:
A validated, extensible, and efficient compiler and interpreter for secure com-
putation. In IEEE European Symposium on Security and Privacy, EuroS&P 2016,
Saarbriicken, Germany, March 21-24, 2016 (2016), pp. 112-127.

NIELSEN, J. D., AND SCHWARTZBACH, M. I. A domain-specific programming
language for secure multiparty computation. In Proceedings of the 2007 Workshop
on Programming Languages and Analysis for Security, PLAS 2007, San Diego,
California, USA, June 14, 2007 (2007), pp. 21-30.

NIKOLAENKO, V., IOANNIDIS, S., WEINSBERG, U., JoYE, M., TAFT, N., AND BONEH,
D. Privacy-preserving matrix factorization. In 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013 (2013), pp. 801-812.

NIKOLAENKO, V., WEINSBERG, U., IoANNIDIS, S., JOYE, M., BONEH, D., AND TAFT,
N. Privacy-preserving ridge regression on hundreds of millions of records. In
2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013 (2013), pp. 334-348.

OsTRrOVsKY, R. Efficient computation on oblivious rams. In Proceedings of the
22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore,
Maryland, USA (1990), pp. 514-523.

Rastocr, A., HAMMER, M. A., AND Hicks, M. Wysteria: A programming language
for generic, mixed-mode multiparty computations. In 2014 IEEE Symposium
on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014 (2014),
Pp- 655-670.

Riazi, M. S., WEINERT, C., TKACHENKO, O., SONGHORI, E. M., SCHNEIDER, T.,
AND KOUSHANFAR, F. Chameleon: A hybrid secure computation framework for
machine learning applications. Cryptology ePrint Archive, Report 2017/1164,
2017. https://eprint.iacr.org/2017/1164.

SCHROPFER, A., AND KERscHBAUM, F. Forecasting run-times of secure two-party
computation. In Eighth International Conference on Quantitative Evaluation of
Systems, QEST 2011, Aachen, Germany, 5-8 September, 2011 (2011), pp. 181-190.
SCHROPFER, A., KERSCHBAUM, F., AND MULLER, G. L1 - an intermediate language
for mixed-protocol secure computation. In Proceedings of the 35th Annual IEEE
International Computer Software and Applications Conference, COMPSAC 2011,
Munich, Germany, 18-22 July 2011 (2011), pp. 298-307.

WANG, X. S., GORDON, S. D., McINTOSH, A., AND KATz, J. Secure computation
of MIPS machine code. In Computer Security - ESORICS 2016 - 21st European
Symposium on Research in Computer Security, Heraklion, Greece, September 26-30,
2016, Proceedings, Part II (2016), pp. 99-117.

Wu, D.], FENG, T., NAEHRIG, M., AND LAUTER, K. E. Privately evaluating decision
trees and random forests. PoPETs 2016, 4 (2016), 335-355.

YANG, ., L1, Y., T1AN, Y., DUAN, L., AND Gao, W. Group-sensitive multiple kernel
learning for object categorization. In IEEE 12th International Conference on
Computer Vision, ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009 (2009),
pp. 436-443.

Yao, A. C. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986 (1986), pp. 162-167.

14

1

3

1

3

5

2

6

uint w[30] = input1(); uint v[3@] = input1();
uint x[30] = input2(); uint y[30] = input2();
uint acc1 = @; uint acc2 = 0;
for iin[0: 30]
faccl = accl + (w[i] x x[i]);

acc2 = acc2 + (v[i] x y[i]);}
output2((accl > acc2) ?1 : @) //only to party 2

Figure 12: EzPC code for wlx > va

uint w[30] = input1(); uint r1 = input1();
uint x[30] = input2();
uint accl = 0;

for iin[0:30] {accl =
uint ol = accl +rl;
output2(ol) //accl is ‘‘secret shared’’

accl + (w[i] x x[i]);}

T

Figure 13: Partition 1: Code for oy = w" x + r;

uint v[30] = input1(); uint r2 = inputi();
uint y[30] = input2();
uint acc2 = 0;

for i in[0:30] {acc2 =
uint 02 = acc2 +r2;
output2(02) //acc2 is ‘‘secret shared’’

acc2 + (v[i] x y[i]); }

Figure 14: Partition 2: Code for 0, = 0Ty + 1,

uint r1 = input1(); uint r2 = inputi();

uint o1 = input2(); uint 02 = input2();

uint acc3 =01 —r1; uint acc4 =02 -r2;
output2((acc3 > acc4) ? 1 : @) //only to party 2

Figure 15: Partition 3: Code for (01 — r1) > (02 — 2)

A EXAMPLE OF SECURE CODE
PARTITIONING

We now illustrate code partitioning through an example. Con-
sider the functionality in Figure 12. This is a functionality that takes
as input two vectors w and v from Alice and two vectors x and y
from Bob. It computes two inner products w x and o7y, compares
the first value with the second and returns a boolean value (which
is1ifwlx > va and 0 otherwise) to Bob. Now, if we wish to parti-
tion this functionality using secure code partitioning, one possible
split is as follows into the following three programs!!. Partition 1
(Figure 13) computes w’ x and “secret shares” the output of this
computation between Alice and Bob (Alice’s share is rj, a random
value, and Bob’s share is 0; = w! x+r1). Next, partition 2 (Figure 14)
computes v7 y and once again provides Alice with r; and Bob with
02 = vTy + ry. Finally, partition 3 (Figure 15) compares o1 — r; with
02 — rp and provides the output to Bob. It is easy to see that the size
of the programs 1, 2 and 3 (and their corresponding circuits output
by the EzPC compiler) are smaller than the program in Figure 12
and its corresponding circuit, and in particular, smaller than the
state that must be maintained between the programs.

1 All arithmetic is over an appropriate ring in the following discussion.

https://eprint.iacr.org/2017/1164

B DESCRIPTION OF BENCHMARKS

We use [N] to denote {0, 1,...,N — 1}. Further, given a vector
X € Rd, we say argmax x = i if x; = max {xo, ..., xg_1}. Finally, if
A is a matrix (resp. vector) then we write f(A) for the matrix (resp.
vector) obtained by applying the scalar function f to each entry of
A pointwise.

We focus on the machine learning models for classification. A
classifier C uses a trained model to predict a label £ for an input data
point x. For example, given a data point which is a tuple of humidity
and temperature a classifier can predict a label “will rain” or “will
not rain”. The model size of a classifier is the number of parameters
in the model. For example, the model size of the classifier in Figure 1
is |[w| + 1 = 31. The accuracy of a classifier refers to the fraction of
data points that the classifier labels correctly from a given set of
test data points.

Standard classifiers. A binary linear classifier is one of the sim-
plest classifiers. Here, the input is a data point x € R4, and the
model is a vector w € R?. The possible labels are £ € {true, false}
and the classifier is C, = wT
Naive Bayes [9] that predicts labels from the set [n]. Here, the input
data point is a feature vector x = (xo,x2,. .., xd_l)T where each
x;j € [F]. The model size of this classifier is ©(ndF). A decision tree
of size N and depth d takes as input an x € R? and the prediction
task reduces to evaluation of a d-degree polynomial [9].

x > 0. A more interesting classifier is

Deep neural nets. The next class of classifiers that we benchmark
are deep neural nets or DNNs. A DNN has multiple layers such
that each layer computes a matrix multiplication followed by an
activation function f. The most common activation functions are
square f(x) = x? and rectifier linear unit (ReLU) f(x) = max(x, 0).
Given an input vector x, the predicted label of a DNN is

argmax Wy - fn—1(... fi(W1 - x)...)

Here, f;’s are the (public) activation functions, the model consists
of matrices W;, x € R? is the input vector, and the operator -
denotes a matrix multiplication. Neural nets usually have one or
more fully connected layers, each of which multiplies a matrix
with a vector. Some neural nets have convolution layers and such
DNNss are also called Convolutional Neural Nets or CNNs. For the
purpose of this paper, a convolution can be considered as a (heavy)
matrix-matrix multiplication. The size of matrices manipulated by
a convolution layer grows linearly with window size (typically 9
or 25), the number of output channels (typically 16, 32, or 64), and
the size of the matrix input to this layer. Therefore, fully connected
layers are lighter computation-wise compared to convolution layers.
However, the model size of fully connected layers is larger than
those of convolution layers. In general, DNNs are computationally
heavy but provide much better accuracies on computer vision tasks
than the classifiers discussed above.

State-of-the-art classifiers. Finally, there are a class of machine
learning classifiers that are much more efficient than DNNs and
provide reasonably good accuracies on standard learning tasks.
BonsarI [36] is a state-of-the art classifier in this class and EzPC
provides the first 2PC protocol for it. BONsAI takes as input x € R,
and its model consists of a binary tree with N nodes, and a matrix
Z. Each node j contains matrices W and V}, and a vector 6;. The

15

internal node j evaluates a predicate (GJ.T - Z -x) > 0 to decide
whether to pass x to the left child 2j + 1 or the right child 2j + 2.
The predicted value is

N-1
argmax > L)W -Z-x) o (f(V]| - Z-x))]

7=0
Here, Ij(x) is 1 if the j¢ h node is present on the path traversed by x
and is zero otherwise. The operation o is a pointwise multiplication
of two vectors, W;’s and V;’s are matrices of appropriate dimensions.
The activation function f is given by f(y) =y if -1 <y < 1 and
sign(y) otherwise.

In the following, we implement these classifiers in EzZPC and
report the time taken for making secure predictions. Ideally, the
machine learning classifiers are mathematical expressions over R
that are usually approximated by floating-point operations. As is
standard, we port the classifiers to integer manipulating programs
by scaling the models and rounding [40]. These ported classifiers
are then implemented in EzPC.

	Abstract
	1 Introduction
	2 EzPC Overview
	2.1 Comparison with garbled circuits

	3 Cryptographic cost-awareness
	4 Formal development
	5 Secure code partitioning
	6 Implementation
	7 Evaluation
	7.1 Secure prediction
	7.2 Secure code partitioning
	7.3 Matrix factorization
	7.4 Subsequent Work

	8 Related work
	9 Conclusion and Future Work
	References
	A Example of secure code partitioning
	B Description of benchmarks
	C Full formal definitions and auxiliary lemmas

