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Abstract

In order to achieve state-of-the-art performance,
modern machine learning techniques require care-
ful data pre-processing and hyperparameter tun-
ing. Moreover, given the ever increasing num-
ber of machine learning models being developed,
model selection is becoming increasingly impor-
tant. Automating the selection and tuning of ma-
chine learning pipelines, consisting of data pre-
processing methods and machine learning models,
has long been one of the goals of the machine
learning community. In this paper, we propose
to solve this meta-learning task by combining
ideas from collaborative filtering and Bayesian op-
timization. Specifically, we exploit experiments
performed on hundreds of different datasets via
probabilistic matrix factorization and then use an
acquisition function to guide the exploration of
the space of possible pipelines. In our experi-
ments, we show that our approach quickly identi-
fies high-performing pipelines across a wide range
of datasets, significantly outperforming the cur-
rent state-of-the-art.

1. Introduction

Machine learning models often depend on hyperparame-
ters that require extensive fine-tuning in order to achieve
optimal performance. For example, state-of-the-art deep
neural networks have highly tuned architectures and require
careful initialization of the weights and learning algorithm
(for example, by setting the initial learning rate and various
decay parameters). These hyperparameters can be learned
by cross-validation (or holdout set performance) over a grid
of values, or by randomly sampling the hyperparameter
space (Bergstra & Bengio, 2012); but, these approaches
do not take advantage of any continuity in the parameter
space. More recently, Bayesian optimization has emerged as
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Figure 1: Two-dimensional embedding of 5,000 ML
pipelines across 576 OpenML datasets. Each point corre-
sponds to a pipeline and is colored by the AUROC obtained
by that pipeline in one of the OpenML datasets (OpenML
dataset id 943).

a promising alternative to these approaches (Srinivas et al.,
2009; Hutter et al., 2011; Osborne et al., 2009; Bergstra
et al., 2011; Snoek et al., 2012; Bergstra et al., 2013). In
Bayesian optimization, the loss (e.g. root mean square error)
is modeled as a function of the hyperparameters. A regres-
sion model (usually a Gaussian process) and an acquisition
function are then used to iteratively decide which hyperpa-
rameter setting should be evaluated next. More formally,
the goal of Bayesian optimization is to find the vector of
hyperparameters 6 that corresponds to

arg Hbin X(M(xv 0)5 y)7

where M (x | 0) are the predictions generated by a machine

learning model M (e.g. SVM, random forest, etc.) with
hyperparameters @ on some inputs X; y are the targets/labels
and .Z is a loss function. Usually, the hyperparameters are
a subset of R”, although in practice many hyperparame-
ters can be discrete (e.g. the number of layers in a neural
network) or categorical (e.g. the loss function to use in a
gradient boosted regression tree).

Bayesian optimization techniques have been shown to be
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very effective in practice and sometimes identify better
hyperparameters than human experts, leading to state-of-
the-art performance in computer vision tasks (Snoek et al.,
2012). One drawback of these techniques is that they are
known to suffer in high-dimensional hyperparameter spaces,
where they often perform comparably to random search
(Li et al., 2016b). This limitation has both been shown in
practice (Li et al., 2016b), as well as studied theoretically
(Srinivas et al., 2009; Griinewilder et al., 2010) and is due
to the necessity of sampling enough hyperparameter config-
urations to get a good estimate of the predictive posterior
over a high-dimensional space. In practice, this is not an
insurmountable obstacle to the fine-tuning of a handful of
parameters in a single model, but it is becoming increas-
ingly impractical as the focus of the community shifts from
tuning individual hyperparameters to identifying entire ML
pipelines consisting of data pre-processing methods, ma-
chine learning models and their parameters (Feurer et al.,
2015).

Our goal in this paper is indeed not only to tune the hyperpa-
rameters of a given model, but also to identify which model
to use and how to pre-process the data. We do so by leverag-
ing experiments already performed across different datasets
D ={Dy,...,Dp} to solve the optimization problem

argmin L (M(P(x;6,);0m), y),
M, P, 0, 0,

where M is the ML model with hyperparameters 8,,, and
P is the pre-processing method with hyperparameters 6,,.
In the rest of the paper, we refer to the combination of
pre-processing method, machine learning model and their
hyperparameters as a machine learning pipeline. Some of
the dimensions in ML pipeline space are continuous, some
are discrete, some are categorical (e.g. the model dimen-
sion can be a choice between a random forest or an SVM),
and some are conditioned on another dimension (e.g. the
number of trees dimension in a random forest). The mixture
of discrete, continuous and conditional dimensions in ML
pipelines makes modeling continuity in this space particu-
larly challenging. For this reason, unlike previous work, we
consider instantiations of pipelines, meaning that we fix the
set of pipelines ahead of training. For example, an instanti-
ated pipeline can consist in computing the top 5 principal
components of the input data and then applying a random
forest with 1000 trees. Extensive experiments in section
4 demonstrate that this discretization of the space actually
leads to better performance than models that attempt to
model continuity.

We show that the problem of predicting the performance of
ML pipelines on a new dataset can be cast as a collabora-
tive filtering problem that can be solved with probabilistic
matrix factorization techniques. The approach we follow
in the rest of this paper, based on Gaussian process latent

variable models (Lawrence & Urtasun, 2009; Lawrence,
2005), embeds different pipelines in a latent space based
on their performance across different datasets. For exam-
ple, Figure 1 shows the first two dimensions of the latent
space of ML pipelines identified by our model on OpenML
(Vanschoren et al., 2013) datasets. Each dot corresponds to
an ML pipeline and is colored depending on the AUROC
achieved on a holdout set for a given OpenML dataset. Since
our probabilistic approach produces a full predictive poste-
rior distribution over the performance of the ML pipelines
considered, we can use it in conjunction with acquisition
functions commonly used in Bayesian optimization to guide
the exploration of the ML pipeline space. Through exten-
sive experiments, we show that our method significantly out-
performs the current state-of-the-art in automated machine
learning in the vast majority of datasets we considered.

2. Related work

The concept of leveraging experiments performed in previ-
ous problem instances has been explored in different ways
by two different communities. In the Bayesian optimiza-
tion community, most of the work revolves around either
casting this problem as an instance of multi-task learning
or by selecting the first parameter settings to evaluate on a
new dataset by looking at what worked in related datasets
(we will refer to this as meta-learning for cold-start). In the
multi-task setting, Swersky et al. (2013) have proposed a
multi-task Bayesian optimization approach leveraging mul-
tiple related datasets in order to find the best hyperparameter
setting for a new task. For instance, they suggested using
a smaller dataset to tune the hyperparameters of a bigger
dataset that is more expensive to evaluate. Schilling et al.
(2015) also treat this problem as an instance of multi-task
learning, but instead of treating each dataset as a separate
task (or output), they effectively consider the tasks as condi-
tionally independent given an indicator variable specifying
which dataset was used to run a given experiment. Sprin-
genberg et al. (2016) do something similar with Bayesian
neural networks, but instead of passing an indicator variable,
their approach learns a dataset-specific embedding vector.
Perrone et al. (2017) also effectively learn a task-specific
embedding, but instead of using Bayesian neural networks
end-to-end like in (Springenberg et al., 2016), they use feed-
forward neural networks to learn the basis functions of a
Bayesian linear regression model.

Other approaches address the cold-start problem by evaluat-
ing parameter settings that worked well in previous datasets.
The most successful attempt to do so for automated ma-
chine learning problems (i.e. in very high-dimensional and
structured parameter spaces) is the work by Feurer et al.
(2015). In their paper, the authors compute meta-features
of both the dataset under examination as well as a vari-
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ety of OpenML (Vanschoren et al., 2013) datasets. These
meta-features include for example the number of classes
or the number of samples in each dataset. They measure
similarity between datasets by computing the L1 norm of
the meta-features and use the optimization runs from the
nearest datasets to warm-start the optimization. Reif et al.
(2012) also use meta-features of the dataset to cold-start
the optimization performed by a genetic algorithm. Wis-
tuba et al. (2015) focus on hyperparameter optimization and
extend the approach presented in (Feurer et al., 2015) by
also taking into account the performance of hyperparameter
configurations evaluated on the new dataset. In the same
paper, they also propose to carefully pick these evaluations
such that the similarity between datasets is more accurately
represented, although they found that this doesn’t result in
improved performance in their experiments.

Other related work has been produced in the context of al-
gorithm selection for satisfiability problems. In particular,
Stern et al. (2010) tackled constraint solving problems and
combinatorial auction winner determination problems using
a latent variable model to select which algorithm to use.
Their model performs a joint linear embedding of problem
instances and experts (e.g. different SAT solvers) based on
their meta-features and a sparse matrix containing the results
of previous algorithm runs. Malitsky & O’Sullivan (2014)
also proposed to learn a latent variable model by decompos-
ing the matrix containing the performance of each solver
on each problem. They then develop a model to project
commonly used hand-crafted meta-features used to select
algorithms onto the latent space identified by their model.
They use this last model to do one-shot (i.e. non-iterative) al-
gorithm selection. This is similar to what was done by Misir
& Sebag (2017), but they do not use the second regression
model and instead perform one-shot algorithm selection
directly.

Our work is most related to (Feurer et al., 2015) in terms of
scope (i.e. joint automated pre-processing, model selection
and hyperparameter tuning), but we discretize the space and
set up a multi-task model, while they capture continuity in
parameter space in a single-task model with a smart initial-
ization. Our approach is also loosely related to the work of
Stern et al. (2010), but we perform sequential model based
optimization with a non-linear mapping between latent and
observed space in an unsupervised model, while they use
a supervised linear model trained on ranks for one-shot al-
gorithm selection. The application domain of their model
also required a different utility function and a time-based
feedback model.

3. AutoML as probabilistic matrix
factorization

In this paper, we develop a method that can draw informa-
tion from all of the datasets for which experiments are avail-
able, whether they are immediately related (e.g. a smaller
version of the current dataset) or not. The idea behind our
approach is that if two datasets have similar (i.e. correlated)
results for a few pipelines, it’s likely that the remaining
pipelines will produce results that are similar as well. This
is somewhat reminiscent of a collaborative filtering problem
for movie recommendation, where if two users liked the
same movies in the past, it’s more likely that they will like
similar ones in the future.

More formally, given N machine learning pipelines and D
datasets, we train each pipeline on part of each dataset and
we evaluate it on an holdout set. This gives us a matrix
Y € RV*P summarizing the performance of each pipeline
in each dataset. In the rest of the paper, we will assume that
Y is a matrix of balanced accuracies (see e.g., (Guyon et al.,
2015)), and that we want to maximize the balanced accuracy
for a new dataset; but, our approach can be used with any
loss function (e.g. RMSE, balanced error rate, etc.). Having
observed the performance of different pipelines on different
datasets, the task of predicting the performance of any of
them on a new dataset can be cast as a matrix factorization
problem.

Specifically, we are seeking a low rank decomposition such
that Y =~ XW, where X € RV¥*? and W ¢ R@*D,
where () is the dimensionality of the latent space. As done
in Lawrence & Urtasun (2009) and Salakhutdinov & Mnih
(2008), we consider the probabilistic version of this task,
known as probabilistic matrix factorization

N
p(Y|X,W,U2) = HN(yn|on702]I)7 (D
n=1
where x,, is a row of the latent variables X and y,, is a
vector of measured performances for pipeline n. In this
setting both X and W are unknown and must be inferred.

3.1. Non-linear matrix factorization with Gaussian
process priors

The probabilistic matrix factorization approach just intro-
duced assumes that the entries of Y are linearly related to
the latent variables. In nonlinear probabilistic matrix fac-
torization (Lawrence & Urtasun, 2009), the elements of Y
are given by a nonlinear function of the latent variables,
Yn.d = fa(Xn) + €, where € is independent Gaussian noise.
This gives a likelihood of the form

N D
p(YIX.£,0%) = [T [TV (n.a
d=1

n=1

fd (Xn)702) 5 (2)
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Following Lawrence & Urtasun (2009), we place a Gaussian
process prior over f4(x,,) so that any vector f is governed by
a joint Gaussian density, p (f| X) = N (£|0, K) , where K
is a covariance matrix, and the elements K, ; = k(x;,x;)
encode the degree of correlation between two samples as
a function of the latent variables. If we use the covariance
function k (x;,x;) = x, X, which is a prior corresponding
to linear functions, we recover a model equivalent to (1). Al-
ternatively, we can choose a prior over non-linear functions,
such as a squared exponential covariance function with au-
tomatic relevance determination (ARD, one length-scale per
dimension),

k(xi,X;j) = acexp (—%||xi—xj||2), 3)

where « is a variance (or amplitude) parameter and v, are
length-scales. The squared exponential covariance function
is infinitely differentiable and hence is a prior over very
smooth functions. In practice, such a strong smoothness
assumption can be unrealistic and is the reason why the
Matern class of kernels is sometimes preferred (Williams
& Rasmussen, 2006). In the rest of this paper we use the
squared exponential kernel and leave the investigation of
the performance of Matern kernels to future work.

After specifying a GP prior, the marginal likelihood is ob-
tained by integrating out the function f under the prior

p(Y]X.0,0%) =/p<Y|X,f>p<f|X> df
D
= [[N(.al0, K(X,X) +0%1), 4)
d=1

where 0 = {a,v1,...,74}

In principle, we could add metadata about the pipelines
and/or the datasets by adding additional kernels. As we
discuss in section 4 and show in Figures 2 and 3, we didn’t
find this to help in practice, since the latent variable model
is able to capture all the necessary information even in the
fully unsupervised setting.

3.2. Inference with missing data

Running multiple pipelines on multiple datasets is an em-
barrassingly parallel operation, and our proposed method
readily takes advantage of these kinds of computationally
cheap observations. However, in applications where it is
expensive to gather such observations, Y will be a sparse
matrix, and it becomes necessary to be able to perform
inference with missing data. Given that the marginal like-
lihood in (4) follows a multivariate Gaussian distribution,
marginalizing over missing values is straightforward and
simply requires ’dropping” the missing observations from
the mean and covariance. More formally, we define an in-
dexing function e(d) : IN — IN™ that given a dataset index

d returns the list of m pipelines that have been evaluated on
d. We can then rewrite (4) as

D
p(Y|X,0,0%) = HN(Ye(d),d|07 Ca), 5)

d=1
where C; = K<Xe(d)7 Xe(d)) + oI

As done in Lawrence & Urtasun (2009), we infer the pa-
rameters 0,0 and latent variables X by minimizing the
log-likelihood using stochastic gradient descent. We do
so by presenting the entries Y .(q),4 One at a time and up-
dating X, gy, € and o for each dataset d. The negative
log-likelihood of the model can be written as

° N, 1
d _
L= Z —const. — 710g|Cd\ — §(y;r(d)’d c;' Ye(d),d)s
d=1
(6)
where N, is the number of pipelines evaluated for dataset
d. For every dataset d we update the global parameters 0 as

well as the latent variables X, gy by evaluating at the ¢-th
iteration:

OL

o't =0 —n— 7
59 (N
OL
t+1 _ ~xt
Xe(d) - Xe(d) naxe(d) ) ®)

where 7 is the learning rate.

3.3. Predictions

Predictions from the model can be easily computed by
following the standard derivations for Gaussian process
(Williams & Rasmussen, 2006) regression. The predicted
performance yy;,  of pipeline mn for a new dataset d is given
by

p(y:n,d | X, 0, U) = N(y:n,d | Hm,d, Um,d) 9

Hm,d = k;r(d)’m Cgl ye(d),d

Um,d = km,m, + 02 - k;r(d),mc(zlke(d),'rrm

remembering that Cyq = K(X(4), X¢(q)) + o*I and defin-
ing ke(d) m = K(Xe(d), Xm) and km,m = K(Xm, Xm)

The computational complexity for generating these predic-
tions is largely determined by the number of pipelines al-
ready evaluated for a test dataset and is due to the inversion
of a N; x N; matrix. This is not particularly onerous be-
cause the typical number of evaluations is likely to be in the
hundreds, given the cost of training each pipeline and the
risk of overfitting to the validation set if too many pipelines
are evaluated.
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Figure 2: Latent embeddings of 42,000 machine learning pipelines colored according to which model was included in each
pipeline. These are paired plots of the first 5 dimensions of our 20-dimensional latent space. The latent space effectively

captures structure in the space of models.

3.4. Acquisition functions

The model described so far can be used to predict the ex-
pected performance of each ML pipeline as a function of
the pipelines already evaluated, but does not yet give any
guidance as to which pipeline should be tried next. A simple
approach to pick the next pipeline to evaluate is to iteratively
pick the maximum predicted performance arg max (m,d)s

but such a utility function, also known as an acquisition
function, would discard information about the uncertainty
of the predictions. One of the most widely used acquisition
functions is expected improvement (EI) (Mockus, 1975),
which is given by the expectation of the improvement func-
tion

I(y;kn,da ybest) = (y:n,d - ybest)l(y:@,d > ybest)
EIm7d = E[I(y:q,da ybest)]a
where ypes: 1s the best result observed. Since yy, ; is Gaus-

sian distributed (see (9)), this expectation can be computed
analytically

EIm,d = Um,d ['Vm,dq)('Ym,d +N(’7m,d | 07 1))] 5

where ® is the cumulative distribution function of the stan-
dard normal and +,,, ; is defined as

Hm,d — Ybest — f
Ym,d = ;
Um,d
where ¢ is a free parameter to encourage exploration. After
computing the expected improvement for each pipeline, the
next pipeline to evaluate is simply given by

arg max (EL,, 4).
m
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Figure 3: Latent embedding of all the pipelines in which
PCA is included as a pre-processor. Each point is colored
according to the percentage of variance retained by PCA
(i.e. the hyperparameter of interest when tuning PCA in ML
pipelines).

The expected improvement is just one of many possible
acquisition functions, and different problems may require
different acquisition functions. See (Shahriari et al., 2016)
for a review.

4. Experiments

In this section, we compare our method to a series of
baselines as well as to auto-sklearn (Feurer et al., 2015),
the current state-of-the-art approach and overall winner of
the ChalLearn AutoML competition (Guyon et al., 2016).



Probabilistic Matrix Factorization for Automated Machine Learning

We ran all of the experiments on 553 OpenML (Van-
schoren et al., 2013) datasets, selected by filtering for binary
and multi-class classification problems with no more than
10, 000 samples and no missing values, although our method
is capable of handling datasets which cause ML pipeline
runs to be unsuccessful (described below).

4.1. Generation of training data

We generated training data for our method by splitting each
OpenML dataset in 80% training data, 10% validation data
and 10% test data, running 42, 000 ML pipelines on each
dataset and measuring the balanced accuracy (i.e. accuracy
rescaled such that random performance is O and perfect
performance is 1.0).

We generated the pipelines by sampling a combination
of pre-processors P = {P!, P? ..., P"}, machine learn-
ing models M = {M?' M? .. M™}, and their corre-
sponding hyperparameters O p = {6L,...,0%} and O, =
{6}, ...,07} from the entries in Supplementary Table 1.
All the models and pre-processing methods we considered
were implemented in scikit-learn (Pedregosa et al., 2011).
We sampled the parameter space by using functions pro-
vided in the auto-sklearn library (Feurer et al., 2015). Sim-
ilar to what was done in (Feurer et al., 2015), we limited
the maximum training time of each individual model within
a pipeline to 30 seconds and its memory consumption to
16GB. Because of network failures and the cluster occasion-
ally running out of memory, the resulting matrix Y was not
fully sampled and had approximately 21% missing entries.
As pointed out in the previous section, this is expected in
realistic applications and is not a problem for our method,
since it can easily handle sparse data.

Out of the 553 total datasets, we selected 100 of them as
a held out test set. We found that some of the OpenML
datasets are so easy to model, that most of the machine
learning pipelines we tried worked equally well. Since this
could swamp any difference between the different methods
we were evaluating, we chose our test set taking into consid-
eration the difficulty of each dataset. We did so by randomly
drawing without replacement each dataset with probabilities
proportional to how poorly random selection performed on
it. Specifically, for each dataset, we ran random search for
300 iterations and recorded the regret. The probability of
selecting a dataset was then proportional to the regret on
that dataset, averaged over 100 trials of random selection.
After removing OpenML datasets that were used to train
auto-sklearn, the final size of the held out test set was 89.
The training set consisted of the remaining 464 datasets
(the IDs of both training and test sets are provided in the
supplementary material).

random random2x —— PMF

auto-sklearn random4x

Rank (mean + SE)

2.0 4

T T T T T T T T T
0 25 50 75 100 125 150 175 200
Iterations

Figure 4: Average rank of all the approaches we considered
as a function of the number of iterations. For each holdout
dataset, the methods are ranked based on the balanced ac-
curacy obtained on the validation set at each iteration. The
ranks are then averaged across datasets. Lower is better. The
shaded areas represent the standard error for each method.

4.2. Parameter settings

We set the number of latent dimensions to ) = 20, learning
rate to n = le”7, and (column) batch-size to 50. The
latent space was initialized using PCA, and training was run
for 300 epochs (corresponding to approximately 3 hours
on a 16-core Azure machine). Finally, we configured the
acquisition function with £ = 0.01.

4.3. Results

We compared the model described in this paper, PMF, to
the following methods:

e Random. For each test dataset, we performed a ran-
dom search by sampling each pipeline to be evaluated
from the set of 42,000 at random without replacement.

e Random 2x. Same as above, but with twice the budget.
This simulates parallel evaluation of pipelines and is a
strong baseline (Li et al., 2016a).

e Random 4x. Same as a above but with 4 times the
budget.

e auto-sklearn (Feurer et al., 2015). We ran auto-
sklearn for 4 hours per dataset and set to optimize
balanced accuracy on a holdout set. We disabled the
automated ensembling of models in order to obtain a
fair comparison to the other non-ensembling methods.

Our method uses the same procedure used in (Feurer et al.,
2015) to “warm-start” the process by selecting the first 5
pipelines, after which the acquisition function selects subse-
quent pipelines.
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Figure 5: Difference between the maximum balanced ac-
curacy observed on the test set and the balanced accuracy
obtained by each method at each iteration. Lower is bet-
ter. The shaded areas represent the standard error for each
method.

Figure 6: (a) Mean squared error (MSE) between predicted
and observed balanced accuracies in the test set as a func-
tion of the number of iterations. Lower is better. MSE
is averaged across all test datasets. (b) Posterior predic-
tive variance as a function of the number of iterations and
averaged across all test datasets. Shaded area shows two
standard errors around the mean.

Figure 4 shows the average rank for each method as a func-
tion of the number of iterations (i.e. the number of pipelines
evaluated). Starting from the first iteration, our approach
consistently achieves the best average rank. Auto-sklearn
is the second best model, outperforming random 2x and
almost matched by random 4x. Please note that random
2x and random 4x are only intended as baselines that are
easy to understand and interpret, but that in no way can be
considered practical solutions, since they both have a much
larger computational budget than the non-baseline methods.

Rank plots such as Figure 4 are useful to understand the
relative performance of a set of models, but they don’t give
any information about the magnitude of the difference in
performance. For this reason, we measured the difference
between the maximum balanced accuracy obtained by any
pipeline in each dataset and the one obtained by the pipeline

selected at each iteration. The results summarized in Figure
5 show that our method still outperforms all the others.
We also investigated how well our method performs when
fewer observations/training datasets are available. In the
first experiment, we ran our method in the setting where 90%
of the entries in Y are missing. Supplementary Figures 1
and 2 demonstrate our method degrades in performance only
slightly, but still results in the best performance amongst
competitors. In the second experiment, we matched the
number (and the identity, for the most part) of datasets
that auto-sklearn uses to initialize its Bayesian optimization
procedure. The results, shown in Supplementary Figures
3 and 4, confirm that our model outperforms competing
approaches even when trained on a subset of the data.

Next, we investigated how quickly our model is able to im-
prove its predictions as more pipelines are evaluated. Figure
6a shows the mean squared error computed across the test
datasets as a function of the number of evaluations. As
expected the error monotonically decreases and appears to
asymptote after 200 iterations. Figure 6b shows the uncer-
tainty of the model (specifically, the posterior variance) as
a function of the number of evaluations. Overall, Figure
6 a and b support that as more evaluations are performed,
the model becomes less uncertain and the accuracy of the
predictions increases.

Including pipeline metadata. Our approach can easily
incorporate information about the composition and the hy-
perparameters of the pipelines considered. This metadata
could for example include information about which model is
used within each pipeline or which pre-processor is applied
to the data before passing it to the model. Empirically, we
found that including this information in our model didn’t
improve performance (data not shown). Indeed, our model
is able to effectively capture most of this information in
a completely unsupervised fashion, just by observing the
sparse pipelines-dataset matrix Y. This is visible in Figure
2, where we show the latent embedding colored according
to which model was included in which pipeline. On a finer
scale, the latent space can also capture different settings of
an individual hyperparameter. This is shown in Figure 3,
where each pipeline is embedded in a 2-dimensional space
and colored by the value of the hyperparameter of inter-
est, in this case the percent of variance retained by a PCA
preprocessor. Overall, our findings indicate that pipeline
metadata is not needed by our model if enough experimental
data (i.e. enough entries in matrix Y) is available.

5. Discussion

We have presented a new approach to automatically build
predictive ML pipelines for a given dataset, automating the
selection of data pre-processing method and machine learn-
ing model as well as the tuning of their hyperparameters.
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Our approach combines techniques from collaborative fil-
tering and ideas from Bayesian optimization to intelligently
explore the space of ML pipelines, exploiting experiments
performed in previous datasets. We have benchmarked our
approach against the state-of-the-art in 89 OpenML datasets
with different sample sizes, number of features and number
of classes. Overall, our results show that our approach out-
performs both the state-of-the-art as well as a set of strong
baselines.

One potential concern with our method is that it requires
sampling (i.e. instantiating pipelines) from a potentially
high-dimensional space and thus could require exponen-
tially many samples in order to explore all areas of this
space. We have found this not to be a problem for three rea-
sons. First, many of the dimensions in the space of pipelines
are conditioned on the choice of other dimensions. For
example, the number of trees or depth of a random forest
are parameters that are only relevant if a random forest is
chosen in the “model” dimension. This reduces the effective
search space significantly. Second, in our model we treat
every pipeline as an additional sample, so increasing the
sampling density also results in an increase in sample size
(and similarly, adding a dataset also increases the effective
sample size). Finally, very dense sampling of the pipeline
space is only needed if the performance is very sensitive
to small parameter changes, something that we haven’t ob-
served in practice. If this is a concern, we advise using
our approach in conjunction with traditional Bayesian opti-
mization methods (such as (Snoek et al., 2012)) to further
fine-tune the parameters.

We are currently investigating several extensions of this
work. First, we would like to include dataset-specific infor-
mation in our model. As discussed in section 3, the only
data taken into account by our model is the performance
of each method in each dataset. Similarity between differ-
ent pipelines is induced by having correlated performance
across multiple datasets, and ignores potentially relevant
metadata about datasets, such as the sample size or number
of classes. We are currently working on including such in-
formation by extending our model using additional kernels
and dual embeddings (i.e. embedding both pipelines and
dataset in separate latent spaces). Second, we are interested
in using acquisition functions that include a factor repre-
senting the computational cost of running a given pipeline
(Snoek et al., 2012) to handle instances when datasets have
a large number of samples. The machine learning models
we used for our experiments were constrained not to ex-
ceed a certain runtime, but this could be impractical in real
applications. Finally, we are planning to experiment with
different probabilistic matrix factorization models based on
variational autoencoders.
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4

ML / PP Algorithm Parameter Range

Polynomial Features degree [2, 3]

Polynomial Features interaction_only {False, True}
Polynomial Features include_bias {True, False}
Principal Component Analysis keep_variance [0.5, 0.9999]
Principal Component Analysis whiten {False, True}
Linear Discriminant Analysis shrinkage {None, auto, manual}
Linear Discriminant Analysis n_components [1, 250]

Linear Discriminant Analysis tol [le-05, 0.1]
Linear Discriminant Analysis shrinkage_factor [0.0, 1.0]
Extreme Gradient Boosting max_depth [1, 10]

Extreme Gradient Boosting learning_rate [0.01, 1.0]
Extreme Gradient Boosting n_estimators [50, 500]

Extreme Gradient Boosting subsample [0.01, 1.0]
Extreme Gradient Boosting min_child_weight [1, 20]

Quadratic Discriminant Analysis | reg_param [0.0, 10.0]

Extra Trees criterion {gini, entropy}
Extra Trees max_features [0.5, 5.0]

Extra Trees min_samples_split [2, 20]

Extra Trees min_samples_leaf [1, 20]

Extra Trees bootstrap {True, False}
Decision Tree criterion {gini, entropy}
Decision Tree max_depth [0.0, 2.0]
Decision Tree min_samples_split [2, 20]

Decision Tree min_samples_leaf [1, 20]

Gradient Boosted Decision Trees | learning_rate [0.01, 1.0]
Gradient Boosted Decision Trees | n_estimators [50, 500]
Gradient Boosted Decision Trees | max_depth [1, 10]

Gradient Boosted Decision Trees | min_samples_split | [2, 20]

Gradient Boosted Decision Trees | min_samples_leaf [1, 20]

Gradient Boosted Decision Trees | subsample [0.01, 1.0]
Gradient Boosted Decision Trees | max_features [0.5, 5.0]

K Neighbors n_neighbors [1, 100]

K Neighbors weights {uniform, distance}
K Neighbors P {1, 2}

Multinomial Naive Bayes alpha [0.01, 100.0]
Multinomial Naive Bayes fit_prior {True, False}
Support Vector Machine C [0.03125, 32768.0]
Support Vector Machine kernel {rbf, poly, sigmoid}
Support Vector Machine gamma [3.05176e-05, 8.0]
Support Vector Machine shrinking {True, False}
Support Vector Machine tol [le-05, 0.1]
Support Vector Machine coef0 [-1.0, 1.0]
Support Vector Machine degree [1, 5]

Random Forest criterion {gini, entropy}
Random Forest max_features [0.5, 5.0]
Random Forest min_samples_split [2, 20]

Random Forest min_samples_leaf [1, 20]

Random Forest bootstrap {True, False}
Bernoulli Naive Bayes alpha [0.01, 100.0]
Bernoulli Naive Bayes fit_prior {True, False}

Table 1: List of preprocessing methods, ML models/algorithms and parameters considered.

The following is the list of OpenML dataset IDs used to train the proposed method in the main paper:

[3,
44,
187,

6, 10, 11, 12, 14, 16, 18, 2
46, 50, 54, 59, 60, 61, 62,
189, 209, 223, 225, 227, 23

0o, 21, 22, 26, 28, 30, 31, 32, 36, 39, 41, 43,
151, 155, 161, 162, 164, 180, 181, 182, 183, 184,
0, 275, 277, 287, 292, 294, 298, 300, 307, 310,
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312, 313, 329, 333, 334, 335, 336, 338, 339, 343, 346, 375, 377, 383, 385, 386,
387, 389, 391, 392, 395, 400, 401, 444, 446, 448, 450, 457, 458, 461, 462, 463,
464, 465, 467, 468, 469, 472, 476, 477, 478, 479, 480, 679, 682, 685, 694, 713,
715, 716, 717, 718, 719, 720, 721, 722, 723, 725, 727, 728, 729, 730, 732, 734,
735, 737, 741, 742, 743, 744, 745, 746, 747, 748, 749, 751, 752, 754, 755, 756,
758, 759, 761, 762, 765, 766, 767, 768, 769, 770, 772, 775, 776, 7177, 178, 779,
780, 782, 784, 785, 787, 788, 790, 791, 792, 793, 794, 795, 796, 797, 801, 803,
804, 805, 807, 808, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824,
827, 828, 829, 830, 832, 833, 834, 835, 837, 841, 843, 845, 846, 847, 848, 849,
850, 853, 855, 857, 859, 860, 863, 864, 865, 866, 867, 868, 870, 871, 872, 873,
874, 875, 877, 878, 879, 880, 881, 882, 884, 885, 886, 889, 890, 892, 894, 895,
900, 901, 903, 905, 910, 912, 913, 914, 915, 916, 917, 919, 921, 922, 923, 924,
925, 928, 932, 933, 934, 935, 936, 937, 938, 941, 942, 943, 946, 947, 950, 951,
952, 953, 954, 955, 956, 958, 959, 962, 964, 965, 969, 970, 971, 973, 974, 976,
977, 978, 979, 980, 983, 987, 988, 991, 994, 995, 997, 1004, 1005, 1006, 1009,
1011, 1013, 1014, 1015, 1016, 1019, 1020, 1021, 1022, 1025, 1026, 1038, 1040,
1041, 1043, 1044, 1045, 1046, 1048, 1055, 1056, 1059, 1060, 1061, 1062, 1063,
1064, 1065, 1066, 1068, 1069, 1075, 1079, 1081, 1082, 1104, 1106, 1107, 1115,
1116, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1129, 1131, 1132, 1133,
1135, 1136, 1137, 1140, 1141, 1143, 1144, 1145, 1147, 1148, 1149, 1150, 1151,
1152, 1153, 1154, 1155, 1156, 1157, 1158, 1160, 1162, 1163, 1165, 1167, 1169,
1217, 1236, 1237, 1238, 1413, 1441, 1442, 1443, 1444, 1446, 1448, 1449, 1450,
1451, 1452, 1454, 1455, 1457, 1459, 1460, 1464, 1467, 1471, 1475, 1481, 1482,
1486, 1488, 1489, 1496, 1498, 1500, 1501, 1505, 1507, 1508, 1509, 1510, 1516,
1517, 1519, 1520, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1536,
1537, 1538, 1539, 1540, 1541, 1542, 1544, 1545, 1546, 1556, 1557, 1561, 1562,
1563, 1564, 1565, 1567, 1568, 1569, 4134, 4135, 4153, 4340, 4534, 4538, 40474,
40475, 40476, 40477, 40478, 1050, 1067, 740, 398, 23, 1036, 1049, 799, 822, 904,
806]

The list of OpenML dataset IDs used in the held out test set was:

(733, 812, 731, 929, 1600, 475, 726, 197, 394, 1472, 1159, 763, 1483, 1080, 836,
851, 911, 459, 37, 40, 927, 887, 783, 1012, 764, 714, 285, 1117, 384, 888, 1447,
1100, 789, 48, 1054, 1164, 838, 869, 931, 876, 1073, 1071, 750, 1518, 948, 736,
896, 1503, 278, 279, 908, 724, 996, 891, 926, 337, 909, 826, 800, 1487, 1512,
945, 825, 949, 753, 774, 9506, 902, 1473, 8, 862, 920, 1078, 683, 1084, 1412, 53,
276, 1543, 907, 397, 91is, 771, 773, 1077, 1453, 893, 1513, 388]

For the first additional experiment, we add results from (i) the Factorized MLP of (Schilling et al., 2015), and (ii) training
the proposed method on an observation matrix with 90% of the entries missing. For the latter, we start with the original
observation matrix for the training data, which has 20% missing entries, drop an additional 70% uniformly at random, and
train with Adam using a learning rate of 10~2 and @Q = 5 for the latent dimensionality. The test set remains unchanged
from the experiment in the main paper. Figures 1 and 2 show the results overlaid onto the results from the experiment in the
main paper. We can see the performance of the factorized MLP to be between random and random-2x, even after tuning its
hyperparameters to improve performance. This is significantly worse than both auto-sklearn and the proposed method. Our
method degrades in performance only slightly when 10% of the observations are available versus when training on 80%
available observations, but still out-performs auto-sklearn demonstrating very good robustness to missing data. Although not
shown, we also ran the proposed method with £ = 0 in the acquisition function, and this did not produce any distinguishable
effect in our results. Our method even with £ = 0 still achieves the best regret and rank.
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Figure 1: Average rank of all the approaches we considered as a function of the number of iterations. For each holdout
dataset, the methods are ranked based on the balanced accuracy obtained on the validation set at each iteration. The ranks
are then averaged across datasets. Lower is better. The shaded areas represent the standard error for each method.
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Figure 2: Difference between the maximum balanced accuracy observed on the test set and the balanced accuracy obtained
by each method at each iteration. Lower is better. The shaded areas represent the standard error for each method.
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For the second additional experiment, we trained the proposed method on 93 of the datasets used to train auto-sklearn and
an additional 47 datasets selected uniformly at random from the training set of the main paper. The model and training
parameters were 20 latent dimensions and a learning rate of 10~°. The evaluation was performed on the same held out test
set. Figures 3 and 4 show the outcome of this experiment and demonstrate that our method still outperforms auto-sklearn.
For this experiment, the list of OpenML dataset IDs used to train our method was

(3, 6, 12, 14, 16, 18, 21, 22, 26, 28, 30, 31, 32, 36, 44, 46, 60, 180, 181, 182,
184, 300, 389, 391, 392, 395, 401, 679, 715, 718, 720, 722, 723, 727, 728, 734,
735, 737, 741, 743, 751, 752, 761, 772, 797, 803, 807, 813, 816, 819, 821, 823,
833, 837, 843, 845, 846, 847, 849, 866, 871, 881, 901, 903, 910, 912, 913, 914,
917, 923, 934, 953, 958, 959, 962, 971, 976, 977, 978, 979, 980, 991, 995, 1019,
1020, 1021, 1040, 1041, 1056, 1068, 1069, 1116, 1120, 310, 1132, 685, 824, 1015,
1541, 50, 890, 1014, 1446, 747, 875, 1459, 721, 900, 878, 1236, 40478, 1562,
1079, 1496, 1449, 988, 796, 162, 811, 1145, 776, 457, 476, 1482, 1529, 1127, 952,
740, 1043, 1546, 4135, 1022, 853, 1237, 758, 827, 814, 450, 155, 462]
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Figure 3: Average rank of all the approaches we considered as a function of the number of iterations. For each holdout
dataset, the methods are ranked based on the balanced accuracy obtained on the validation set at each iteration. The ranks
are then averaged across datasets. Lower is better. The shaded areas represent the standard error for each method.
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Figure 4: Difference between the maximum balanced accuracy observed on the test set and the balanced accuracy obtained
by each method at each iteration. Lower is better. The shaded areas represent the standard error for each method.



