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MRTouch: Adding Touch Input to Head-Mounted Mixed Reality 
Robert Xiao, Julia Schwarz, Nick Throm, Andrew D. Wilson and Hrvoje Benko 

Fig. 1. MRTouch enables touch interaction in head-mounted mixed reality. (a) When a user approaches a surface, MRTouch detects 
the surface and (b) presents a virtual indicator. (c) The user touch-drags directly on the surface to (d) create a launcher and start an 
app. (e) In this app, the user uses touch to precisely rotate a 3D model. 

Abstract— We present MRTouch, a novel multitouch input solution for head-mounted mixed reality systems. Our system enables 
users to reach out and directly manipulate virtual interfaces affixed to surfaces in their environment, as though they were touchscreens. 
Touch input offers precise, tactile and comfortable user input, and naturally complements existing popular modalities, such as voice 
and hand gesture. Our research prototype combines both depth and infrared camera streams together with real-time detection and 
tracking of surface planes to enable robust finger-tracking even when both the hand and head are in motion. Our technique is 
implemented on a commercial Microsoft HoloLens without requiring any additional hardware nor any user or environmental calibration. 
Through our performance evaluation, we demonstrate high input accuracy with an average positional error of 5.4 mm and 95% button 
size of 16 mm, across 17 participants, 2 surface orientations and 4 surface materials. Finally, we demonstrate the potential of our 
technique to enable on-world touch interactions through 5 example applications. 
Index Terms— Augmented reality, touch interaction, depth sensing, sensor fusion, on-world interaction 

1 INTRODUCTION 
Head-mounted, mixed-reality devices can overlay realistic 3D con-
tent onto the physical environment, enabling a wealth of interactive 
possibilities. Current-generation commercial mixed reality devices, 
like Microsoft HoloLens or Meta 2, are primarily driven by in-air 
hand gesturing, gaze and voice. While convenient, these indirect in-
put modalities are not particularly precise or rapid [10][14]. Fur-
thermore, these input modalities are fatiguing to use for long peri-
ods of time – neither gaze nor voice input are suitable for continual 
input while gestural input suffers from “gorilla-arm” effects [24], 
precluding prolonged use. In response, many systems ship with ac-
cessory physical controllers, offering finer-grained input, though at 
the expense of occupying the hands with a special-purpose device 
that then impedes free-hand manipulations.  

On the other hand, touch interaction is precise, tactile, familiar 
to users, and comfortable to use for extended periods. However, in-
terestingly, it has been overlooked as an input modality in head-
mounted mixed reality systems, despite the inherent ability for 
many systems to affix virtual interfaces to physical surfaces (which 
are then e.g., gestured at instead of touched). 

To explore the feasibility and utility of enabling touch interac-
tion in mixed reality settings, we developed MRTouch: a multitouch 
input solution for mixed reality. By overlaying appropriate virtual 

content, our approach transforms ordinary surfaces into expansive 
virtual touchscreens, enabling interactions with coordinated virtual 
content. MRTouch is implemented on Microsoft HoloLens and re-
quires no additional tracking infrastructure or hardware beyond the 
existing on-board cameras – users need only put on the headset to 
obtain touch tracking capabilities. We make the following contribu-
tions in this paper: 
• A method for real-time detection of surface planes suitable

for hosting touch-enabled applications. 
• A robust finger-tracking pipeline able to segment touch in-

puts even while the user’s head is in motion. 
• A practical, self-contained implementation of our approach

on an off-the-shelf Microsoft HoloLens. 
• A user study assessing our system’s tracking accuracy across

common surface materials and orientations, the results of 
which show very high touch accuracy. 

• A suite of example applications and interactions that are en-
abled by on-world touch input. 

2 RELATED WORK 
Our present work concerns mixed-reality input techniques and on-
world touch tracking, two areas of related work which we now dis-
cuss. 

2.1 Non-Touch Techniques in Mixed Reality 
A vast range of input techniques have been proposed for use in 
mixed-reality systems [61], such as gaze input [4][51], hand ges-
tures [16][34][36], voice input [8][44], physical controllers (using 
physical buttons [46], motion sensing [45], or external tracking 
[27]), tangible interfaces [7][29], or multimodal combinations of 
these approaches (e.g., [8][14]). Of these, gaze, gesture and voice 
provide no haptic feedback, while controllers and tangible inter-
faces require additional external hardware to function. 
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2.2 Touch Input in Mixed Reality 
The most common intersection of touch input with mixed reality is 
for providing haptic feedback, which adds a sensation of physicality 
to virtual objects. To this end, a number of haptic interaction tech-
niques have been proposed for mixed reality, including special-pur-
pose haptic controllers (e.g., articulated probes [1][40], gloves 
[6][9], handheld devices [5] or even body suits [38]), in-air haptics 
[12][54], or robotically-presented textures [2].  

For providing touch input, many systems use special-purpose 
touch input devices. Toucheo [20] augments a touchscreen table 
with a reflected stereoscopic display. In mobile augmented reality 
applications, touch input can be provided on the mobile device it-
self, providing a form of indirect touch input [28]. With head-
mounted displays, touchpads can be mounted on the side of the de-
vice [53] or even across the entire front face of the device [19] to 
enable indirect touch interaction. Alternatively, touch input can be 
provided on handheld controllers [27] or on a dedicated mobile de-
vice [41]. 

More closely related to our conceptual approach, systems can 
also co-opt existing objects in the environment to provide input and 
haptic feedback. Vrui [33] uses video pass-through to allow users 
to use real keyboards and mice to provide input to a virtual reality 
system. Haptic Retargeting [3] uses perceptual warping in VR to 
allow users to grasp physical objects as proxies for virtual ones. 
Walsh et al. [55] propose projecting onto existing objects to co-opt 
them into a tangible user interface. Finally, Annexing Reality [23] 
opportunistically matches virtual objects with physical objects pre-
sent in the user’s environment, mirroring user’s interactions with 
the physical objects onto the virtual objects. 

2.3 Ad hoc Touch Tracking on Surfaces 
Most related to our technical approach are systems that provide 
touch tracking on surfaces in the environment. One option is to in-
strument the surface itself, e.g., with capacitive [35][56], optical 
[21] or acoustic [50][60] sensors. Alternatively, cameras can be 
used to avoid directly instrumenting the underlying surface. Several 
schemes for camera-based touch sensing have been proposed in the 
literature, including finger template matching [32], skin-color seg-
mentation [37], contour segmentation [13], thermal imprint track-
ing [52], or LIDAR [49]. 

Many of these approaches require instrumenting the user or cal-
ibrating to the background environment, and in general methods 
based only on optical sensing have difficulty determining whether 
a finger has contacted the surface or not (i.e., disambiguating hover 
from touch). The recent availability of inexpensive depth cameras 
has led to a wide range of touch sensing techniques built upon depth 
sensing, e.g., Wilson [57], KinectFusion [30], WorldKit [58], Om-
niTouch [22], and DIRECT [59]. However, these systems rely on 
static, pre-acquired background models, with the sole exception be-
ing OmniTouch, which instead requires a more constrained finger 
pose (pers. comm.). 

In contrast to these prior systems, we explore a different inter-
action modality (head-mounted mixed reality) built on a piece of 
commodity hardware (Microsoft HoloLens). Additionally, we 
demonstrate that our touch sensing approach achieves higher spatial 
accuracy than prior approaches on a variety of surfaces and orien-
tations, including those that are typically challenging for infrared 
sensing. 

3 IMPLEMENTATION 
The MRTouch prototype is implemented on a Microsoft HoloLens 
development kit device, sold commercially for developer use since 
2016 [43]. The HoloLens features a time-of-flight depth camera 
similar to the Microsoft Kinect for Xbox One [42], which can oper-
ate in both short-throw (maximum distance ~1 m) and long-throw 
modes, used for hand tracking and environment sensing, respec-
tively. We use the short-throw mode exclusively, due to reduced 
noise characteristics. 

HoloLens features a customized ASIC, dubbed the Holographic 
Processing Unit (HPU) used for depth data processing, hand track-
ing, localization and mapping, combined with a traditional Intel 
CPU running at 1 GHz with 2 GB of RAM. The HPU allows Ho-
loLens to map the 3D environment and to provide a continual esti-
mate of its pose and position within the space. However, unlike Ki-
nectFusion [30], the computed environment map is too rough to be 
directly useful for touch detection. 

3.1 Software Architecture 
MRTouch uses only the raw short-throw depth data and infrared 
imagery from the depth camera through a private API. The algo-
rithm should therefore be portable to any device which provides a 
similar API, e.g. Google Project Tango devices. The tracking pipe-
line runs at 25 FPS and consists of three software components: 1) 
Image Streamer, 2) Tracker Engine and 3) Client Library.  

Image Streamer extracts the raw depth data and infrared im-
agery from the on-board depth camera and exports it over a TCP 
socket, allowing us to stream data to either a Tracker Engine run-
ning locally on the HoloLens device, or to a GUI-enabled debug 
version of the Tracker Engine running on a connected desktop com-
puter (shown in Figure 2). 

Tracker Engine is implemented as a C++ program designed to 
run natively on HoloLens’ Intel CPU. It receives depth and infrared 
imagery from Image Streamer (Figure 2a, 2b), and estimated head 
pose and position data from the spatial mapping API on the Ho-
loLens device. Tracker Engine maintains a set of known touch sur-
faces in world coordinates. A touch surface is a 3D-positioned rec-
tangle, represented uniquely by three 3D corner points (its bottom-
left, bottom-right and top-left corners). On each frame, the tracker 
locates each known surface in the current depth frame, then acquires 
additional surfaces by fitting planes to the observed depth data. It 
then detects touch points over the visible planes, implements touch 
filtering and hover detection, and reports resultant surface plane and 
touch data to any connected client applications. 

To receive touch data, a client application links against the Cli-
ent Library, which is written in C#. This library opens a TCP con-
nection to Tracker Engine, through which it receives plane position 
data and touch information. The library normalizes these positions 
into the application’s coordinate system, and presents a simple 
event-based framework for consuming new plane and touch data. 
The client can also use the library to transmit new plane data to the 
Tracker Engine component, e.g., if the user launches a new appli-
cation on a surface (thereby locking the surface into the known set), 
or moves an existing in-air application onto a surface. 

In the following sections, we detail the touch and surface track-
ing process performed by the Tracker Engine.  

3.2 Surface Refinement and Detection 
Many prior ad hoc touch systems first calibrate a background model 
of the environment, allowing them to perform a simple depth sub-
traction to extract hands and fingers. However, on a head-mounted 
display, the camera may be constantly in motion, precluding devel-
opment of a simple background model. Furthermore, although Ho-
loLens can determine its own pose and position in the physical 
world, the estimated position is not perfectly accurate, causing es-
tablished planes to appear to shift in position relative to their phys-
ical substrates as the head moves around. 

Consequently, the Tracker Engine component performs a depth-
based refinement of each visible known plane, using the random 
sample consensus (RANSAC) algorithm [17]. This algorithm first 
projects the original plane into the depth image, producing an image 
mask. Each RANSAC iteration selects three random depth pixels 
from the mask and counts the number of pixels in the mask that 
approximately fit the resulting plane (the inliers). The final output 
is the plane with the largest number of inliers. This refinement pro-
cedure is robust to objects and hands above the touch plane, as these 
obstructions would be considered outliers and thus ignored. 

 

Our procedure also fits a single ephemeral plane to each frame 
(Figure 2c), defined as the plane centered at the user’s gaze center 
(if present). This is also achieved by using RANSAC, by selecting 
three points at random near the gaze center and selecting the plane 
that fits the most depth points across the entire image. Unlike 
known planes, the ephemeral plane is not stored – it is discarded 
after the touch tracking step is complete and recomputed on the next 
frame. The ephemeral plane is used to allow users to walk up and 
touch surfaces without previously defining touch areas, providing a 
way for users to instantly begin using a touch surface. 

3.3 Touch Finding 
For each visible surface plane, including the ephemeral plane, 
Touch Engine initiates touch finding. The overall touch tracking ap-
proach merges depth data with infrared data, providing precise fin-
gertip positions, an approach first demonstrated in DIRECT [59]. 
However, while DIRECT required a stabilized background and 
noise profile, our MRTouch implementation uses a RANSAC-
refined touch plane, eliminating the prior profiling requirement and 
enabling true ad hoc touch tracking with no prior calibration of the 
surface. 

Touch finding begins by re-projecting all depth pixels within the 
plane boundaries into heights relative to the surface plane (blue 
channel of Figure 2c). Then, the algorithm computes an edge map 
by merging a Canny edge map [11] of the infrared image with a 
threshold-based edge map of the heightmap (a pixel is labelled as a 
depth edge if it differs from a nearby pixel by more than 50 mm). 
Next, the algorithm flood fills pixels that are more than 40 mm off 
the surface, combining connected regions into tentative high re-
gions (which typically includes arms, hands, and fingers that are far 
off the table). It then rejects high regions that do not contact the 
edge of the touch plane (i.e., regions that lie entirely in the plane), 
as these are likely to simply be objects sitting on the surface.  

From each remaining high region, the system fills downwards 
towards regions that lie closer to the surface, while respecting the 

edge map (Figure 2c, teal regions). The edge map ideally stops the 
flood fill at the user’s fingertips, providing a clean segmentation 
even when the user’s fingertips disappear into the background 
noise. If the flood fill doesn’t stop (filling farther than a reasonable 
human finger length, 15 cm), this fill operation is rolled back, and 
the algorithm perform a more cautious fill that avoids filling into 
noisy background pixels (effectively returning to a depth-only 
tracking approach). On complex infrared surfaces, this ensures that 
the finger is still located, albeit with lower precision. 

This step is followed by a smoothing procedure applied to the 
resulting hand+finger mask, and the conversion of this smoother 
mask into a contour map (Figure 2d). Finally, the algorithm walks 
across the contour, extracting convex points into fingertip points 
(Figure 2e). This contour-finding process ensures that the fingertip 
is extracted, even when the finger is very short (e.g., if it is viewed 
from an oblique angle). Furthermore, as the segmentation is per-
formed on the combined mask, this approach naturally segments 
hands and fingers in-air as well, enabling in-air hand gesture detec-
tion. 

3.4 Touch Tracking and Filtering 
Hand points (centroids) and fingertip positions, in world coordi-
nates, are retained between frames to enable touch tracking and fil-
tering. Hands from the current frame are matched to hands in the 
previous frame by Euclidean distance with a fixed upper limit on 
movement (i.e., assuming hands do not move more than 10 cm in a 
single frame, or 2.50 m/s). Then, for each matched pair of hands, 
fingers are matched by applying the hand movement vector to the 
previous finger positions, then matching individual fingertips by 
Euclidean distance (again applying the same upper limit on move-
ment distance). By matching hands first, it is possible to track rap-
idly-moving hands without mixing up fingers. Figure 2f shows the 
final hand and finger positions. 

To detect if the fingertips are touching or not, our algorithm an-
alyzes a 7x7 patch of pixels centered on the fingertip’s contour po-
sition. Each patch is split into S, the set of pixels within the 
hand+finger mask, and T, the set of pixels outside the mask. The 
estimated height of the finger is then given by 

max(zs | s ∈ S) - min(zt | t ∈ T) 
where the use of max and min help to stabilize the estimated fin-

ger and background distances against noise, as well as choosing 
points that have maximum discriminative power. 

The hand position, fingertip position, and fingertip height values 
are smoothed using an exponentially-weighted moving average fil-
ter, providing resilience to noise and tracking failures. To confirm 
contact with the surface, the algorithm applies a simple pair of hys-
teresis thresholds – a fingertip is declared as touching the surface if 
the smoothed fingertip height descends below 10 mm, and declared 
to have left the surface if its height later ascends past 15 mm. This 
hysteresis approach mirrors the hover detection approaches seen in 
other systems, such as Wilson [57], OmniTouch [22] and DIRECT 
[59]. 

4 EXPERIMENT  
To quantify the spatial tracking accuracy and performance of 
MRTouch, we performed a user study with 17 participants – 5 

 

 
 
Fig. 3. Experiment tasks: (a) crosshair clicking task, (b) circle tracing 
task, and (c) line tracing task. 

 
 
Fig. 2. Touch tracking pipeline. (a) depth data and (b) infrared reflectivity data from HoloLens depth camera. (c) detected ephemeral plane 
(blue), flood-filled hands (light blue) and fingers (teal). (d) extracted hand masks and contours. (e) hands, fingers and estimated finger distance 
from plane. (f) hands and fingers after touch filtering, with IDs corresponding to objects in past frames. 
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2.2 Touch Input in Mixed Reality 
The most common intersection of touch input with mixed reality is 
for providing haptic feedback, which adds a sensation of physicality 
to virtual objects. To this end, a number of haptic interaction tech-
niques have been proposed for mixed reality, including special-pur-
pose haptic controllers (e.g., articulated probes [1][40], gloves 
[6][9], handheld devices [5] or even body suits [38]), in-air haptics 
[12][54], or robotically-presented textures [2].  

For providing touch input, many systems use special-purpose 
touch input devices. Toucheo [20] augments a touchscreen table 
with a reflected stereoscopic display. In mobile augmented reality 
applications, touch input can be provided on the mobile device it-
self, providing a form of indirect touch input [28]. With head-
mounted displays, touchpads can be mounted on the side of the de-
vice [53] or even across the entire front face of the device [19] to 
enable indirect touch interaction. Alternatively, touch input can be 
provided on handheld controllers [27] or on a dedicated mobile de-
vice [41]. 

More closely related to our conceptual approach, systems can 
also co-opt existing objects in the environment to provide input and 
haptic feedback. Vrui [33] uses video pass-through to allow users 
to use real keyboards and mice to provide input to a virtual reality 
system. Haptic Retargeting [3] uses perceptual warping in VR to 
allow users to grasp physical objects as proxies for virtual ones. 
Walsh et al. [55] propose projecting onto existing objects to co-opt 
them into a tangible user interface. Finally, Annexing Reality [23] 
opportunistically matches virtual objects with physical objects pre-
sent in the user’s environment, mirroring user’s interactions with 
the physical objects onto the virtual objects. 

2.3 Ad hoc Touch Tracking on Surfaces 
Most related to our technical approach are systems that provide 
touch tracking on surfaces in the environment. One option is to in-
strument the surface itself, e.g., with capacitive [35][56], optical 
[21] or acoustic [50][60] sensors. Alternatively, cameras can be 
used to avoid directly instrumenting the underlying surface. Several 
schemes for camera-based touch sensing have been proposed in the 
literature, including finger template matching [32], skin-color seg-
mentation [37], contour segmentation [13], thermal imprint track-
ing [52], or LIDAR [49]. 

Many of these approaches require instrumenting the user or cal-
ibrating to the background environment, and in general methods 
based only on optical sensing have difficulty determining whether 
a finger has contacted the surface or not (i.e., disambiguating hover 
from touch). The recent availability of inexpensive depth cameras 
has led to a wide range of touch sensing techniques built upon depth 
sensing, e.g., Wilson [57], KinectFusion [30], WorldKit [58], Om-
niTouch [22], and DIRECT [59]. However, these systems rely on 
static, pre-acquired background models, with the sole exception be-
ing OmniTouch, which instead requires a more constrained finger 
pose (pers. comm.). 

In contrast to these prior systems, we explore a different inter-
action modality (head-mounted mixed reality) built on a piece of 
commodity hardware (Microsoft HoloLens). Additionally, we 
demonstrate that our touch sensing approach achieves higher spatial 
accuracy than prior approaches on a variety of surfaces and orien-
tations, including those that are typically challenging for infrared 
sensing. 

3 IMPLEMENTATION 
The MRTouch prototype is implemented on a Microsoft HoloLens 
development kit device, sold commercially for developer use since 
2016 [43]. The HoloLens features a time-of-flight depth camera 
similar to the Microsoft Kinect for Xbox One [42], which can oper-
ate in both short-throw (maximum distance ~1 m) and long-throw 
modes, used for hand tracking and environment sensing, respec-
tively. We use the short-throw mode exclusively, due to reduced 
noise characteristics. 

HoloLens features a customized ASIC, dubbed the Holographic 
Processing Unit (HPU) used for depth data processing, hand track-
ing, localization and mapping, combined with a traditional Intel 
CPU running at 1 GHz with 2 GB of RAM. The HPU allows Ho-
loLens to map the 3D environment and to provide a continual esti-
mate of its pose and position within the space. However, unlike Ki-
nectFusion [30], the computed environment map is too rough to be 
directly useful for touch detection. 

3.1 Software Architecture 
MRTouch uses only the raw short-throw depth data and infrared 
imagery from the depth camera through a private API. The algo-
rithm should therefore be portable to any device which provides a 
similar API, e.g. Google Project Tango devices. The tracking pipe-
line runs at 25 FPS and consists of three software components: 1) 
Image Streamer, 2) Tracker Engine and 3) Client Library.  

Image Streamer extracts the raw depth data and infrared im-
agery from the on-board depth camera and exports it over a TCP 
socket, allowing us to stream data to either a Tracker Engine run-
ning locally on the HoloLens device, or to a GUI-enabled debug 
version of the Tracker Engine running on a connected desktop com-
puter (shown in Figure 2). 

Tracker Engine is implemented as a C++ program designed to 
run natively on HoloLens’ Intel CPU. It receives depth and infrared 
imagery from Image Streamer (Figure 2a, 2b), and estimated head 
pose and position data from the spatial mapping API on the Ho-
loLens device. Tracker Engine maintains a set of known touch sur-
faces in world coordinates. A touch surface is a 3D-positioned rec-
tangle, represented uniquely by three 3D corner points (its bottom-
left, bottom-right and top-left corners). On each frame, the tracker 
locates each known surface in the current depth frame, then acquires 
additional surfaces by fitting planes to the observed depth data. It 
then detects touch points over the visible planes, implements touch 
filtering and hover detection, and reports resultant surface plane and 
touch data to any connected client applications. 

To receive touch data, a client application links against the Cli-
ent Library, which is written in C#. This library opens a TCP con-
nection to Tracker Engine, through which it receives plane position 
data and touch information. The library normalizes these positions 
into the application’s coordinate system, and presents a simple 
event-based framework for consuming new plane and touch data. 
The client can also use the library to transmit new plane data to the 
Tracker Engine component, e.g., if the user launches a new appli-
cation on a surface (thereby locking the surface into the known set), 
or moves an existing in-air application onto a surface. 

In the following sections, we detail the touch and surface track-
ing process performed by the Tracker Engine.  

3.2 Surface Refinement and Detection 
Many prior ad hoc touch systems first calibrate a background model 
of the environment, allowing them to perform a simple depth sub-
traction to extract hands and fingers. However, on a head-mounted 
display, the camera may be constantly in motion, precluding devel-
opment of a simple background model. Furthermore, although Ho-
loLens can determine its own pose and position in the physical 
world, the estimated position is not perfectly accurate, causing es-
tablished planes to appear to shift in position relative to their phys-
ical substrates as the head moves around. 

Consequently, the Tracker Engine component performs a depth-
based refinement of each visible known plane, using the random 
sample consensus (RANSAC) algorithm [17]. This algorithm first 
projects the original plane into the depth image, producing an image 
mask. Each RANSAC iteration selects three random depth pixels 
from the mask and counts the number of pixels in the mask that 
approximately fit the resulting plane (the inliers). The final output 
is the plane with the largest number of inliers. This refinement pro-
cedure is robust to objects and hands above the touch plane, as these 
obstructions would be considered outliers and thus ignored. 

 

Our procedure also fits a single ephemeral plane to each frame 
(Figure 2c), defined as the plane centered at the user’s gaze center 
(if present). This is also achieved by using RANSAC, by selecting 
three points at random near the gaze center and selecting the plane 
that fits the most depth points across the entire image. Unlike 
known planes, the ephemeral plane is not stored – it is discarded 
after the touch tracking step is complete and recomputed on the next 
frame. The ephemeral plane is used to allow users to walk up and 
touch surfaces without previously defining touch areas, providing a 
way for users to instantly begin using a touch surface. 

3.3 Touch Finding 
For each visible surface plane, including the ephemeral plane, 
Touch Engine initiates touch finding. The overall touch tracking ap-
proach merges depth data with infrared data, providing precise fin-
gertip positions, an approach first demonstrated in DIRECT [59]. 
However, while DIRECT required a stabilized background and 
noise profile, our MRTouch implementation uses a RANSAC-
refined touch plane, eliminating the prior profiling requirement and 
enabling true ad hoc touch tracking with no prior calibration of the 
surface. 

Touch finding begins by re-projecting all depth pixels within the 
plane boundaries into heights relative to the surface plane (blue 
channel of Figure 2c). Then, the algorithm computes an edge map 
by merging a Canny edge map [11] of the infrared image with a 
threshold-based edge map of the heightmap (a pixel is labelled as a 
depth edge if it differs from a nearby pixel by more than 50 mm). 
Next, the algorithm flood fills pixels that are more than 40 mm off 
the surface, combining connected regions into tentative high re-
gions (which typically includes arms, hands, and fingers that are far 
off the table). It then rejects high regions that do not contact the 
edge of the touch plane (i.e., regions that lie entirely in the plane), 
as these are likely to simply be objects sitting on the surface.  

From each remaining high region, the system fills downwards 
towards regions that lie closer to the surface, while respecting the 

edge map (Figure 2c, teal regions). The edge map ideally stops the 
flood fill at the user’s fingertips, providing a clean segmentation 
even when the user’s fingertips disappear into the background 
noise. If the flood fill doesn’t stop (filling farther than a reasonable 
human finger length, 15 cm), this fill operation is rolled back, and 
the algorithm perform a more cautious fill that avoids filling into 
noisy background pixels (effectively returning to a depth-only 
tracking approach). On complex infrared surfaces, this ensures that 
the finger is still located, albeit with lower precision. 

This step is followed by a smoothing procedure applied to the 
resulting hand+finger mask, and the conversion of this smoother 
mask into a contour map (Figure 2d). Finally, the algorithm walks 
across the contour, extracting convex points into fingertip points 
(Figure 2e). This contour-finding process ensures that the fingertip 
is extracted, even when the finger is very short (e.g., if it is viewed 
from an oblique angle). Furthermore, as the segmentation is per-
formed on the combined mask, this approach naturally segments 
hands and fingers in-air as well, enabling in-air hand gesture detec-
tion. 

3.4 Touch Tracking and Filtering 
Hand points (centroids) and fingertip positions, in world coordi-
nates, are retained between frames to enable touch tracking and fil-
tering. Hands from the current frame are matched to hands in the 
previous frame by Euclidean distance with a fixed upper limit on 
movement (i.e., assuming hands do not move more than 10 cm in a 
single frame, or 2.50 m/s). Then, for each matched pair of hands, 
fingers are matched by applying the hand movement vector to the 
previous finger positions, then matching individual fingertips by 
Euclidean distance (again applying the same upper limit on move-
ment distance). By matching hands first, it is possible to track rap-
idly-moving hands without mixing up fingers. Figure 2f shows the 
final hand and finger positions. 

To detect if the fingertips are touching or not, our algorithm an-
alyzes a 7x7 patch of pixels centered on the fingertip’s contour po-
sition. Each patch is split into S, the set of pixels within the 
hand+finger mask, and T, the set of pixels outside the mask. The 
estimated height of the finger is then given by 

max(zs | s ∈ S) - min(zt | t ∈ T) 
where the use of max and min help to stabilize the estimated fin-

ger and background distances against noise, as well as choosing 
points that have maximum discriminative power. 

The hand position, fingertip position, and fingertip height values 
are smoothed using an exponentially-weighted moving average fil-
ter, providing resilience to noise and tracking failures. To confirm 
contact with the surface, the algorithm applies a simple pair of hys-
teresis thresholds – a fingertip is declared as touching the surface if 
the smoothed fingertip height descends below 10 mm, and declared 
to have left the surface if its height later ascends past 15 mm. This 
hysteresis approach mirrors the hover detection approaches seen in 
other systems, such as Wilson [57], OmniTouch [22] and DIRECT 
[59]. 

4 EXPERIMENT  
To quantify the spatial tracking accuracy and performance of 
MRTouch, we performed a user study with 17 participants – 5 

 

 
 
Fig. 3. Experiment tasks: (a) crosshair clicking task, (b) circle tracing 
task, and (c) line tracing task. 

 
 
Fig. 2. Touch tracking pipeline. (a) depth data and (b) infrared reflectivity data from HoloLens depth camera. (c) detected ephemeral plane 
(blue), flood-filled hands (light blue) and fingers (teal). (d) extracted hand masks and contours. (e) hands, fingers and estimated finger distance 
from plane. (f) hands and fingers after touch filtering, with IDs corresponding to objects in past frames. 
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females, average height 68.8 in (174 cm), mean age 34, 2 left-
handed, with Fitzpatrick skin types ranging from II to VI [18]. 

Participants were asked to perform a series of touching and trac-
ing tasks on various surfaces in two separate orientations, to check 
the system’s robustness to surface conditions and surface orienta-
tion. Users performed all tasks with their dominant hand, and held 
a wireless mouse in their other hand, which was used to advance 
trials. 

4.1 Surfaces  
We chose a set of four surface types representative of common, eve-
ryday surfaces in homes and offices, as well as providing a range of 
different surface profiles in infrared: 

Drywall: a piece of drywall painted uniformly with acrylic paint, 
representing most typical wall surfaces. Under infrared illumina-
tion, this surface appears relatively bright and diffuse. 

White: a piece of medium-density fibreboard (MDF) coated with 
melamine, producing a smooth and glossy surface typical of con-
temporary tables, desks and cabinets. Under infrared illumination, 
this surface appears bright and specular. 

Vinyl: a set of vinyl tiles with slightly rough exterior stone-like 
textures, used to represent stone and textured surfaces typical of 
countertops and floors. Under infrared illumination, this material is 
dark and diffuse.  

Wood: sanded plywood with a cedar veneer, used to represent 
wooden surfaces typical of tables and desks. Under infrared illumi-
nation, this material appears darker, specular and non-uniform. 

Each surface was cut to a 60×60 cm square tile, allowing them 
to be swapped in and out during the experiment. Images of these 
surfaces in visible light and under infrared are shown in Figure 4. 

Prior to the study, we hypothesized that the darker, more com-
plex infrared background of the vinyl surface would degrade our 
infrared tracking, and thus decrease accuracy. 

4.2 Orientations  
We also tested the system in two common orientations: with the 
user seated and touching a vertically-oriented (wall-mounted) sur-
face, and with the user standing and touching a horizontal (table-
mounted) surface. In the Wall condition, the user sat on an adjusta-
ble chair, with the virtual surface centered at chest level (Figure 5, 
right), with the HoloLens at an average distance of 31 cm from the 
wall surface. In the table condition, users stood 6 inches from the 
table edge and looked down (Figure 5, left), averaging 51 cm from 
the HoloLens to the table’s touch surface. 

4.3 Tasks 
For each combination of orientation and surface type (8 conditions 
in all), users performed two tasks: crosshair targeting and tracing. 

The crosshair targeting task required the participant to place 
their fingertip on the surface corresponding to the displayed cross-
hair (Figure 3a), then click the mouse to confirm that they were 
touching the surface. The system recorded all detected touch con-
tacts and their locations on click, allowing us to study the system’s 
contact detection rate. There were 16 crosshair locations, placed in 
a 4×4 grid spaced evenly across a 20×20 cm square area. Crosshairs 
were displayed in random order. 

In the tracing task, each participant was presented with eight 
shapes to trace: four circles (Figure 3b; each combination of clock-
wise/counterclockwise and 10 cm diameter/20 cm diameter) and 
four lines (Figure 3c; running left/right/up/down, all 20 cm long). 
A green arrow indicated where the participant should begin the 
trace, and the system automatically ended the trial when the partic-
ipant completed the shape. Participants then lifted their fingers clear 
of the surface and clicked the mouse to start the next trial.  

Prior to the main experiment, participants performed one trial 
each of the crosshair and tracing tasks to familiarize themselves 
with the experimental procedure; these training trials were not 
included in the final analysis. 

 

  
 
Fig. 5. Surface orientations used in the study. Left: Table orientation. 
Right: Wall orientation. 

 
Fig. 4. Surfaces used in the experiment. User hands shown in infrared for contrast and comparison. 

 

5 RESULTS 

5.1 Crosshair Targeting  
Across 17 participants, we obtained 2176 crosshair trials, recorded 
at the moment that the participant pressed the mouse button. Of 
these, 77 (3.54%) reported no touch contact, so the system located 
at least one touch point 96.5% of the time. In 416 trials (19.12%), 
the system detected two or more touch contacts; of these, 49 
(2.25%) found three or more touch contacts. In the event of multiple 
detected contacts, touch accuracy was computed using the contact 
nearest to the target.  

The distributions of touch contact counts were significantly dif-
ferent (p<0.0001, ANOVA) between the Wall and Table condi-
tions. In the Wall condition (1088 trials), only 2 trials (0.2%) re-
ported no touch contact and 185 trials (17%) reported two or more 
contacts. In contrast, on the Table, 75 trials (6.9%) reported no 
touch contact, and 240 trials (22%) reported two or more contacts. 
No significant differences (p>0.01, ANOVA with Tukey HSD) in 
touch contact count were found between materials. 

5.1.1 Spatial Accuracy 
Analysis of our crosshair data demonstrated a systematic offset be-
tween the target positions and the received touch position. Reported 
touch positions were an average of 5.0 mm to the right of the cross-
hair (Figure 6) with a negligible (<0.1 mm) vertical shift. This shift 
held constant across all orientations, materials, and user handed-
ness, and thus, for further analysis, we subtracted the global average 
offset from all touch points. In practice, we would add this global 
offset correction as part of the touch detection pipeline, as it is user-
, material- and orientation-independent. To allow for direct 
comparison with the OmniTouch system, we followed the same 
data analysis procedure as Harisson et al. [22] and removed 44 out-
lier points (2.0%) which lay more than three standard deviations 
from the target point. Across all remaining points, we achieved a 
global mean Euclidean error (µ) of 5.4 mm (SD=3.2 mm). 

Spatial accuracy showed significant (p<0.0001, ANOVA) dif-
ferences between the Wall (µ=5.7 mm, Figure 6, left) and Table 
(µ=5.0 mm, Figure 6, right) orientations. In terms of materials, pair-
wise Tukey HSD comparisons showed that the Vinyl material 
(µ=6.2 mm) was significantly less accurate than all other materials 
(Drywall µ=5.0 mm p<0.0001, White µ=5.3 mm p<0.0001，Wood 
µ=5.0 mm p<0.0001), but no other significant differences were 
found (p>0.01).  

Plotting the 95% confidence ellipses for the Wall and Table  
conditions (Figure 6) shows that, on average, a 16 mm diameter but-
ton would capture 95% of touches, which compares favorably with 
the 15 mm button diameter for capacitive touchscreens found by 
Holz, et al. [26]. 

5.2 Tracing  
For our shape tracing task, we continually computed the absolute 
Euclidean distance between each incoming touch point and the 
nearest point on the shape. Because graphical feedback was pro-
vided, we did not apply any post-hoc offset correction, reasoning 
that users would naturally adjust their motions to compensate for 
any observed inaccuracies. The mean Euclidean distance across all 
users, conditions, and orientations was 4.0 mm (SD=3.4 mm), with 
no significant differences across shapes, materials or orientations. 

5.3 Latency 
A static analysis of latency in our research prototype (as determined 
through timestamping various stages in the pipeline) suggests an 
expected latency between 105~175 ms, or a mean latency of 
140 ms, from physical touch event to the first displayed frame in-
corporating the event.  However, due to smoothing factors, the ob-
served latency is somewhat higher, at around 180~200 ms in em-
pirical testing. 

5.4 Comparison with Existing Approaches 
In terms of spatial accuracy, our results compare favorably to past 
ad-hoc touch tracking approaches. Wilson [57] does not provide a 
formal evaluation of spatial touch accuracy, but suggests a posi-
tional error of 7 mm at a sensor distance of 75 cm from a fixed, pre-
calibrated surface. KinectFusion [30] demonstrates, but does not 
formally evaluate the touch tracking methodology. DIRECT [59] 
demonstrates 4.8 mm average Euclidean error, albeit with a signif-
icantly different setup over a rigidly pre-calibrated table surface. 

Finally, OmniTouch [22] shows an average positional offset of 
11.7 mm (dependent on surface orientation), compared with our 
5.0 mm global offset. OmniTouch also plotted the 95% confidence 
ellipses to evaluate its accuracy; in the best condition (touching on 
a wall), the confidence ellipses measure an average of 28 mm in 
diameter (compared with MRTouch’s 16 mm buttons).  

6 DISCUSSION 

6.1 Click Detection 
Our crosshair study demonstrated a surprisingly high rate of both 
missed touches (3.5%) and spurious extra touches (19%). From re-
viewing the study logs and recordings, we determined that poor 
hover sensing was primarily to blame for both issues. When we 
missed touches, the finger itself was often located but the finger’s 
height did not cross our heuristic threshold. On the flip side, we 
observed that many participants held their thumbs out while per-
forming the crosshair task, which were correctly detected as an ad-
ditional finger. However, in a few trials, the thumbs were detected 
as touching the surface. This often happened when participants un-
consciously brought the thumbs close to (but not touching) the sur-
face during the experiment, and the lack of visual feedback meant 
that people were unaware that the system was detecting a contact 
event. 

Contact detection was not the primary subject of our initial 
MRTouch implementation; instead, we sought to tackle the orthog-
onal problem of spatial accuracy. Because divining the finger’s dis-
tance from the surface is difficult solely from an overhead view, we 
felt that solving the contact detection problem was out of scope for 
this paper, and thus chose a hover detection implementation similar 
to those used by other ad-hoc touch tracking systems we reviewed. 
However, we expect that more sophisticated finger height estima-
tion algorithms could produce better results in the future, and we 
look forward to exploring this issue further. 

6.2 Latency 
Latency is a crucial consideration for touch input. While our system 
latency of ~180 ms is comparable with the higher end of 
touchscreen latencies (50~200 ms, per [47]), people can notice 

 
Fig. 6. Scatterplot of touch points in the wall condition (left) and  
table condition (right), plotted with 95% confidence ellipses. Grid 
intersections correspond to crosshair points. 
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females, average height 68.8 in (174 cm), mean age 34, 2 left-
handed, with Fitzpatrick skin types ranging from II to VI [18]. 

Participants were asked to perform a series of touching and trac-
ing tasks on various surfaces in two separate orientations, to check 
the system’s robustness to surface conditions and surface orienta-
tion. Users performed all tasks with their dominant hand, and held 
a wireless mouse in their other hand, which was used to advance 
trials. 

4.1 Surfaces  
We chose a set of four surface types representative of common, eve-
ryday surfaces in homes and offices, as well as providing a range of 
different surface profiles in infrared: 

Drywall: a piece of drywall painted uniformly with acrylic paint, 
representing most typical wall surfaces. Under infrared illumina-
tion, this surface appears relatively bright and diffuse. 

White: a piece of medium-density fibreboard (MDF) coated with 
melamine, producing a smooth and glossy surface typical of con-
temporary tables, desks and cabinets. Under infrared illumination, 
this surface appears bright and specular. 

Vinyl: a set of vinyl tiles with slightly rough exterior stone-like 
textures, used to represent stone and textured surfaces typical of 
countertops and floors. Under infrared illumination, this material is 
dark and diffuse.  

Wood: sanded plywood with a cedar veneer, used to represent 
wooden surfaces typical of tables and desks. Under infrared illumi-
nation, this material appears darker, specular and non-uniform. 

Each surface was cut to a 60×60 cm square tile, allowing them 
to be swapped in and out during the experiment. Images of these 
surfaces in visible light and under infrared are shown in Figure 4. 

Prior to the study, we hypothesized that the darker, more com-
plex infrared background of the vinyl surface would degrade our 
infrared tracking, and thus decrease accuracy. 

4.2 Orientations  
We also tested the system in two common orientations: with the 
user seated and touching a vertically-oriented (wall-mounted) sur-
face, and with the user standing and touching a horizontal (table-
mounted) surface. In the Wall condition, the user sat on an adjusta-
ble chair, with the virtual surface centered at chest level (Figure 5, 
right), with the HoloLens at an average distance of 31 cm from the 
wall surface. In the table condition, users stood 6 inches from the 
table edge and looked down (Figure 5, left), averaging 51 cm from 
the HoloLens to the table’s touch surface. 

4.3 Tasks 
For each combination of orientation and surface type (8 conditions 
in all), users performed two tasks: crosshair targeting and tracing. 

The crosshair targeting task required the participant to place 
their fingertip on the surface corresponding to the displayed cross-
hair (Figure 3a), then click the mouse to confirm that they were 
touching the surface. The system recorded all detected touch con-
tacts and their locations on click, allowing us to study the system’s 
contact detection rate. There were 16 crosshair locations, placed in 
a 4×4 grid spaced evenly across a 20×20 cm square area. Crosshairs 
were displayed in random order. 

In the tracing task, each participant was presented with eight 
shapes to trace: four circles (Figure 3b; each combination of clock-
wise/counterclockwise and 10 cm diameter/20 cm diameter) and 
four lines (Figure 3c; running left/right/up/down, all 20 cm long). 
A green arrow indicated where the participant should begin the 
trace, and the system automatically ended the trial when the partic-
ipant completed the shape. Participants then lifted their fingers clear 
of the surface and clicked the mouse to start the next trial.  

Prior to the main experiment, participants performed one trial 
each of the crosshair and tracing tasks to familiarize themselves 
with the experimental procedure; these training trials were not 
included in the final analysis. 

 

  
 
Fig. 5. Surface orientations used in the study. Left: Table orientation. 
Right: Wall orientation. 

 
Fig. 4. Surfaces used in the experiment. User hands shown in infrared for contrast and comparison. 

 

5 RESULTS 

5.1 Crosshair Targeting  
Across 17 participants, we obtained 2176 crosshair trials, recorded 
at the moment that the participant pressed the mouse button. Of 
these, 77 (3.54%) reported no touch contact, so the system located 
at least one touch point 96.5% of the time. In 416 trials (19.12%), 
the system detected two or more touch contacts; of these, 49 
(2.25%) found three or more touch contacts. In the event of multiple 
detected contacts, touch accuracy was computed using the contact 
nearest to the target.  

The distributions of touch contact counts were significantly dif-
ferent (p<0.0001, ANOVA) between the Wall and Table condi-
tions. In the Wall condition (1088 trials), only 2 trials (0.2%) re-
ported no touch contact and 185 trials (17%) reported two or more 
contacts. In contrast, on the Table, 75 trials (6.9%) reported no 
touch contact, and 240 trials (22%) reported two or more contacts. 
No significant differences (p>0.01, ANOVA with Tukey HSD) in 
touch contact count were found between materials. 

5.1.1 Spatial Accuracy 
Analysis of our crosshair data demonstrated a systematic offset be-
tween the target positions and the received touch position. Reported 
touch positions were an average of 5.0 mm to the right of the cross-
hair (Figure 6) with a negligible (<0.1 mm) vertical shift. This shift 
held constant across all orientations, materials, and user handed-
ness, and thus, for further analysis, we subtracted the global average 
offset from all touch points. In practice, we would add this global 
offset correction as part of the touch detection pipeline, as it is user-
, material- and orientation-independent. To allow for direct 
comparison with the OmniTouch system, we followed the same 
data analysis procedure as Harisson et al. [22] and removed 44 out-
lier points (2.0%) which lay more than three standard deviations 
from the target point. Across all remaining points, we achieved a 
global mean Euclidean error (µ) of 5.4 mm (SD=3.2 mm). 

Spatial accuracy showed significant (p<0.0001, ANOVA) dif-
ferences between the Wall (µ=5.7 mm, Figure 6, left) and Table 
(µ=5.0 mm, Figure 6, right) orientations. In terms of materials, pair-
wise Tukey HSD comparisons showed that the Vinyl material 
(µ=6.2 mm) was significantly less accurate than all other materials 
(Drywall µ=5.0 mm p<0.0001, White µ=5.3 mm p<0.0001，Wood 
µ=5.0 mm p<0.0001), but no other significant differences were 
found (p>0.01).  

Plotting the 95% confidence ellipses for the Wall and Table  
conditions (Figure 6) shows that, on average, a 16 mm diameter but-
ton would capture 95% of touches, which compares favorably with 
the 15 mm button diameter for capacitive touchscreens found by 
Holz, et al. [26]. 

5.2 Tracing  
For our shape tracing task, we continually computed the absolute 
Euclidean distance between each incoming touch point and the 
nearest point on the shape. Because graphical feedback was pro-
vided, we did not apply any post-hoc offset correction, reasoning 
that users would naturally adjust their motions to compensate for 
any observed inaccuracies. The mean Euclidean distance across all 
users, conditions, and orientations was 4.0 mm (SD=3.4 mm), with 
no significant differences across shapes, materials or orientations. 

5.3 Latency 
A static analysis of latency in our research prototype (as determined 
through timestamping various stages in the pipeline) suggests an 
expected latency between 105~175 ms, or a mean latency of 
140 ms, from physical touch event to the first displayed frame in-
corporating the event.  However, due to smoothing factors, the ob-
served latency is somewhat higher, at around 180~200 ms in em-
pirical testing. 

5.4 Comparison with Existing Approaches 
In terms of spatial accuracy, our results compare favorably to past 
ad-hoc touch tracking approaches. Wilson [57] does not provide a 
formal evaluation of spatial touch accuracy, but suggests a posi-
tional error of 7 mm at a sensor distance of 75 cm from a fixed, pre-
calibrated surface. KinectFusion [30] demonstrates, but does not 
formally evaluate the touch tracking methodology. DIRECT [59] 
demonstrates 4.8 mm average Euclidean error, albeit with a signif-
icantly different setup over a rigidly pre-calibrated table surface. 

Finally, OmniTouch [22] shows an average positional offset of 
11.7 mm (dependent on surface orientation), compared with our 
5.0 mm global offset. OmniTouch also plotted the 95% confidence 
ellipses to evaluate its accuracy; in the best condition (touching on 
a wall), the confidence ellipses measure an average of 28 mm in 
diameter (compared with MRTouch’s 16 mm buttons).  

6 DISCUSSION 

6.1 Click Detection 
Our crosshair study demonstrated a surprisingly high rate of both 
missed touches (3.5%) and spurious extra touches (19%). From re-
viewing the study logs and recordings, we determined that poor 
hover sensing was primarily to blame for both issues. When we 
missed touches, the finger itself was often located but the finger’s 
height did not cross our heuristic threshold. On the flip side, we 
observed that many participants held their thumbs out while per-
forming the crosshair task, which were correctly detected as an ad-
ditional finger. However, in a few trials, the thumbs were detected 
as touching the surface. This often happened when participants un-
consciously brought the thumbs close to (but not touching) the sur-
face during the experiment, and the lack of visual feedback meant 
that people were unaware that the system was detecting a contact 
event. 

Contact detection was not the primary subject of our initial 
MRTouch implementation; instead, we sought to tackle the orthog-
onal problem of spatial accuracy. Because divining the finger’s dis-
tance from the surface is difficult solely from an overhead view, we 
felt that solving the contact detection problem was out of scope for 
this paper, and thus chose a hover detection implementation similar 
to those used by other ad-hoc touch tracking systems we reviewed. 
However, we expect that more sophisticated finger height estima-
tion algorithms could produce better results in the future, and we 
look forward to exploring this issue further. 

6.2 Latency 
Latency is a crucial consideration for touch input. While our system 
latency of ~180 ms is comparable with the higher end of 
touchscreen latencies (50~200 ms, per [47]), people can notice 

 
Fig. 6. Scatterplot of touch points in the wall condition (left) and  
table condition (right), plotted with 95% confidence ellipses. Grid 
intersections correspond to crosshair points. 
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latencies as low as 20 ms [31]. The latency problem is often exac-
erbated on large displays (e.g., wall-sized displays) because sensing 
larger displays typically requires more processing time, and simul-
taneously users can move much faster across the display (increasing 
the observed gap between physical actions and virtual responses). 
Thus, for larger displays, people may be even more sensitive to la-
tency issues. 

We emphasize that our system latency is largely a prototyping 
limitation. Most of the HoloLens’ existing tracking algorithms run 
on the dedicated HPU ASIC, which has very low latency access to 
depth data combined with high input priority (i.e. low-latency ac-
cess to the system input event queue). Our prototype does not cur-
rently run on the HPU, but rather on the HoloLens’ CPU. We esti-
mate that the latency for an HPU implementation would average 
around 60 ms (depth camera average latency + touch pipeline pro-
cessing time + rendering average delay + display latency), which is 
comparable to high-end commercial touchscreens. 

Decreasing latency is thus a major topic of future work. Besides 
an HPU implementation, we could also explore techniques such as 
forward prediction to forecast the user’s finger position and pre-
touch [25] to predict when the user will contact the surface. 

6.3 Effects of Orientation 
We found significant orientation-dependent effects on detected 
touch count. In our study, participants sat much closer to the Wall 
(31 cm) than the Table (51 cm). Our analysis of the data suggests 
that the longer Table distance increased depth noise but not infrared 
noise, causing more touch contacts to exceed the predefined hover 
thresholds, resulting in reduced touch detection accuracy. 

Although the Wall orientation was significantly less accurate 
than the Table orientation (5.7 mm vs 5.0 mm), this difference is 
relatively slight, suggesting that the use of the infrared map helps 
ensure a high level of spatial accuracy. Future work will need to 
account for varying depth sensor noise levels in order to provide 
accurate click detection. 

6.4 Effects of Material 
From our study, we found that touch tracking had significantly 
worse spatial accuracy on the vinyl material. This may be due to a 
combination of surface roughness (which increases depth noise) 
and dark infrared profile (which reduces contrast with the hands). 
However, even on that material, we still achieve a high degree of 
spatial accuracy relative to prior work. 

In general, some materials will perform worse than others, and 
in the extreme case, some materials will not work at all. For in-
stance, we initially considered a fifth material, MDF coated in black 
paint, which absorbed a significant amount of infrared radiation (i.e., 
it is black in the infrared spectrum too). We were unable to use this 
material for the study, though, because the low reflectivity pre-
vented the depth camera from even sensing the surface. Further-
more, transparent surfaces (e.g., glass) will likely never be sup-
ported by depth-based touch tracking, necessitating some means of 
distinguishing suitable from unsuitable surfaces and conveying this 
in the interface so that the user’s expectations are properly set.  

The infrared reflectivity of a surface is likely to be a strong pre-
dictor of its ability to support MRTouch interactions – for instance, 
dark or highly patterned surfaces may not support interactions as 

well. Therefore, at a distance, we should be able to determine how 
well touch tracking will work before users attempt to interact with 
the surface, and we can present feedback to users to allow them to 
choose an appropriate surface. For example, we could choose to 
only highlight suitable surfaces with a surface indicator (Figure 1b), 
so that users would learn to associate the indicator with the ability 
to perform touch interaction. 

7 MIXED-REALITY TOUCH INTERFACES 
To demonstrate the utility of MRTouch, we built several exam-

ple applications, which we describe below. We also encourage the 
reader to inspect these applications in greater detail in the accom-
panying Video Figure. Note that the digitally-overlaid content was 
not edited to synchronize with the color video camera – the video 
figure accurately reproduces the visual feedback and perceived la-
tency of the system as seen by the user. The perceived latency to 
head motion is low due to the HoloLens’ use of late-stage reprojec-
tion (LSR) functionality (which uses interpolated rendering [39] 
similar to e.g. Oculus Asynchronous Time-Warp [48]), which visu-
ally warps content to compensate for post-render head motion. 

7.1 Creating Touch Interfaces 
When a person walks up to a surface that is not hosting an existing 
interface, a visual representation of the computed ephemeral surface 
plane (Figure 1b) is shown to indicate that the surface supports 
touch interaction. Inspired by OmniTouch [22], the user can simply 
touch the surface to begin defining the interactive region. As the 
user drags their finger along the surface, the system displays a pro-
posed rectangular interactive area on the surface (Figure 1c) ori-
ented according to the user’s point of view. After the finger is re-
leased, the interactive region instantiates with an application menu 
(Figure 1d), from which the user can select an app to run on that 
region (Figure 1e). In a practical implementation, a delimiting input 
(e.g., a voice command or unique hand gesture) could be added be-
fore the initial drag input to avoid inadvertent input on inactive sur-
faces (the Midas touch problem). 

7.2 Standard Multitouch Interaction 
Applications running on the surface support standard single-touch 
and multi-touch inputs, such as clicking, panning and zooming. Fur-
thermore, the ability to support standard multitouch input opens the 
possibility of running traditional tablet PC applications within vir-
tual touchscreens (e.g., a document reader or web browser), greatly 
expanding the number of available applications. 

7.3 Interactive Control of 3D Objects 
Touch input can also be used to control 3D objects, such as control-
ling their rotation, size and scale, by manipulating appropriate on-
surface control elements (as proposed in [6]). In our example, the 
person can select a 3D object in their view, dock them by moving 
them closer to the surface, and then use on-surface touch control 
elements (e.g., a rotation dial, Figure 1e) to manipulate the object. 
Crucially, the precision of touch input allows users to make fine 
adjustments to objects. 

 
 
Fig. 7. Blueprint extrusion app. (a) The user draws a blueprint with 
their finger. (b) They use an in-air open-hand gesture to extrude it, 
using hand height to set the extrusion distance. (c) The user closes 
their hand to lock-in the extrusion. 

 
 
Fig. 8. Snapping interfaces to touch surfaces. (a) AR apps often float 
in mid-air with gaze/gesture-input buttons. (b) With MRTouch, the 
user can move the app near a surface, which highlights in response. 
(c) When the user lets go, the interface and toolbar snap to the sur-
face, enabling touch interaction.  

 

7.4 Combining Touch Interaction and In-Air Gestures 
MRTouch naturally supports finger input both on and off the sur-
face, making it possible to combine touch interaction on a surface 
with gestures performed above it. For instance, after drawing the 
blueprint for a building using touch input (Figure 7a), a user can use 
an in-air gesture (Figure 7b) to adjust its z-height, thus naturally 
extruding a 2D cross-section into a 3D volume (Figure 7c). Many 
more interactions are possible; see e.g., [6][15] for an exploration 
of mixed-modality gestures. 

7.5 Converting In-Air Interfaces into Touch Interfaces 
HoloLens applications often feature menus or toolbars, which users 
ordinarily interact with using head gaze and hand gestures (Figure 
8a). With MRTouch, a person can move such an application onto a 
surface (Figure 8b), whereupon the in-air menu transforms into a 
touch surface (Figure 8c). By enabling a seamless transition be-
tween on-surface and in-air modes, a person can choose an interac-
tion modality that suits their work. Furthermore, because of the 
higher precision of touch input, the on-surface mode could be used 
to surface additional functionality – for example, expanding a sim-
ple palette of image operations into a complete Photoshop-like 
toolbar. 

8 CONCLUSION 
We have presented MRTouch, a touch tracking solution which 
brings un-instrumented touch input, on a wide variety of common 
surfaces, to head-mounted mixed reality. In this way, mixed reality 
systems can benefit from a precise, tactile and familiar way to in-
teract with virtual content, neatly complementing the existing input 
modalities. Through a user evaluation, we determined that our sys-
tem can provide near-touchscreen levels of spatial accuracy, ena-
bling a host of useful interactions. By demonstrating usable touch 
input using our commodity setup, we hope to demonstrate that 
touch input is a feasible and useful addition to the mixed-reality in-
put toolbox, and hope that it can serve to inspire further work in this 
area. 
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latencies as low as 20 ms [31]. The latency problem is often exac-
erbated on large displays (e.g., wall-sized displays) because sensing 
larger displays typically requires more processing time, and simul-
taneously users can move much faster across the display (increasing 
the observed gap between physical actions and virtual responses). 
Thus, for larger displays, people may be even more sensitive to la-
tency issues. 

We emphasize that our system latency is largely a prototyping 
limitation. Most of the HoloLens’ existing tracking algorithms run 
on the dedicated HPU ASIC, which has very low latency access to 
depth data combined with high input priority (i.e. low-latency ac-
cess to the system input event queue). Our prototype does not cur-
rently run on the HPU, but rather on the HoloLens’ CPU. We esti-
mate that the latency for an HPU implementation would average 
around 60 ms (depth camera average latency + touch pipeline pro-
cessing time + rendering average delay + display latency), which is 
comparable to high-end commercial touchscreens. 

Decreasing latency is thus a major topic of future work. Besides 
an HPU implementation, we could also explore techniques such as 
forward prediction to forecast the user’s finger position and pre-
touch [25] to predict when the user will contact the surface. 

6.3 Effects of Orientation 
We found significant orientation-dependent effects on detected 
touch count. In our study, participants sat much closer to the Wall 
(31 cm) than the Table (51 cm). Our analysis of the data suggests 
that the longer Table distance increased depth noise but not infrared 
noise, causing more touch contacts to exceed the predefined hover 
thresholds, resulting in reduced touch detection accuracy. 

Although the Wall orientation was significantly less accurate 
than the Table orientation (5.7 mm vs 5.0 mm), this difference is 
relatively slight, suggesting that the use of the infrared map helps 
ensure a high level of spatial accuracy. Future work will need to 
account for varying depth sensor noise levels in order to provide 
accurate click detection. 

6.4 Effects of Material 
From our study, we found that touch tracking had significantly 
worse spatial accuracy on the vinyl material. This may be due to a 
combination of surface roughness (which increases depth noise) 
and dark infrared profile (which reduces contrast with the hands). 
However, even on that material, we still achieve a high degree of 
spatial accuracy relative to prior work. 

In general, some materials will perform worse than others, and 
in the extreme case, some materials will not work at all. For in-
stance, we initially considered a fifth material, MDF coated in black 
paint, which absorbed a significant amount of infrared radiation (i.e., 
it is black in the infrared spectrum too). We were unable to use this 
material for the study, though, because the low reflectivity pre-
vented the depth camera from even sensing the surface. Further-
more, transparent surfaces (e.g., glass) will likely never be sup-
ported by depth-based touch tracking, necessitating some means of 
distinguishing suitable from unsuitable surfaces and conveying this 
in the interface so that the user’s expectations are properly set.  

The infrared reflectivity of a surface is likely to be a strong pre-
dictor of its ability to support MRTouch interactions – for instance, 
dark or highly patterned surfaces may not support interactions as 

well. Therefore, at a distance, we should be able to determine how 
well touch tracking will work before users attempt to interact with 
the surface, and we can present feedback to users to allow them to 
choose an appropriate surface. For example, we could choose to 
only highlight suitable surfaces with a surface indicator (Figure 1b), 
so that users would learn to associate the indicator with the ability 
to perform touch interaction. 

7 MIXED-REALITY TOUCH INTERFACES 
To demonstrate the utility of MRTouch, we built several exam-

ple applications, which we describe below. We also encourage the 
reader to inspect these applications in greater detail in the accom-
panying Video Figure. Note that the digitally-overlaid content was 
not edited to synchronize with the color video camera – the video 
figure accurately reproduces the visual feedback and perceived la-
tency of the system as seen by the user. The perceived latency to 
head motion is low due to the HoloLens’ use of late-stage reprojec-
tion (LSR) functionality (which uses interpolated rendering [39] 
similar to e.g. Oculus Asynchronous Time-Warp [48]), which visu-
ally warps content to compensate for post-render head motion. 

7.1 Creating Touch Interfaces 
When a person walks up to a surface that is not hosting an existing 
interface, a visual representation of the computed ephemeral surface 
plane (Figure 1b) is shown to indicate that the surface supports 
touch interaction. Inspired by OmniTouch [22], the user can simply 
touch the surface to begin defining the interactive region. As the 
user drags their finger along the surface, the system displays a pro-
posed rectangular interactive area on the surface (Figure 1c) ori-
ented according to the user’s point of view. After the finger is re-
leased, the interactive region instantiates with an application menu 
(Figure 1d), from which the user can select an app to run on that 
region (Figure 1e). In a practical implementation, a delimiting input 
(e.g., a voice command or unique hand gesture) could be added be-
fore the initial drag input to avoid inadvertent input on inactive sur-
faces (the Midas touch problem). 

7.2 Standard Multitouch Interaction 
Applications running on the surface support standard single-touch 
and multi-touch inputs, such as clicking, panning and zooming. Fur-
thermore, the ability to support standard multitouch input opens the 
possibility of running traditional tablet PC applications within vir-
tual touchscreens (e.g., a document reader or web browser), greatly 
expanding the number of available applications. 

7.3 Interactive Control of 3D Objects 
Touch input can also be used to control 3D objects, such as control-
ling their rotation, size and scale, by manipulating appropriate on-
surface control elements (as proposed in [6]). In our example, the 
person can select a 3D object in their view, dock them by moving 
them closer to the surface, and then use on-surface touch control 
elements (e.g., a rotation dial, Figure 1e) to manipulate the object. 
Crucially, the precision of touch input allows users to make fine 
adjustments to objects. 

 
 
Fig. 7. Blueprint extrusion app. (a) The user draws a blueprint with 
their finger. (b) They use an in-air open-hand gesture to extrude it, 
using hand height to set the extrusion distance. (c) The user closes 
their hand to lock-in the extrusion. 

 
 
Fig. 8. Snapping interfaces to touch surfaces. (a) AR apps often float 
in mid-air with gaze/gesture-input buttons. (b) With MRTouch, the 
user can move the app near a surface, which highlights in response. 
(c) When the user lets go, the interface and toolbar snap to the sur-
face, enabling touch interaction.  

 

7.4 Combining Touch Interaction and In-Air Gestures 
MRTouch naturally supports finger input both on and off the sur-
face, making it possible to combine touch interaction on a surface 
with gestures performed above it. For instance, after drawing the 
blueprint for a building using touch input (Figure 7a), a user can use 
an in-air gesture (Figure 7b) to adjust its z-height, thus naturally 
extruding a 2D cross-section into a 3D volume (Figure 7c). Many 
more interactions are possible; see e.g., [6][15] for an exploration 
of mixed-modality gestures. 

7.5 Converting In-Air Interfaces into Touch Interfaces 
HoloLens applications often feature menus or toolbars, which users 
ordinarily interact with using head gaze and hand gestures (Figure 
8a). With MRTouch, a person can move such an application onto a 
surface (Figure 8b), whereupon the in-air menu transforms into a 
touch surface (Figure 8c). By enabling a seamless transition be-
tween on-surface and in-air modes, a person can choose an interac-
tion modality that suits their work. Furthermore, because of the 
higher precision of touch input, the on-surface mode could be used 
to surface additional functionality – for example, expanding a sim-
ple palette of image operations into a complete Photoshop-like 
toolbar. 

8 CONCLUSION 
We have presented MRTouch, a touch tracking solution which 
brings un-instrumented touch input, on a wide variety of common 
surfaces, to head-mounted mixed reality. In this way, mixed reality 
systems can benefit from a precise, tactile and familiar way to in-
teract with virtual content, neatly complementing the existing input 
modalities. Through a user evaluation, we determined that our sys-
tem can provide near-touchscreen levels of spatial accuracy, ena-
bling a host of useful interactions. By demonstrating usable touch 
input using our commodity setup, we hope to demonstrate that 
touch input is a feasible and useful addition to the mixed-reality in-
put toolbox, and hope that it can serve to inspire further work in this 
area. 
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