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ABSTRACT

The reverberation time of an acoustic environment is a useful pa-
rameter for applications including source localisation, speech recog-
nition and mixed reality. However, estimating the reverberation time
blindly and on the fly remains a challenge. Here we propose for-
mulating the estimation as a regression problem and using a con-
volutional neural network (CNN) to estimate the reverberation time
directly from a four second long single-channel recording of rever-
berant speech in noise. Evaluation on the ACE Challenge data cor-
pus suggests that the proposed method is computationally efficient
and outperforms state-of-the-art methods.

Index Terms— T60, energy decay rate, deep neural networks

1. INTRODUCTION

The reverberation time is one of the most important parameters de-
scribing an environment’s acoustic behaviour. It is typically defined
as the time, T60, it takes for the acoustic impulse response (AIR)
energy to decay by 60 dB. Besides its perceptual relevance [1, 2, 3],
the T60 is important in practical applications, including mixed reality
and voice-controlled systems, as it affects the performance of sound
source localisation [4] and speech recognition systems [5, 6].

While well-established methods exist to determine the T60 from
an AIR [7, 8], the AIR itself is typically not available in practical
scenarios. Instead, the T60 has to be inferred directly from signals
present in the acoustic environment, e.g., speech captured by a user’s
device. This can be challenging, especially if the recorded signals
stem from unknown sources and are corrupted by ambient noise. In
2015 the ACE Challenge workshop was held to address the question
of blindly estimating the T60 from speech signals recorded in rever-
berant, noisy environments [9]. The challenge resulted in a number
of state-of-the-art T60 estimation methods, including classic signal
processing as well as machine learning approaches.

Prego et al. contributed the method with the best performance
in terms of the Pearson correlation coefficient between estimated
and ground-truth T60 [10, 11]. The method relies on estimating the
signal-to-noise ratio (SNR) from silence at the beginning of a sample
and applying a noise reduction technique before estimating the T60

from features in the Short Time Fourier Transform (STFT) domain.
Faraji et al. propose fitting a first-order infinite impulse response

(IIR) model to reverberant speech, showing a relation between the
IIR pole and the T60 [12]. While they report that their approach out-
performs one of the baseline methods in the ACE Challenge [13],
it is not clear how it would compare to state-of-the-art approaches.
Lee and Chang employ a fully-connected neural network with three
hidden layers to estimate the T60 of speech samples convolved with

synthetic room impulse responses and additive babble noise at 20 dB
SNR [14]. They propose using a Mel-frequency spectrogram rather
than STFT features to reduce computational complexity. However,
experimental results are only reported for synthetic data, making
it difficult to assess how well the method would generalise to real
recordings of noisy, reverberant speech. Senoussaoui et al. propose
an approach that fuses short- and long-term speech features to esti-
mate T60 from speech in noisy environments [15]. They show that
their method outperforms one of the ACE Challenge baseline meth-
ods [16]. However, no comparison to state-of-the art methods is
reported. Lee and Chang propose using a deep neural network to es-
timate reverberation time from multi-channel recordings [17]. How-
ever, the method is only evaluated on simulated AIRs. The number,
variety, and complexity of the previously proposed algorithms are an
indication of the difficulty of the T60 estimation problem.

Here we propose a single-channel T60 estimation approach that
is conceptually straightforward and computationally efficient, and
we evaluate it on the ACE Challenge corpus, allowing direct com-
parison with state-of-the-art methods. Recently, convolutional neu-
ral networks have been applied successfully in many areas, including
image classification [18], classic speech and audio problems [19, 4],
as well as perceptual modelling [20]. They can be advantageous over
standard feedforward networks as they have fewer free parameters
and are thus easier to train [18]. We hypothesise that learning and
combining convolution kernels is a well-suited approach for extract-
ing features related to the T60 from reverberant speech, as it enables
the network to learn representations that rely both on local spectral
and temporal features (e.g., short, band-limited decay slopes) and
their combinations at higher abstraction levels.

2. REGRESSION LEARNING USING A NEURAL
NETWORK

Machine learning has rapidly advanced the state-of-the-art in areas
including speech recognition [21] and image classification [22]. In
the audio domain, neural networks have been used successfully to
estimate the T60 [23], the direction of arrival of a sound source [4],
and the polar angle of a binaural signal [20], by formulating the goal
of estimating a continuous variable as a classification problem. Here
we propose formulating the T60 estimation as a regression problem.
This has three advantages over using a classification approach:

• the ground truth T60 data do not need to be quantised;

• we utilise a loss function that directly minimises the estima-
tion error, rather than the classification error, potentially lead-
ing to better estimation performance [24];

• the model directly outputs a continuous-valued T60 estimate.
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Fig. 1. Histogram of T60 values in training data.

Type data # samples

training 1325 synthetic and measured IRs 34489
validation ACE development set [9] 1986
testing ACE evaluation set [9] 16080

Table 1. Training, validation, and test sets.

We use a convolutional neural network combined with a fully con-
nected layer with a single output node that directly estimates T60.
As the training loss function we use the squared error between the
T60 estimate and the ground truth value. Unlike loss functions used
for classification tasks, e.g., the cross-entropy loss, that do not en-
code class order or distance, the squared error is a distance metric.
To minimise the training loss the network is forced to learn a repre-
sentation that minimises the distance between samples with similar
T60. We hypothesise that this leads to a more robust model and better
estimation performance than approaches based on classification.

3. PROPOSED APPROACH

The proposed approach for estimating T60 blindly from speech re-
lies on a deep convolutional network trained with a large number of
noisy, reverberant speech samples with known T60 values.

3.1. Training data generation

Obtaining training data of sufficient quality and quantity is crucial
for the performance of a deep neural network. To generate noisy,
reverberant speech samples we follow the specifications for noise
types and SNR levels outlined in the ACE Challenge [9]. To ensure
that the trained model does not overfit the training data or hone in on
artifacts stemming from the data synthesis process, it is important
to carefully separate training and test data. A typical setup splits all
available data into three separate sets: a training set for training the
network; a validation set to monitor whether the network is overfit-
ting during training; and a test set to evaluate the final trained model.

The data corpus used for the ACE Challenge contains separate
development and evaluation sets [9]. Here we use the ACE develop-
ment set for model validation, and the ACE evaluation set for model
testing. To create training data, we generated 670 synthetic AIRs
using the image source method for shoebox environments of vary-
ing sizes and with varying absorption coefficients [25]. For each
simulated shoebox, one randomly placed source and five randomly

0 1 2 3 4

[s]

1000

2000

3000

4000

5000

6000

[H
z
]

Fig. 2. Pre-processed input sample (21 × 1996), for T60= 0.206 s.

placed receivers were simulated. The synthetic AIRs were combined
with 655 measured multi-channel AIRs from internal and publicly
available databases, including the Openair database [26], the RWCP
database [27], the REVERB Challenge dataset [5], the EchoThief
database [28], and datasets available in the SOFA format [29], yield-
ing a total of 1325 AIRs with T60 values between 0.1 and 1.5 s. The
ground truth T60 values were estimated using a method proposed by
Karjalainen et al. [8]. A histogram of the T60 values of all AIRs used
to generate training data is shown in Figure 1. As can be seen, the
distribution is not uniform, and it is not clear whether this distribu-
tion is representative of the T60 values encountered in real environ-
ments. For methods to address class imbalance with convolutional
neural networks the reader is referred to the work by Buda et al. [30].
No such methods were considered in the present work.

Speech samples were selected randomly from the TIMIT
database [31] and an internal corpus of close-mic recordings. After
discarding samples with low SNR or other artifacts, this resulted in
a set of 903 English utterances by female and male speakers.

For the purposes of this work we only considered the noise types
contained in the ACE corpus: “ambient”, “fan”, and “babble” [9].
Due to this limitation, it is not clear how the proposed approach
would behave in the case of noise types not seen during training. To
simulate ambient and fan noise, we extracted the magnitude spectra
of random 10 s long segments of the corresponding noise record-
ings in the ACE development set and shaped white Gaussian noise
with those spectra. 22 anechoic sound samples (foot steps, coughing,
office equipment, etc.) were randomly added to the noise samples
to simulate non-stationary background noise. We then convolved
these noise samples with the multi-channel AIRs in our training set
to simulate decorrelated ambient and fan noise recordings. To sim-
ulate babble noise, we convolved random speech samples from our
speech corpus with the multi-channel AIRs and added them to the
simulated ambient noise samples.

The training samples were created by convolving random speech
samples with the training AIRs and adding the synthetic noise sam-
ples to yield SNRs of 0, 10, and 20 dB, using the tools provided with
the ACE corpus [9]. This resulted in a total of 23 850 reverberant,
noisy training utterances with durations between 4 and 10 s. Table 1
summarises the data sets used in this work.

3.2. Data preprocessing

While neural network architectures exist that consume raw au-
dio [19], and the first layers of deep convolutional neural networks
have been shown to learn pre-processing filters directly from the
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Fig. 3. Block diagram of CNN architecture.

data [18], for T60 estimation an intuitive first step seems to be to
apply a transform to the input signal that reveals spectro-temporal
features. The best-performing algorithms in the ACE Challenge
transformed the input signal into the STFT domain before further
processing [11]. When using convolutional neural networks, the di-
mensions of the input data affect the number of trainable parameters
and thus the model complexity. Highly complex models are difficult
to train and may result in overfitting [18]. To keep model complexity
low while preserving signal information we deemed relevant for the
T60 estimation problem we chose a transform with low spectral and
high temporal resolution.

The input samples were split into chunks of four seconds with
0.5 seconds overlap. To remove parts with little or no audio activity,
chunks whose RMS level was more than 20 dB lower than the RMS
level of the entire sample were discarded. This yielded a total of
34 489 training samples. The level of each chunk was normalised
using an A-weighting filter. Each chunk was then processed through
a gammatone ERB filterbank [32] with 21 frequency bands from
400 Hz to 6 kHz. Temporal features were obtained in each band by
taking the log of the energy summed in frames of 64 samples with an
overlap of 32 samples, resulting in a feature matrix of size 21×1996
for each input chunk. Finally, we performed spectral whitening by
subtracting the median value from each row of the feature matrix
and normalised the features to have approximately zero mean and
a standard deviation of one [18]. An example of the resulting pre-
processed input feature matrix is shown in Figure 2.

3.3. Network architecture

The proposed network consists of six convolutional layers with a
rectified linear unit (ReLU) activation function, each followed by
a batch normalisation layer [33]. A single 50% drop-out layer is
added to prevent overfitting [18]. The final layer consists of a fully
connected layer with a linear activation function and a single output
node. The output node produces a T60 estimate for every input fea-
ture matrix, i.e., one estimate for every four seconds of audio input.
A block diagram of the proposed architecture is shown in Figure 3.
The parameters of the convolutional layers are summarised in Ta-
ble 2. As can be seen, the filters in the first four layers contain only
a single row, i.e., they extract mostly temporal information. Spectral
features are combined only in the last two layers as well as the final
fully connected layer. The whole network contains a total of 2541
trainable parameters. The network seems to be of sufficiently low
complexity to minimise overfitting the training data, while having
enough capacity to capture the relations between spectro-temporal
features and the T60. Removing layers or complexity seemed to neg-
atively affect performance, while increasing the number of trainable
parameters seemed to either have only a marginal effect on perfor-
mance or lead to overfitting.

conv1 conv2 conv3 conv4 conv5 conv6

size 1×10 1×10 1×11 1×11 3×8 4×7
stride (1, 2) (1, 3) (1, 3) (1, 2) (2, 2) (2, 1)
# filters 5 5 5 5 5 5

Table 2. Specifications of the convolutional layers. The total number
of trainable parameters in the whole network is 2541.

4. EXPERIMENTAL EVALUATION

The convolutional neural network was implemented using the Mi-
crosoft Cognitive Toolkit (CNTK) [34] and trained using the data
generated as described in Section 3.1. Training was performed on
two GPUs using stochastic optimisation [35] of a squared error loss
function, over 1500 epochs. The final trained model was tested using
the evaluation set of the ACE Challenge corpus [9].

To evaluate the performance of the proposed method the same
criteria as for the ACE Challenge are used [9]:

• the estimation bias, calculated as the mean of the estimation
error;

• the mean squared error (MSE);

• the Pearson correlation coefficient, ρ, between estimated and
ground truth T60 values.

The ACE Challenge results also include the real-time factor (RTF)
for each algorithm, calculated as the ratio between compute time and
sample duration [11]. However, as the compute time is dependent on
the specific computer hardware used for evaluation, the RTF of the
proposed method and those reported in the ACE Challenge are not
directly comparable. For reference, the RTF of the proposed method
was estimated at about 0.05, i.e., 20 times faster than real-time, with
about 95% of the compute time spent pre-processing speech files
in Matlab. The actual T60 estimation using the pre-processed input
samples and running on a GPU clocked in at a RTF of about 0.002,
i.e., 500 times faster than real-time, due to CNTK being highly opti-
mised [34]. While this result is not directly comparable to RTF val-
ues reported for the algorithms in the ACE Challenge, it serves as an
indication of the computational efficiency of the proposed method.

Table 3 shows a comparison of the proposed method and
two benchmark algorithms from the ACE Challenge: the best-
performing machine-learning based algorithm [23], as well as
the best-performing algorithm overall [10]. As can be seen, the
proposed method outperforms both benchmark algorithms on all
metrics, achieving the lowest bias and MSE as well as the high-
est Pearson correlation coefficient, ρ. It should be noted that the
proposed method operates on input chunks with a fixed length of
four seconds, i.e., shorter utterances are zero-padded while longer
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Fig. 4. Estimation error for training set (top) and evaluation set (bot-
tom). For better visibility, the results are binned by T60 with a reso-
lution of 0.1 s.

utterances result in multiple T60 estimates. Although measures were
taken to prevent overfitting, the performance of the model on the
training set was substantially better than on the ACE Challenge eval-
uation set, with a bias of 0.0055, a MSE of 0.0125, and a Pearson
correlation coefficient of 0.953. This discrepancy between training
and test performance illustrates the importance of strictly separating
training and test sets when evaluating a machine learning model,
especially when using small and/or synthetic data sets, as is quite
common in the audio domain. Figure 4 shows the error performance
for the training set (top) and the ACE Challenge evaluation set (bot-
tom). The estimation error seems to increase towards higher T60

values. This is expected, as estimating a long T60 presumably re-
quires a long input sample that is sufficiently sparse to observe long
energy decays. Figure 5 shows confusion matrices for the training
set (left) and the ACE Challenge evaluation set (right). As can be
seen, the estimation error is distributed around the true T60 value,
indicating that the CNN successfully learned a representation of the
underlying regression problem. SNR did not seem to have a major
effect on performance for the noise levels and types tested here.

5. CONCLUSION AND FUTURE WORK

Blind T60 estimation from noisy, reverberant speech remains a chal-
lenging problem. We show that the estimation can be modelled as
a regression problem and implemented with a convolutional neural
network (CNN). After training the model using over 30 000 input
samples containing varying levels of ambient noise and reverbera-
tion and taking measures to combat overfitting, the proposed method
is shown to outperform state-of-the-art algorithms on the ACE Chal-
lenge evaluation corpus for T60 estimation [9, 11]. Due to the highly
optimised implementation of the model [34], the proposed estima-
tion algorithm is shown to be computationally efficient, running sig-
nificantly faster than real-time.

While these results are encouraging and prove the potential of
the proposed approach, future work is needed to expand the training
set, e.g., by collecting more data or using data augmentation [18].
This would potentially allow training a more complex network archi-
tecture with higher capacity and better performance. Furthermore,
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Fig. 5. Confusion matrices of ground truth T60 and estimates T̂60

for training set (left) and evaluation set (right). For better visibility,
the results are binned by T60 with a resolution of 0.1 s.

Method Bias MSE ρ

MLP [23] −0.0967 0.104 0.48
QA Reverb [10] −0.068 0.0648 0.778
CNN (proposed) 0.0304 0.0384 0.836

Table 3. Experimental results for the best-performing machine-
learning based method [23] and the best method overall [10] in the
ACE Challenge compared to the proposed approach, all evaluated
on the ACE Challenge data corpus.

the model should be evaluated on a broader set of test cases to verify
that the method generalises to unseen scenarios and noise types.
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