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Abstract—We consider the design of computationally ef-
ficient online learning algorithms in an adversarial setting
in which the learner has access to an offline optimization
oracle. We present an algorithm called Generalized Follow-
the-Perturbed-Leader and provide conditions under which it
is oracle-efficient while achieving vanishing regret. Our results
make significant progress on an open problem raised by Hazan
and Koren [1], who showed that oracle-efficient algorithms do
not exist in full generality and asked whether one can identify
conditions under which oracle-efficient online learning may be
possible. Our auction-design framework considers an auction-
eer learning an optimal auction for a sequence of adversarially
selected valuations with the goal of achieving revenue that is
almost as good as the optimal auction in hindsight, among
a class of auctions. We give oracle-efficient learning results
for: (1) VCG auctions with bidder-specific reserves in single-
parameter settings, (2) envy-free item-pricing auctions in multi-
item settings, and (3) the level auctions of Morgenstern and
Roughgarden [2] for single-item settings. The last result leads
to an approximation of the overall optimal Myerson auction
when bidders’ valuations are drawn according to a fast-mixing
Markov process, extending prior work that only gave such
guarantees for the i.i.d. setting.

We also derive various extensions, including: (1) oracle-
efficient algorithms for the contextual learning setting in which
the learner has access to side information (such as bidder
demographics), (2) learning with approximate oracles such as
those based on Maximal-in-Range algorithms, and (3) no-regret
bidding algorithms in simultaneous auctions, which resolve an
open problem of Daskalakis and Syrgkanis [3].

Keywords-online learning; auction design; revenue maximi-
zation; Follow-the-Perturbed-Leader

I. INTRODUCTION

Online learning plays a major role in the adaptive opti-
mization of computer systems, from the design of online
marketplaces [4]–[7] to the optimization of routing schemes
in communication networks [8]. The environments in these
applications are constantly evolving, requiring continued
adaptation of these systems. Online learning algorithms
have been designed to robustly address this challenge, with
performance guarantees that hold even when the environ-
ment is adversarial. However, the information-theoretically
optimal learning algorithms that work with arbitrary payoff
functions are computationally inefficient when the learner’s
action space is exponential in the natural problem representa-

tion [9]. For certain action spaces and environments, efficient
online learning algorithms can be designed by reducing the
online learning problem to an optimization problem [8],
[10]–[12]. However, these approaches do not easily extend
to the complex and highly non-linear problems faced by
real learning systems, such as the learning systems used in
online market design. In this paper, we address the problem
of efficient online learning with an exponentially large action
space under arbitrary learner objectives.

This goal is not achievable without some assumptions on
the problem structure. Since an online optimization problem
is at least as hard as the corresponding offline optimization
problem [3], [13], a minimal assumption is the existence
of an algorithm that returns a near-optimal solution to the
offline problem. We assume that our learner has access
to such an offline algorithm, which we call an offline
optimization oracle. This oracle, for any (weighted) history
of choices by the environment, returns an action of the
learner that (approximately) maximizes the learner’s reward.
We seek to design oracle-efficient learners, that is, learners
that run in polynomial time, with each oracle call counting
O(1).

An oracle-efficient learning algorithm can be viewed
as a reduction from the online to the offline problem,
providing conditions under which the online problem is
not only as hard, but also as easy as the offline problem,
and thereby offering computational equivalence between
online and offline optimization. Apart from theoretical sig-
nificance, reductions from online to offline optimization are
also practically important. For example, if one has already
developed and implemented a Bayesian optimization pro-
cedure which optimizes against a static stochastic environ-
ment, then our algorithm offers a black-box transformation
of that procedure into an adaptive optimization algorithm
with provable learning guarantees in non-stationary, non-
stochastic environments. Even if the existing optimization
system does not run in worst-case polynomial time, but is
rather a well-performing fast heuristic, a reduction to offline
optimization is capable of leveraging any expert domain
knowledge that went into designing the heuristic, as well as
any further improvements of the heuristic or even discovery
of polynomial-time solutions.



Recent work of Hazan and Koren [1] shows that oracle-
efficient learning in adversarial environments is not achiev-
able in general, while leaving open the problem of iden-
tifying the properties under which oracle-efficient online
learning may be possible [14]. We introduce a generic
algorithm called Generalized Follow-the-Perturbed-Leader
(Generalized FTPL) and derive sufficient conditions under
which this algorithm yields oracle-efficient online learning.
Our results are enabled by providing a new way of adding
regularization so as to stabilize optimization algorithms
in general optimization settings. The latter could be of
independent interest beyond online learning. Our approach
unifies and extends previous approaches to oracle-efficient
learning, including the Follow-the-Perturbed Leader (FTPL)
approach introduced by Kalai and Vempala [10] for linear
objective functions, and its generalizations to submodular
objective functions [12], adversarial contextual learning [15],
and learning in simultaneous second-price auctions [3]. Fur-
thermore, our sufficient conditions are related to the notion
of a universal identification set of Goldman et al. [16] and
oracle-efficient online optimization techniques of Daskalakis
and Syrgkanis [3].

The second main contribution of our work is to introduce
a new framework for the problem of adaptive auction
design for revenue maximization and to demonstrate the
power of Generalized FTPL through several applications
in this framework. Traditional auction theory assumes that
the valuations of the bidders are drawn from a population
distribution which is known, thereby leading to a Bayesian
optimization problem. The knowledge of the distribution by
the seller is a strong assumption. Recent work in algorithmic
mechanism design [2], [17]–[19] relaxes this assumption by
solely assuming access to a set of samples from the distri-
bution. In this work, we drop any distributional assumptions
and introduce the adversarial learning framework of online
auction design. On each round, a learner adaptively designs
an auction rule for the allocation of a set of resources to
a fresh set of bidders from a population.1 The goal of the
learner is to achieve average revenue at least as large as the
revenue of the best auction from some target class. Unlike
the standard approach to auction design, initiated by the
seminal work of Myerson [20], our approach is devoid of
any assumptions about a prior distribution on the valuations
of the bidders for the resources at sale. Instead, similar to an
agnostic approach in learning theory, we incorporate prior
knowledge in the form of a target class of auction schemes
that we want to compete with. This is especially appropriate
when the auctioneer is restricted to using a particular design
of auctions with power to make only a few design choices,

1Equivalently, the set of bidders on each round can be the same as long as
they are myopic and optimize their utility separately in each round. Using
our extension to contextual learning, this approach can also be applied
when the learner’s choice of auction is allowed to depend on features of
the arriving set of bidders, such as demographic information.

such as deciding the reserve prices in a second-price auction.
A special case of our framework is considered in the recent
work of Roughgarden and Wang [7]. They study online
learning of the class of single-item second-price auctions
with bidder-specific reserves, and give an algorithm with
performance that approaches a constant factor of the optimal
revenue in hindsight. We go well beyond this specific setting
and show that our Generalized FTPL can be used to optimize
over several standard classes of auctions including VCG
auctions with bidder-specific reserves and the level auctions
of Morgenstern and Roughgarden [2], achieving low additive
regret to the best auction in the class.

In the remainder of this section, we describe our main re-
sults and several extensions and applications in more detail,
including (1) learning with side information (i.e., contex-
tual learning); (2) learning with constant-factor approximate
oracles (e.g., using Maximal-in-Range algorithms [21]); (3)
regret bounds with respect to stronger benchmarks for the
case in which the environment is not completely adversarial,
but follows a fast-mixing Markov process. Most of the
proofs and also formal statements of many of our results
are deferred to the full version of this paper [22].

Our work contributes to two major research agendas:
the design of efficient and oracle-efficient online learning
algorithms [1], [3], [10]–[12], [23]–[26], and auction design
using machine learning tools [2], [4], [6], [17], [18], [27].
The related work from both areas is described in more detail
in the full version [22].

A. Oracle-Efficient Learning with Generalized FTPL

We consider the following online learning problem. On
each round t = 1, . . . , T , a learner chooses an action xt
from a finite set X , and an adversary chooses an action yt
from a set Y . The learner then observes yt and receives a
payoff f(xt, yt) ∈ [0, 1], where the function f is fixed and
known to the learner. The goal of the learner is to obtain low
expected regret with respect to the best action in hindsight,
i.e., to minimize

REGRET := E

[
max
x∈X

T∑
t=1

f(x, yt)−
T∑
t=1

f(xt, yt)

]
,

where the expectation is over the randomness of the learner.2

We desire algorithms, called no-regret algorithms, for which
this regret is sublinear in the time horizon T .

Our algorithm takes its name from the seminal Follow-
the-Perturbed-Leader (FTPL) algorithm of Kalai and Vem-
pala [10]. FTPL achieves low regret, O(

√
T log |X |), by

independently perturbing the historical payoff of each of
the learner’s actions and choosing on each round the action
with the highest perturbed payoff. However, this approach is

2To simplify exposition, we assume that the adversary is oblivious, i.e.,
that the sequence y1, . . . , yT is chosen in advance. Our results generalize
to adaptive adversaries using standard techniques [3], [28].



inefficient when the action space is exponential in the natural
representation of the learning problem, because it requires
creating |X | independent random variables.3 Moreover, be-
cause of the form of the perturbation, the optimization of
the perturbed payoffs cannot be performed by the offline
optimization oracle for the same problem. We overcome
both of these challenges by, first, generalizing FTPL to work
with perturbations that can be compactly represented and
are thus not necessarily independent across different actions
(sharing randomness), and, second, by implementing such
perturbations via synthetic histories of adversary actions (an
approach introduced by Daskalakis and Syrgkanis [3]), thus
creating offline problems of the same form as the online
problem (implementing randomness).

Sharing Randomness: Our Generalized FTPL begins
by drawing a random vector α ∈ RN of dimension N ,
with components αj drawn independently from a dispersed
distribution D. The payoff of each of the learner’s actions
is perturbed by a linear combination of these independent
variables, as prescribed by a perturbation translation matrix
Γ of size |X | ×N , with entries in [0, 1]. Let Γx denote the
row of Γ corresponding to x. On each round t, the algorithm
outputs an action xt that (approximately) maximizes the
perturbed historical performance. In other words, xt is
chosen such that for all x ∈ X ,

t−1∑
τ=1

f(xt, yτ ) + α · Γxt
≥

t−1∑
τ=1

f(x, yτ ) + α · Γx − ε

for some fixed optimization accuracy ε ≥ 0. This procedure
is fully described in Algorithm 1 of Section II.

We show that Generalized FTPL is no-regret as long
as ε is sufficiently small and the translation matrix Γ
satisfies an admissibility condition. This condition requires
the rows of Γ to be (sufficiently) distinct so that each
action’s perturbation uses a different weighted combination
of the N -dimensional noise. To the best of our knowledge,
the approach of using an arbitrary matrix to induce shared
randomness among actions of the learner is novel. The
formal no-regret result is in Theorem II.5. The informal
statement is the following:

Informal Theorem 1. A translation matrix is δ-admissible
if any two rows of the matrix are distinct and the minimum
non-zero difference between any two values within a col-
umn is at least δ. Generalized FTPL with a δ-admissible
matrix Γ and an appropriate distribution D achieves regret
O(N

√
T/δ + εT ).

A technical challenge here is to show that the randomness
induced by Γ on the set of actions X stabilizes the algorithm,
i.e., the probability that xt 6= xt+1 is small. We use the ad-

3If payoffs are linear in some low-dimensional representation of X then
the number of variables needed is equal to this dimension. But for non-
linear payoffs, |X | variables are required.

missibility of Γ to guide us through the analysis of stability.
In particular, we consider how each column of Γ partitions
actions of X to a few subsets (at most 1 + δ−1) based on
their corresponding entries in that column. Since the matrix
rows are distinct, the algorithm is stable as a whole if, for
each column, the partition to which the algorithm’s chosen
action belongs remains the same between consecutive rounds
with probability close to 1. This allows us to decompose the
stability analysis of the algorithm as a whole to the analysis
of stability across partitions of each column. At the column
level, stability of the partition between two rounds follows
by showing that a switch between partitions happens only if
the perturbation αj corresponding to that column falls into
a small sub-interval of the support of the distribution D,
from which it is sampled. The latter probability is small if
D is sufficiently dispersed. This final argument is similar in
nature to the reason why perturbations lead to stability in
the original FTPL [10].

Implementing Randomness: To ensure oracle-efficient
learning, we additionally need the property that the induced
action-level perturbations can be simulated by a (short)
synthetic history of adversary actions. This allows us to
avoid working with Γ directly, or even explicitly writing it
down. This requirement is captured by our implementability
condition, which states that each column of the translation
matrix corresponds to a scaled version of the expected
reward of the learner on some distribution of adversary
actions. The formal statement is in Theorem II.9. The
informal statement is the following:

Informal Theorem 2. A translation matrix is implementable
if each column corresponds to a scaled version of the
expected reward of the learner against some finitely sup-
ported distribution of actions of the adversary. Generalized
FTPL with an implementable translation matrix can be
implemented with one oracle call per round and runs in
time polynomial in N , T , and the size of the support of
the distributions implementing the translation matrix. Oracle
calls count O(1) in the running time.

The use of synthetic histories in online optimization was
first explored by Daskalakis and Syrgkanis [3], who sample
histories of length poly(|Y|) from a fixed distribution. Our
implementability property uses matrix Γ to obtain problem-
specific distributions that stabilize online optimization with
shorter histories.

For some learning problems, it is easier to first construct
an implementable translation matrix and argue about its
admissibility; for others, it is easier to construct an admissi-
ble matrix and argue about its implementability. We pursue
both strategies in various applications, demonstrating the
versatility of our conditions.

Our theorems yield the following simple sufficient condi-
tion for oracle-efficient no-regret learning (see Theorems II.5
and II.9 for more general statements):



If there exist N adversary actions such that any
two actions of the learner yield different rewards
on at least one of these N actions, then Gener-
alized FTPL with an appropriate translation ma-
trix has regret O(N

√
T/δ) and its oracle-based

runtime is poly(N,T ) where δ is the smallest
difference between distinct rewards obtainable on
any one of the N adversary actions.

The aforementioned results establish a reduction from
online optimization to offline optimization. Recall that in the
oracle-based runtime, each oracle call counts O(1). When
the offline optimization problem can be solved in polyno-
mial time, these results imply that the online optimization
problem can also be solved in (fully) polynomial time. The
formal statement is in Corollary II.10.

B. Main Application: Online Auction Design

In many applications of auction theory, including elec-
tronic marketplaces, a seller repeatedly sells an item or a
set of items to a population of buyers, with a few arriving
for each auction. In such cases, the seller can optimize
his auction design in an online manner, using historical
data consisting of observed bids. We consider a setting in
which the seller would like to use this historical data to
select an auction from a fixed target class. For example,
a seller in a sponsored-search auction might be limited by
practical constraints to consider only second-price auctions
with bidder-specific reserves. The seller can optimize the
revenue by using the historical data for each bidder to set
these reserves. Similarly, a seller on eBay may be restricted
to set a single reserve price for each item. Here, the seller can
optimize the revenue by using historical data from auctions
for similar goods to set the reserves for new items. In both
cases, the goal is to leverage the historical data to pick an
auction on each round in such a way that the seller’s overall
revenue compares favorably with the optimal auction from
the target class.

More formally, on round t = 1, . . . , T , a tuple of n
bidders arrives with a vector of n bids or, equivalently,
a vector of valuations (since we only consider truthful
auctions), denoted vt ∈ Vn. We allow these valuations to be
arbitrary, e.g., chosen by an adversary. Prior to observing the
bids, the auctioneer commits to an auction at from a class of
truthful auctions A. The goal of the auctioneer is to achieve
a revenue that, in hindsight, is very close to the revenue that
would have been achieved by the best fixed auction in class
A if that auction were used on all rounds. In other words,
the auctioneer aims to minimize the expected regret

E

[
max
a∈A

T∑
t=1

Rev(a,vt)−
T∑
t=1

Rev(at,vt)

]
,

where Rev(a,v) is the revenue of auction a on bid profile
v and the expectation is over the actions of the auctioneer.

This problem can easily be cast in our oracle-efficient
online learning framework. The learner’s action space is
the set of target auctions A, while the adversary’s action
space is the set of bid or valuation vectors Vn. The offline
oracle is a revenue maximization oracle which computes an
(approximately) optimal auction within the class A for any
given set of valuation vectors. Using the Generalized FTPL
with appropriate matrices Γ, we provide the first oracle-
efficient no-regret algorithms for three commonly studied
auction classes:

– Vickrey-Clarkes-Groves (VCG) auctions with bidder-
specific reserve prices in single-dimensional matroid
settings, which are known to achieve half the revenue
of the optimal auction in i.i.d. settings under some
conditions [29];

– envy-free item-pricing mechanisms in combinatorial
markets with unlimited supply, often studied in the
static Bayesian setting [5], [30];

– single-item level auctions, introduced by Morgenstern
and Roughgarden [2], who show that these auctions
approximate, to an arbitrary accuracy, the Myerson
auction [20], which is known to be optimal for the
Bayesian independent-private-value setting.

The crux of our approach is in designing admissible and
implementable matrices. For the first two mentioned classes,
VCG auctions with bidder-specific reserves and envy-free
item-pricing auctions, we show how to implement an (obvi-
ously admissible) matrix Γ, where each row corresponds,
respectively, to the concatenated binary representation of
bidder reserves or item prices. We show that, surprisingly,
any perturbation that is a linear function of this binary
representation can be simulated by a distribution of bidder
valuations. For the third class, level auctions, our challenge
is to show that a clearly implementable matrix Γ, with
each column implemented by a single bid profile, is also
admissible.

Table I summarizes the regret of our oracle-efficient algo-
rithms and their computational efficiency, assuming oracle
calls take O(1) computation. All variants perform a single
oracle call per round, so T oracle calls in total. The runtimes
demonstrate an efficient reduction from the online problem
to the offline problem.

C. Extensions and Additional Applications

We next overview several extensions and additional appli-
cations that appear in the full version [22]. Table II provides
a summary.

Markovian Adversaries and Competing with the Opti-
mal Auction: Morgenstern and Roughgarden [2] show that
level auctions can provide an arbitrarily accurate approxima-
tion to the overall optimal Myerson auction in the Bayesian
single-item auction setting if the values of the bidders are
drawn from independent distributions and i.i.d. over time.
Therefore, if the environment in an online setting picks



Table I
REGRET BOUNDS AND ORACLE-BASED RUNTIME FOR THE AUCTION CLASSES CONSIDERED IN THIS WORK, FOR n BIDDERS AND TIME HORIZON T .

ALL OUR ALGORITHMS PERFORM A SINGLE ORACLE CALL PER ROUND.

Auction Class Regret Oracle-Based Runtime Section
VCG with bidder-specific reserves, s-unit O(ns

√
T log T ) O(T 2 + nT 3/2 log T ) III-A

envy free k-item pricing with infinite supply
and unit-demand or single-minded bidders O

(
nk
√
T log(kT )

)
O
(
T 2 + k2T 3/2 log(kT )

)
full version [22]

level auction with discretization level m O(nm2
√
T ) O(T 2 + nmT ) III-B

bidder valuations from independent distributions, standard
online-to-batch reductions imply that the revenue of Gen-
eralized FTPL with the class of level auctions is close
to the overall optimal (i.e., not just best-in-class) single-
shot auction. We generalize this reasoning and show the
same strong optimality guarantee when the valuations of
bidders on each round are drawn from a fast-mixing Markov
process that is independent across bidders but Markovian
over rounds. For this setting, our results give an oracle-
efficient algorithm with regret O(n3/5T 9/10) to the overall
optimal auction, rather than just best-in-class. This is the
first result on competing with the Myerson optimal auction
for non-i.i.d. distributions, as all prior work [2], [17]–[19]
assumes i.i.d. samples.

Contextual Learning: In this setting, on each round t
the learner observes a context σt before choosing an action.
For example, in online auction design, the context might
represent demographic information about the set of bidders.
The goal of the learner is to compete with the best policy
in some fixed class, where each policy is a mapping from a
context σt to an action. We propose a contextual extension of
the translation matrix Γ. Generalized FTPL can be applied
using this extended translation matrix and provides sublinear
regret bounds for both the case in which there is a small
“separator” of the policy class and the transductive setting in
which the set of all possible contexts is known ahead of time.
Our results extend and generalize the results of Syrgkanis et
al. [15] from contextual combinatorial optimization to any
learning setting that admits an implementable and admissible
translation matrix.

The contextual extension is particularly useful in online
auction design, because it allows the learner to use any
side information available about the bidders before they
place their bids to guide the choice of auction. While the
number of bidders might be too large to learn about them
individually, the learner can utilize the side information to
design a common treatment for bidders that are similar, that
is, to generalize across a population.

Our performance guarantees for adaptive auction design,
similar to much prior work, rely on the assumption that the
bidders are either myopic or are different on each round.
One criticism of this assumption is that such adaptive mecha-
nisms might be manipulated by strategic bidders who distort
their bids so as to gain in the future. The contextual learning

algorithms mitigate this risk by pooling similar bidders,
which reduces the probability that the exact same bidder
will be overly influential in the choices of the algorithm.

Approximate Oracles and Approximate Regret: For
some problems there might not exist a sufficiently fast
(e.g., polynomial-time or FPTAS) offline oracle with small
additive error as required for Generalized FTPL. To make
our results more applicable in practice, we extend them to
handle oracles that are only required to return an action
with performance that is within a constant multiplicative
factor, C ≤ 1, of that of the optimal action in the class.
We consider two examples of such oracles: Relaxation-
based Approximations [5] and Maximal-in-Range (MIR)
algorithms [21]. Our results hold in both cases with a
modified version of regret, called C-regret, in which the
online algorithm competes with C times the payoff of the
optimal action in hindsight.

Additional Applications: Finally, we provide further
applications of our work in the area of online combinatorial
optimization with MIR approximate oracles, and in the area
of no-regret learning for bid optimization in simultaneous
second-price auctions.

– In the first application, we give a polynomial-time
learning algorithm for online welfare maximization in
multi-unit auctions that achieves 1/2-regret, by invok-
ing the polynomial-time MIR approximation algorithm
of Dobzinski and Nisan [31] as an offline oracle.

– In the second application, we solve an open problem
raised in the recent work of Daskalakis and Syrgkanis
[3], who offered efficient learning algorithms only
for the weaker benchmark of no-envy learning, rather
than no-regret learning, in simultaneous second-price
auctions, and left open the question of oracle-efficient
no-regret learning. We show that no-regret learning
in simultaneous item auctions is efficiently achievable,
assuming access to an optimal bidding oracle against
a known distribution of opponents bids (equivalently,
against a distribution of item prices).

II. GENERALIZED FTPL AND ORACLE-EFFICIENT
ONLINE LEARNING

In this section, we introduce the Generalized Follow-
the-Perturbed-Leader (Generalized FTPL) algorithm and de-



Table II
ADDITIONAL RESULTS CONSIDERED IN THE FULL VERSION OF THE PAPER AND THEIR SIGNIFICANCE. HERE m IS THE DISCRETIZATION LEVEL OF

THE PROBLEMS, n IS THE NUMBER OF BIDDERS, AND T IS THE TIME HORIZON.

Problem Class Regret Notes
Markovian, single item O(n3/5T 9/10) competes with Myerson’s optimal auction

contextual online auctiona O(
√
T ) or O(T 3/4) allows side information about bidders

welfare maximization, s-unitb 1/2-regret: O(n6
√
T ) fully polynomial-time algorithm

bidding in SiSPAs, k items O(km
√
T ) solves an open problem [3]

aThe two regret bounds omit dependence on other parameters and are for the small separator setting and the transductive setting, respectively.
bThe regime of interest in this problem is s� n.

scribe the conditions under which it efficiently reduces
online learning to offline optimization.

As described in Section I-A, we consider the following
online learning problem. On each round t = 1, . . . , T , a
learner chooses an action xt from a finite set X , and an
adversary chooses an action yt from a set Y , which is not
necessarily finite. The learner then observes yt and receives
a payoff f(xt, yt) ∈ [0, 1], where the function f is fixed and
known to the learner. The goal of the learner is to obtain low
expected regret with respect to the best action in hindsight,
i.e., to minimize

REGRET := E

[
max
x∈X

T∑
t=1

f(x, yt)−
T∑
t=1

f(xt, yt)

]
,

where the expectation is over the randomness of the learner.
An online algorithm is called a no-regret algorithm if its
regret is sublinear in T , which means that its per-round regret
goes to 0 as T →∞.

As discussed in Section I-A, our algorithm achieves sub-
linear regret by optimizing over a perturbed objective in each
round. Unlike prior work [10], which creates an independent
perturbation for every action, we create shared randomness
among actions in X . We first draw a random vector α ∈ RN
of size N , with components αj drawn independently from
a dispersed distribution D, and then perturb the payoff of
each of the learner’s actions by a linear combination of
these independent variables, as prescribed by a perturbation
translation matrix Γ of size |X | ×N , with entries in [0, 1].
The rows of Γ, denoted Γx, describe the linear combination
for each action x. That is, on each round t, the payoff of
each learner action x ∈ X is perturbed by α · Γx, and
our Generalized FTPL algorithm outputs an action x that
approximately maximizes

∑t−1
τ=1 f(x, yτ ) + α · Γx. This

procedure is fully described in Algorithm 1. (For non-
oblivious adversaries, a fresh random vector α is drawn in
each round.)

In the remainder of this section, we analyze the properties
of matrix Γ that guarantee that Generalized FTPL is no-
regret and that its perturbations can be efficiently trans-
formed into synthetic history. These properties give rise to
efficient reductions of online learning to offline optimization.

Algorithm 1: Generalized FTPL

Input: matrix Γ ∈ [0, 1]|X |×N , distribution D over R,
and optimization accuracy ε ≥ 0.

Draw αj ∼ D independently for j = 1, . . . , N .
for t = 1, . . . , T do

Choose any xt such that for all x ∈ X ,
t−1∑
τ=1

f(xt, yτ )+α · Γxt
≥
t−1∑
τ=1

f(x, yτ )+α · Γx−ε.

Observe yt and receive payoff f(xt, yt).
end for

A. Regret Analysis

To analyze Generalized FTPL, we first bound its regret
by the sum of a stability term, a perturbation term, and an
error term in the following lemma. While this approach is
standard [10], we include a proof in the full version of the
paper for completeness.

Lemma II.1 (ε-FTPL Lemma). For Generalized FTPL,

REGRET ≤ E

[
T∑
t=1

f(xt+1, yt)− f(xt, yt)

]
+ E

[
α · (Γx1

− Γx∗)
]

+ ε(T + 1)

where x∗ = arg maxx∈X
∑T
t=1 f(x, yt).

In this lemma, the first term measures the stability of the
algorithm, i.e., how often the action changes from round to
round. The second term measures the strength of the per-
turbation, that is, how much the perturbation amount differs
between the best action and the initial action. The third term
measures the aggregated approximation error in choosing xt
that only approximately optimizes

∑t−1
τ=1 f(x, yτ ) +α ·Γx.

To bound the stability term, we require that the matrix
Γ be admissible and the distribution D be dispersed in the
following sense.

Definition II.2 (δ-Admissible Translation Matrix). A trans-
lation matrix Γ is admissible if its rows are distinct. It is
δ-admissible if it is admissible and distinct elements within



each column differ by at least δ.

Definition II.3 ((ρ, L)-Dispersed Distribution). A distribu-
tion D on the real line is (ρ, L)-dispersed if for any interval
of length L, the probability measure placed by D on this
interval is at most ρ.

In the next lemma, we bound the stability term in
Lemma II.1 by showing that with high probability, for all
rounds t, we have xt+1 = xt. At a high level, since all rows
of an admissible matrix Γ are distinct, it suffices to show that
the probability that Γxt+1 6= Γxt is small. We prove this for
each coordinate Γxt+1j separately, by showing that it is only
possible to have Γxt+1j 6= Γxtj when the random variable
αj falls in a small interval, which happens with only small
probability for a sufficiently dispersed distribution D.4

Lemma II.4. Consider Generalized FTPL with a δ-
admissible matrix Γ with N columns and a

(
ρ, (1+2ε)δ−1

)
-

dispersed distribution D. Then,

E
[∑T

t=1 f(xt+1, yt)− f(xt, yt)
]
≤ 2TNρ(1 + δ−1).

Proof: Fix any t ≤ T . The bulk of the proof es-
tablishes that, with high probability, Γxt+1

= Γxt
, which

by admissibility implies that xt+1 = xt and therefore
f(xt+1, yt)− f(xt, yt) = 0.

Fix any j ≤ N . We first show that Γxt+1j = Γxtj with
high probability. Let V denote the set of values that appear
in the jth column of Γ. By δ-admissibility, |V | ≤ 1 + δ−1.
For any value v ∈ V , let xv be any action that maximizes
the perturbed cumulative payoff among those whose Γ entry
in the jth column equals v:

xv ∈ arg max
x∈X : Γxj=v

[
t−1∑
τ=1

f(x, yτ ) + α · Γx

]

∈ arg max
x∈X : Γxj=v

[
t−1∑
τ=1

f(x, yτ ) + α · Γx − αjv

]
.

For any v, v′ ∈ V , define

∆vv′ =

(
t−1∑
τ=1

f(xv, yτ ) + α · Γxv − αjv

)

−

(
t−1∑
τ=1

f(xv
′
, yτ ) + α · Γxv′ − αjv′

)
.

Note that xv and ∆vv′ are independent of αj , as we removed
the payoff perturbation corresponding to αj .

If Γxtj = v, then by the ε-optimality of xt on the
perturbed cumulative payoff, we have αj(v′−v)−ε ≤ ∆vv′

for all v′ ∈ V . Suppose Γxt+1j = v′ 6= v. Then by the

4The proof of Lemma II.4 implies a slightly tighter bound of 2TNκρ,
where κ is the maximum number of distinct elements in any column of Γ.
Note that δ-admissibility implies that κ ≤ 1 + δ−1.

optimality of xv
′

and the ε-optimality of xt+1,
t−1∑
τ=1

f(xv
′
, yτ ) + f(xt+1, yt) + α · Γxv′

≥
t−1∑
τ=1

f(xt+1, yτ ) + f(xt+1, yt) + α · Γxt+1

≥
t−1∑
τ=1

f(xv, yτ ) + f(xv, yt) + α · Γxv − ε.

Rearranging, we obtain for this same v′ that

∆vv′ ≤ αj(v′ − v) + f(xt+1, yt)− f(xv, yt) + ε

≤ αj(v′ − v) + 1 + ε.

If v′ > v, then αj ≥ ∆vv′−1−ε
v′−v ≥ minv̂∈V, v̂>v

∆vv̂−1−ε
v̂−v ,

and so αj(v − v) + 1 + ε ≥ ∆vv where v is the value of
v̂ minimizing the expression on the right. Thus, in this case
we have −ε ≤ ∆vv − αj(v − v) ≤ 1 + ε. Similarly, if
v′ < v, we have −ε ≤ ∆vv − αj(v − v) ≤ 1 + ε, where
v = arg maxv̂∈V, v̂<v

∆vv̂−1−ε
v̂−v . So, we have

Pr
[
Γxt+1j 6= Γxtj

∣∣ αk, k 6= j
]

≤ Pr
[
∃v ∈ V : −ε ≤ ∆vv−αj(v−v) ≤ 1+ε or

−ε ≤ ∆vv−αj(v−v) ≤ 1+ε
∣∣∣ αk, k 6= j

]
≤
∑
v∈V

(
Pr

[
αj ∈

[
∆vv−1−ε
v−v , ∆vv+ε

v−v

] ∣∣∣∣ αk, k 6= j

]

+ Pr

[
αj ∈

[
−∆vv−ε
v−v ,

−∆vv+1+ε

v−v

] ∣∣∣∣ αk, k 6= j

])
≤ 2|V |ρ ≤ 2ρ(1 + δ−1).

The first inequality on the last line follows from the fact
that v − v ≥ δ and v − v ≥ δ, the fact that D is

(
ρ, 1+2ε

δ

)
-

dispersed, and a union bound. The final inequality follows
because |V | ≤ 1 + δ−1 by δ-admissibility.

Since this bound does not depend on the values of αk
for k 6= j, we can remove the conditioning and bound
Pr[Γxt+1j 6= Γxtj ] ≤ 2ρ(1 + δ−1). Taking a union bound
over all j ≤ N , we then have that, by admissibility,
Pr [xt+1 6= xt] = Pr

[
Γxt+1

6= Γxt

]
≤ 2Nρ(1 + δ−1),

which implies the result.
To bound the regret, it remains to bound the perturbation

term in Lemma II.1. This bound is specific to the distribu-
tion D. Many distribution families, including (discrete and
continuous) uniform, Gaussian, Laplacian, and exponential
can lead to a sublinear regret when the variance is set
appropriately. Here we present a concrete regret analysis for
a uniform distribution:

Theorem II.5. Let Γ be a δ-admissible matrix with N
columns and let D be the uniform distribution on [0, 1/η] for
η = δ/

√
2T (1 + 2ε)(1 + δ). Then, the regret of Generalized



FTPL can be bounded as

REGRET ≤ N
√
T

δ
· 2
√

2(1 + 2ε)(1 + δ) + ε(T + 1) .

The proof follows from Lemmas II.1 and II.4, by bound-
ing the perturbation term by ‖α‖1 ≤ N/η, then setting
ρ = η(1 + 2ε)δ−1, and finally using the value of η from
the theorem, which minimizes the sum of the stability and
perturbation terms, 2TNη(1 + 2ε)δ−1(1 + δ−1) +N/η.

B. Oracle-Efficient Online Learning

We now define the offline oracle and oracle-efficient
online learning more formally. Our oracles are defined for
real-weighted datasets, but can be easily implemented by
integer-weighted oracles (see full version [22]). Since many
natural offline oracles are iterative optimization algorithms,
which are only guaranteed to return an approximate solution
in finite time, our definition assumes that the oracle takes
the desired precision ε as an input. For ease of exposition,
we assume that all numerical computations, even those
involving real numbers, take O(1) time (see full version [22]
for a discussion).

Definition II.6 (Offline Oracle). An offline oracle OPT is
any algorithm that receives as input a weighted set of
adversary actions S = {(w`, y`)}`∈L with w` ∈ R+,
y` ∈ Y and a desired precision ε, and returns an action
x̂ = OPT(S, ε) such that∑

(w,y)∈S

wf(x̂, y) ≥ max
x∈X

∑
(w,y)∈S

wf(x, y)− ε.

Definition II.7 (Oracle Efficiency). We say that an online
algorithm is oracle-efficient with per-round complexity g(...)
if its per-round running time is O(g(...)) with oracle calls
counting O(1). Here g(...) denotes the fact that g may be a
function of problem-specific parameters, including T .

We next define a property of a translation matrix Γ which
allows us to transform the perturbed objective into a dataset,
thus achieving oracle-efficiency of Generalized FTPL:

Definition II.8. A matrix Γ is implementable with complex-
ity M if for each j ∈ [N ] there exists a weighted dataset
Sj , with |Sj | ≤M , such that for all x, x′ ∈ X :

Γxj − Γx′j =
∑

(w,y)∈Sj

w
(
f(x, y)− f(x′, y)

)
.

In this case, we say that weighted datasets Sj , j ∈ [N ],
implement Γ with complexity M .

One simple but useful example of implementability is
when each column j of Γ specifies the payoffs of learner’s
actions under a particular adversary action yj ∈ Y , i.e.,
Γxj = f(x, yj). In this case, Sj = {(1, yj)}. Using an
implementable Γ gives rise to an oracle-efficient variant of
the Generalized FTPL, provided in Algorithm 2, in which

Algorithm 2: Oracle-Based Generalized FTPL

Input: datasets Sj implementing Γ ∈ [0, 1]|X |×N ,
distribution D over R+, an offline oracle OPT.

Draw αj ∼ D independently for j = 1, . . . , N .
for t = 1, . . . , T do

Set S =
{

(1, y1), . . . , (1, yt−1)
}

∪
⋃
j≤N

{
(αjw, y) : (w, y) ∈ Sj

}
.

Play xt = OPT
(
S, 1/

√
T
)
.

Observe yt and receive payoff f(xt, yt).
end for

we explicitly set ε = 1/
√
T . Theorem II.9 shows that

the output of this algorithm is equivalent to the output of
Generalized FTPL and therefore the same regret guarantees
hold. Note the assumption that the perturbations αj are
non-negative. The algorithm can be extended to negative
perturbations when both Γ and −Γ are implementable. (See
the full version for details.)

Theorem II.9. If Γ is implementable with complexity M ,
then Algorithm 2 is an oracle-efficient implementation of
Algorithm 1 with ε = 1/

√
T and has per-round complexity

O
(
T +NM

)
.

As an immediate corollary, the existence of a polynomial-
time offline oracle implies the existence of polynomial-time
online learner with regret O(

√
T ) whenever we have access

to an implementable and admissible matrix.

Corollary II.10. Assume that Γ ∈ [0, 1]|X |×N is δ-
admissible and implementable with complexity M , and that
there exists an approximate offline oracle OPT(·, 1/

√
T )

that runs in time poly(N,M, T ). Then Algorithm 2 with
distribution D as defined in Theorem II.5 runs in time
poly(N,M, T ) and achieves regret O(N

√
T/δ).

III. ONLINE AUCTION DESIGN

In this section, we apply the general techniques developed
in Section II to obtain oracle-efficient no-regret algorithms
for several common auction classes.

Consider a mechanism-design setting in which a seller
wants to allocate k ≥ 1 heterogeneous resources to a set of n
bidders. The allocation to a bidder i is a subset of {1, . . . , k},
which we represent as a vector in {0, 1}k, and the seller has
some feasibility constraints on the allocations across bidders.
Each bidder i ∈ [n] has a combinatorial valuation function
vi ∈ V , where V ⊆

(
{0, 1}k → [0, 1]

)
. We use v ∈ Vn to

denote the vector of valuation functions across all bidders. A
special case of the setting is that of multi-item auctions for k
heterogeneous items, where each resource is an item and the
feasibility constraint simply states that no item is allocated to
more than one bidder. Another special case is that of single-
parameter (service-based) environments, which we describe
in more detail in Section III-A.



An auction a takes as input a bid profile consisting of
reported valuations for each bidder, and returns both the
allocation for each bidder i and the price that he is charged.
In this work, we only consider truthful auctions, where each
bidder maximizes his utility by reporting his true valuation,
irrespective of what other bidders report. We therefore make
the assumption that each bidder reports vi as their bid and
refer to v not only as the valuation profile, but also as the
bid profile throughout the rest of this section. The allocation
that the bidder i receives is denoted qi(v) ∈ {0, 1}k and
the price that he is charged is pi(v); we allow sets qi(v) to
overlap across bidders, and drop the argument v when it is
clear from the context. We consider bidders with quasilinear
utilities: the utility of bidder i is vi(qi(v))− pi(v). For an
auction a with price function p(·), we denote by Rev(a,v)
the revenue of the auction for bid profile v, i.e., Rev(a,v) =∑
i∈[n] pi(v).
Fixing a class of truthful auctions A and a set of possible

valuations V , we consider the problem in which on each
round t = 1, . . . , T , a learner chooses an auction at ∈ A
while an adversary chooses a bid profile vt ∈ Vn. The
learner then observes vt and receives revenue Rev(at,vt).
The goal of the learner is to obtain low expected regret with
respect to the best auction from A in hindsight. That is, we
would like to guarantee that

REGRET := E

[
max
a∈A

T∑
t=1

Rev(a,vt)−
T∑
t=1

Rev(at,vt)

]
≤ o(T )poly(n, k).

We require our online algorithm to be oracle-efficient,
assuming access to an ε-optimal offline optimization or-
acle that takes as input a weighted set of bid profiles,
S = {(w`,v`)}`∈L, and returns an auction that achieves an
approximately optimal revenue on S, i.e., a revenue at least
maxa∈A

∑
(w,v)∈S wRev(a,v)−ε. Throughout the section,

we assume that there exists such an oracle for ε = 1/
√
T ,

as needed in Algorithm 2.
Using the language of oracle-based online learning devel-

oped in Section II, the learner’s action set X corresponds
to the set of auctions A, the adversary’s action set Y corre-
sponds to the set of bid profiles Vn, the payoff of the learner
f corresponds to the revenue generated by the auction, Rev,
and we assume access to an offline optimization oracle OPT.

For several of the auction classes we consider, such as
multi-item or multi-unit auctions, the revenue of an auction
on a bid profile is in range [0, R] for R > 1. In order to
use the results of Section II, we implicitly re-scale all the
revenue functions by dividing them by R before applying
Theorem II.5. Note that, since Γ does not change, the
admissibility condition keeps the regret of the normalized
problem at O(N

√
T/δ), according to Theorem II.5. We then

scale up to get a regret bound that is R times the regret for
the normalized problem, i.e., O(RN

√
T/δ). This re-scaling

does not increase the runtime, because the complexity of
implementing Γ is unchanged, only the weights appearing
in sets Sj are scaled up by a factor of R.

We now derive results for two auction classes: VCG
auctions with bidder-specific reserves and level auctions.
Each auction class is formally defined in its respective
subsection. The full version of the paper also analyzes envy-
free item-pricing auctions.

A. VCG with Bidder-Specific Reserves

In this section, we consider a standard class of auctions,
VCG auctions with bidder-specific reserve prices, which
we define more formally below and denote by I. These
auctions are known to approximately maximize the revenue
when bidder valuations are drawn from independent (but not
necessarily identical) distributions [29]. Recently, Roughgar-
den and Wang [7] considered online learning for this class
and provided a computationally efficient algorithm whose
total revenue is at least 1/2 of the best revenue among
auctions in I, minus a term that is o(T ). We apply the
techniques from Section II to generate an oracle-efficient
online algorithm with low additive regret with respect to
the optimal auction in the class I, without any loss in
multiplicative factors.

We go beyond single-item auctions and consider general
single-parameter environments. In these environments, each
bidder has one piece of private valuation for receiving a
service, i.e., being included in the set of winning bidders.
We allow for some combinations of bidders to be served
simultaneously, and let S ⊆ 2[n] be the family of feasible
sets, i.e., sets of bidders that can be served simultaneously;
with some abuse of notation we write q ∈ S, to mean
that the set represented by the binary allocation vector q
is in S. We assume that any bidder is allowed to be the sole
bidder served, i.e., that {i} ∈ S for all i, and that it is also
allowed that no bidder be served, i.e., ∅ ∈ S.5 Examples of
such environments include single-item single-unit auctions
(for which S contains only singletons and the empty set),
single-item s-unit auctions (for which S contains any subset
of size at most s), and combinatorial auctions with single-
minded bidders. In the last case, we begin with some set
of original items, define the service as receiving the desired
bundle of items, and let S contain any subset of bidders
seeking disjoint sets of items.

In a basic VCG auction, an allocation q∗ ∈ S is chosen
to maximize social welfare, that is, maximize

∑n
i=1 viq

∗
i ,

where we slightly simplify notation and use vi ∈ [0, 1] to de-
note the valuation of bidder i for being served. Each bidder
who is served is then charged the externality he imposes on
others, pi(v) = maxq∈S

∑
i′ 6=i vi′qi′ −

∑
i′ 6=i vi′q

∗
i′ , which

can be shown to equal the minimum bid at which he would

5A more common and stronger assumption used in previous work [7],
[29] is that S is a downward-closed matroid.



be served. Such auctions are known to be truthful. The most
common example is the second-price auction for the single-
item single-unit case in which the bidder with the highest
bid receives the item and pays the second highest bid.
VCG auctions with reserves, which maintain the property
of truthfulness, are defined as follows.

Definition III.1 (VCG auctions with bidder-specific re-
serves). A VCG auction with bidder-specific reserves is
specified by a vector r of reserve prices for each bidder. As
a first step, all bidders whose bids are below their reserves
(that is, bidders i for which vi < ri) are removed from
the auction. If no bidders remain, no item is allocated.
Otherwise, the basic VCG auction is run on the remaining
bidders to determine the allocation. Each bidder who is
served is charged the larger of his reserve and his VCG
payment.

Fixing the set S of feasible allocations, we denote by I
the class of all VCG auctions with bidder-specific reserves.
With a slight abuse of notation we write r ∈ I to denote
the auction with reserve prices r. To apply the results from
Section II, which require a finite action set for the learner, we
limit attention to the finite set of auctions Im ⊆ I consisting
of those auctions in which the reserve price for each bidder is
a strictly positive integer multiple of 1/m, i.e., those where
ri ∈ {1/m, . . . ,m/m} for all i. We will show for some
common choices of S that the best auction in this class
yields almost as high a revenue as the best auction in I.

We next show how to design a matrix Γ for Im that is
admissible and implementable. As a warmup, suppose we
use the |Im| × n matrix Γ with entries Γr,i = Rev(r, ei).
That is, the ith column of Γ corresponds to the revenue
of each auction on a bid profile in which bidder i has
valuation 1 and all others have valuation 0. By definition,
Γ is implementable with complexity 1 using Sj = {(1, ej)}
for each j ∈ [n]. Moreover, Rev(r, ei) = ri so any two
rows of Γ are different and Γ is thus 1/m-admissible. By
Theorems II.5 and II.9, we obtain an oracle-efficient imple-
mentation of the Generalized FTPL with regret O(nm/

√
T ).

To improve this regret bound and obtain a regret that is
polynomial in logm rather than m, we carefully construct
another translation matrix that is implementable using a
more complex dataset of adversarial actions. The translation
matrix we design is quite intuitive. The row corresponding to
an auction r contains a binary representation of its reserve
prices. In this case, proving admissibility of the matrix is
simple. The challenge is to show that this translation matrix
is implementable using a dataset of adversarial actions.

Construction of Γ: Let ΓVCG be an |Im| × (ndlogme)
binary matrix, where the ith collection of dlogme columns
contains the binary encodings of the auctions’ reserve prices
for bidder i. More formally, for any i ≤ n and a bit position
β ≤ dlogme, let j = (i − 1)dlogme + β and set ΓVCG

r,j to

Binary encoding
Auction r r1 r2

(1/3, 1/3) 0 1 0 1
(1/3, 2/3) 0 1 1 0 ∆ = −1

(1/3, 3/3) 0 1 1 1
(2/3, 1/3) 1 0 0 1
(2/3, 2/3) 1 0 1 0 ∆ = 0

(2/3, 3/3) 1 0 1 1
(3/3, 1/3) 1 1 0 1 ∆′ = 1

(3/3, 2/3) 1 1 1 0 ∆′ = −1

(3/3, 3/3) 1 1 1 1

Figure 1. ΓVCG for n = 2 bidders and discretization m = 3.

be the βth bit of mri.

Lemma III.2. ΓVCG is 1-admissible and implementable
with complexity m.

We defer the proof of this lemma to the full version of the
paper. Here, we illustrate the main ideas through a simple
example.

Example III.3. Consider ΓVCG for n = 2 bidders and
m = 3 discretization levels, as demonstrated in Figure 1. As
an example, we show how one can go about implementing
columns 1 and 4 of ΓVCG.

Consider the first column of ΓVCG. It corresponds to the
most significant bit of r1. To implement this column, we
need to find a weighted set of bid profiles that generate
revenues with the same differences as those between the
column entries. We consider bid profiles vh = (h/3, 0) for
h ∈ {1, 2, 3}, with the revenue Rev(r,vh) = r11(h/3≥r1).
To obtain the weights wh for each vh it is necessary (and
sufficient) to match differences between entries correspond-
ing to reserve prices with r1 = 1

3 vs 2
3 , and r1 = 2

3 vs 3
3

(denoted by ∆ in Figure 1), corresponding to the following
equations:

1

3
(w1 + w2 + w3)− 2

3
(w2 + w3) = −1,

2

3
(w2 + w3)− 3

3
(w3) = 0,

where the left-hand sides are the differences in the revenues
and the right-hand sides are the differences ∆ between
the corresponding column entries. Note that the weighted
set S1 = {(3,v1), (2,v2), (4,v3)} satisfies these equations
and implements the first column. Similarly, for implementing
the fourth column, we consider bid profiles v′h = (0, h/3)
for h ∈ {1, 2, 3} and equations dictated by the differences
∆′. One can verify that S4 = {(6,v′1), (0,v′2), (3,v′3)}
implements this column.

More generally, the proof of Lemma III.2 shows that ΓVCG

is implementable by showing that any differences in values
in one column that solely depend on a single bidder’s reserve
price lead to a feasible system of linear equations.



The next theorem follows immediately from Lemma III.2,
Theorems II.5 and II.9, and the fact that the maximum
revenue is at most R. Note that R is bounded by the number
of bidders that can be served simultaneously, which is at
most n.

Theorem III.4. Consider the online auction design problem
for the class of VCG auctions with bidder-specific reserves,
Im. Let R = maxr,v Rev(r,v) and let D be the uniform
distribution as described in Theorem II.5. Then, the Oracle-
Based Generalized FTPL algorithm with D and datasets that
implement ΓVCG is oracle-efficient with per-round complex-
ity O(T + nm logm) and has regret

E

[
max
r∈Im

T∑
t=1

Rev(r,vt)−
T∑
t=1

Rev(rt,vt)

]
≤ O(nR

√
T logm).

Now we return to the infinite class I of all VCG auctions
with reserve prices ri ∈ [0, 1]. We show that Im is a finite
“cover” for this class when the family of feasible sets S
consists of all subsets of size at most s, corresponding
to single-item single-unit auctions (when s = 1) or more
general single-item s-unit auctions. In such auctions, the
items are allocated to the s highest bids that are above their
reserve. We assume that the ties are resolved in favor of
bidders with a lower index. We prove in the full version of
the paper that for these auctions, the optimal revenue of Im
compared with that of I can decrease by at most 2s/m at
each round. That is,

max
r∈I

T∑
t=1

Rev(r,vt)− max
r∈Im

T∑
t=1

Rev(r,vt) ≤
2Ts

m
.

Setting m =
√
T and using Theorem III.4, we obtain the

following result for the class of auctions I.

Theorem III.5. Consider the online auction design problem
for the class of VCG auctions with bidder-specific reserves,
I, in s-unit auctions. Let D be the uniform distribution as
described in Theorem II.5. Then the Oracle-Based General-
ized FTPL algorithm with D and datasets that implement
ΓVCG with m =

√
T is oracle-efficient with per-round

complexity O(T + n
√
T log T ) and has regret

E

[
max
r∈I

T∑
t=1

Rev(r,vt)−
T∑
t=1

Rev(rt,vt)

]
≤ O(ns

√
T log T ).

B. Level Auctions

We next consider the class of level auctions introduced
by Morgenstern and Roughgarden [2], who show that these
auctions can achieve (1−ε)-approximate revenue maximiza-
tion if the valuations of the bidders are drawn independently

(but not necessarily identically) from a distribution, thus
approximating Myerson’s optimal auction [20]. We derive
oracle-efficient no-regret algorithms for this auction class.

The s-level auctions realize a single-item single-unit al-
location as follows:

Definition III.6. Given s ≥ 2, an s-level auction θ is
defined by s distinct thresholds for each bidder i, 0 ≤ θi0 <
· · · < θis−1 ≤ 1. For any bid profile v, we let bθi (vi) denote
the index b of the largest threshold θib ≤ vi, or −1 if vi < θi0.
If vi < θi0 for all i, the item is not allocated. Otherwise,
the item goes to the bidder with the largest index bθi (vi),
breaking ties in favor of bidders with smaller i. The winner
pays the price equal to the minimum bid that he could have
submitted and still won the item.

When it is clear from the context, we omit θ in bθi (vi)
and write just bi(vi). We consider a class of auctions Ss,m,
consisting of s-level auctions with thresholds in the set
{0, 1/m, . . . , m/m}.

To construct an admissible and implementable Γ for Ss,m,
we begin with a matrix that is clearly implementable, with
each column implemented by a single bid profile, and then
show its admissibility.

We consider the bid profiles in which the only non-
zero bids are vn = `/m for some 0 ≤ ` ≤ m, and
vi = 1 for a single bidder i < n. Note that bidder i wins
the item in any such profile and pays θib corresponding to
b = max{0, bn(vn)}. We define a matrix Γ with one column
for every bid profile of this form and an additional column
for the bid profile en, with the entries in each row consisting
of the revenue of the corresponding auction on the given bid
profile. Clearly, Γ is implementable. As for admissibility,
take θ ∈ Ss,m and the corresponding row Γθ. Note that as
vn = `/m increases for ` = 0, . . . ,m, there is an increase in
bn(`/m) = −1, 0, . . . , s−1, possibly skipping the initial −1.
As the level bn(vn) increases, the auction revenue attains
the values θi0, θi1, . . . , θ

i
s−1, changing exactly at those points

where vn crosses thresholds θn1 , . . . , θ
n
s−1. Since any two

consecutive thresholds of θ are different, the thresholds of θib
for b ≥ 0 and θnb for b ≥ 1 can be reconstructed by analyzing
the revenue of the auction and the values of vn at which the
revenue changes. The remaining threshold θn0 is equal to the
revenue of the bid profile v = en. Since all of the parameters
of the auction can be recovered from the entries in the row
Γθ, this shows that any two rows of Γ are different and
Γ is 1/m-admissible. This reasoning is summarized in the
following construction and the corresponding lemma. See
Figure 2 for more intuition.

Construction of Γ: For i ∈ {1, . . . , n − 1} and ` ∈
{0, . . . ,m}, let vi,` = ei + (`/m)en. Let V = {vi,`}i,` ∪
{en}. Let ΓSL be the matrix of size |Ss,m|×|V | with entries
indexed by (θ,v) ∈ Ss,m×V , such that ΓSL

θ,v = Rev(θ,v).
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Figure 2. Demonstration of how θ can be reconstructed by its revenue
on the bid profiles in V = {vi,`}i,` ∪ {en}. In this figure, the horizontal
axis is the value of vn and the vertical axis is the revenue of the auction
when vi = 1 and all other valuations are 0. As demonstrated, as the value
vn increases from 0 to 1, the revenue of the auction forms a step function
with values θi0, θ

i
1, . . . , θ

i
s−1, where the jumps in the values happen when

vn takes values θn1 , θ
n
2 , . . . , θ

n
s−1.

Lemma III.7. ΓSL is 1/m-admissible and implementable
with complexity 1.

Our next theorem is an immediate consequence of
Lemma III.7, Theorems II.5 and II.9, and the fact that the
revenue of the mechanism in each round is at most 1.

Theorem III.8. Consider the online auction design problem
for the class Ss,m of s-level auctions. Let D be the uniform
distribution as described in Theorem II.5. Then the Oracle-
Based Generalized FTPL algorithm with D and datasets that
implement ΓSL is oracle-efficient with per-round complexity
O(T + nm) and has regret

E

[
max

θ∈Ss,m

T∑
t=1

Rev(θ,vt)−
T∑
t=1

Rev(θt,vt)

]
≤ O(nm2

√
T ).

IV. CONCLUSION

We introduced a general-purpose no-regret algorithm for
the online adversarial setting and gave sufficient conditions
under which it is oracle-efficient. We hope our work serves
as a stepping stone towards deeper understanding of such
algorithms.
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