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Abstract

It is popular to stack LSTM layers to get better modeling
power, especially when large amount of training data is avail-
able. However, an LSTM-RNN with too many vanilla LSTM
layers is very hard to train and there still exists the gradient
vanishing issue if the network goes too deep. This issue can
be partially solved by adding skip connections between layers,
such as residual LSTM. In this paper, we propose a layer tra-
jectory LSTM (ItLSTM) which builds a layer-LSTM using all
the layer outputs from a standard multi-layer time-LSTM. This
layer-LSTM scans the outputs from time-LSTMs, and uses the
summarized layer trajectory information for final senone clas-
sification. The forward-propagation of time-LSTM and layer-
LSTM can be handled in two separate threads in parallel so that
the network computation time is the same as the standard time-
LSTM. With a layer-LSTM running through layers, a gated path
is provided from the output layer to the bottom layer, alleviating
the gradient vanishing issue. Trained with 30 thousand hours
of EN-US Microsoft internal data, the proposed ItLSTM per-
formed significantly better than the standard multi-layer LSTM
and residual LSTM, with up to 9.0% relative word error rate
reduction across different tasks.

Index Terms: speech recognition, LSTM, layer trajectory, fac-
torized gate

1. Introduction

Recently, significant progress has been made in automatic
speech recognition (ASR) when switching from the deep neu-
ral networks (DNNs) [1] to recurrent neural networks (RNNs)
with long short-term memory (LSTM) units [2], which solve the
gradient vanishing or exploding issues in standard RNNs by us-
ing input, output and forget gates to achieve a network that can
maintain state and propagate gradients in a stable fashion over
long spans of time. These LSTM-RNNS [3, 4, 5, 6, 7] and their
variants such as two-dimensional LSTM-RNN:Ss [8, 9, 10] have
been shown to outperform DNNs on a variety of ASR tasks.

It is popular to stack multiple LSTM layers to get better
modeling power [4], especially when large amount of train-
ing data is available. However, an LSTM-RNN with too many
vanilla LSTM layers is very hard to train and there still exists the
gradient vanishing issue if the network goes too deep [11, 12].
This issue can be partially solved by adding skip connections or
gating functions between layers.

Residual LSTM [13, 14] uses shortcut connections between
LSTM layers, and hence provides a way to alleviate the gradient
vanishing problem. In the highway LSTM [11], memory cells
of adjacent layers are connected by gated direct links which pro-
vide a path for information to flow between layers more directly
without decay. Therefore, it alleviates the gradient vanishing
issue and enables the training of much deeper LSTM-RNN net-
works. In [15], highway LSTM was investigated with large
scale of training data, but only very limited gain was obtained

over the standard multi-layer LSTM. Grid LSTM [16] is a more
general LSTM which arranges the LSTM memory cells into a
multidimensional grid along both time and layer axis. It was ex-
tended in [12, 17] as prioritized grid LSTM which was shown
to outperform highway LSTM on several ASR tasks.

All the aforementioned models work in a layer-by-layer and
step-by-step fashion. The output of a LSTM unit (either the
standard time LSTM or grid LSTM) is used as the input of the
LSTM at the same time step in the next layer and the recur-
rent input of the LSTM at the next time step in the same layer.
The output of the highest layer LSTM is used for final senone
(tied triphone states) classification. However, it may not be opti-
mal that the LSTM outputs serve the purpose of both recurrence
along time axis (for temporal modeling) and senone classifica-
tion along the layer axis (for target discrimination).

In this paper, we decouple the purposes of time recurrence
and senone classification by proposing a layer trajectory LSTM
(ItLSTM) which builds a layer-LSTM using the outputs from
all the layers of a standard multi-layer time-LSTM. The time-
LSTM is used for temporal modeling with time recurrence,
while the layer-LSTM scans the outputs from multiple time-
LSTM layers and uses the summarized layer trajectory infor-
mation for final senone classification. Hence, the forward-
propagation of the time-LSTM in next frame is independent of
the calculation of the layer-LSTM in current frame, therefore
the evaluation of time-LSTM and layer-LSTM can be handled
in two separate threads in parallel and the network computa-
tional time can be kept the same as the standard time-LSTM.
With a layer-LSTM running through layers, a gated path is pro-
vided from the output layer to the bottom layer, reducing the
gradient vanishing issue. We evaluate the proposed method by
training various models with 30 thousand (k) hours of EN-US
data which pools from Microsoft Cortana, Conversation, and
xBox data with mixed close-talk and far-field utterances. The
proposed ItLSTM is significantly better than the standard multi-
layer LSTM and residual LSTM.

The rest of the paper is organized as follows. In Section
2, we explore different LSTM structures: standard multi-layer
LSTM, Residual LSTM, and the proposed tLSTM. We also
propose a new way to reduce the computational cost of LSTM
by factorizing the gates calculation. We evaluate the proposed
models in Section 3, and conclude our study in Section 4.

2. Exploring LSTM structures

In this section, we first introduce the standard multi-layer
LSTM and residual LSTM (ResLSTM). Then, we describe
our proposed layer trajectory LSTM. Finally, a factorized gate
LSTM is proposed to reduce the computational cost of LSTM
units.



Figure 1: Flowchart of multi-layer time-LSTM (T-LSTM). The
output of a T-LSTM is used as the input of the T-LSTM at the
same time step in the next layer and the recurrent input of the
T-LSTM at the next time step in the same layer.

2.1. LSTM

The standard LSTM is a time-LSTM which does temporal mod-
eling via time recurrence by taking the output of time-LSTM at
previous time step as the input of the time-LSTM at current time
step. To increase modeling power, multiple layers of LSTM
units are stacked together to form a multi-layer LSTM which is
shown in Figure 1. At time step ¢, the vector formulas of the
computation of the [-th layer LSTM units can be described as:
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where x! is the input vector for the [-th layer with
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s: is the speech spectrum input at time step ¢. The vectors i,
ol, £, ¢! are the activation of the input, output, forget gates, and
memory cells, respectively. h! is the output of the time-LSTM.
W', and W!,, are the weight matrices for the inputs x. and the
recurrent inputs hl_;, respectively. b are bias vectors. pﬁ, pf,,
plf are parameter vectors associated with peephole connections.
The functions o and ¢ are the logistic sigmoid and hyperbolic
tangent nonlinearity, respectively. The operation ® represents
element-wise multiplication of vectors.

From Figure 1, we can see that the output of a time-LSTM
is used as the input of the time-LSTM at the same time step
in the next layer and the recurrent input of the time-LSTM at
the next time step in the same layer. The last hidden layer’s
output is used to predict senone labels for senone classification.
Therefore, the same output is used for the purpose of temporal
model along time axis and the purpose of target discrimination
along the layer axis. However, these two purposes are indeed
very different. Hence, the standard time-LSTM modeling may
not be optimal.
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Figure 2: Flowchart of layer trajectory LSTM (ItLSTM). Layer-
LSTM (L-LSTM) is used to scan the outputs of time-LSTM (T-
LSTM) across all layers at the current time step to get sum-
marized layer trajectory information for senone classification.
There is no time recurrence for L-LSTM. Time recurrence only
exists between T-LSTMs at different time steps.

2.2. Residual LSTM

Similar to Residual CNN [18] which recently achieves great
success in the image classification task, residual LSTM
(ResLSTM) is very straightforward with the direct shortcut path
across layers by changing Eq. (6) to Eq. (7) so that gradient
vanishing issue can be partially solved.
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We will use ResLSTM as a baseline model with skip connection
in Section 3.

Although ResLSTM can partially solve the gradient van-
ishing issue, it still has the same challenges as the standard
time-LSTM — the output vector works for two very different
purposes: temporal modeling and senone classification.

2.3. Layer trajectory LSTM

As discussed above, it may not be optimal that the output of
time-LSTM serves both the purposes of temporal modeling and
senone classification. In this study, we decouple these two pur-
poses by proposing a layer trajectory LSTM (ItLSTM) which
builds a layer-LSTM using the outputs from all the time-LSTM
layers, shown in Figure 2. The weights are not shared between
layers because sharing doesn’t bring any computational bene-
fit. The time-LSTM is used for the purpose of temporal mod-
eling via time recurrence, while the layer-LSTM scans the out-
puts from multiple time-LSTM layers and uses the summarized
layer trajectory information for final senone classification. With
a layer-LSTM running through layers, a gated path is provided
from the output layer to the bottom layer, reducing the gradient
vanishing issue.

In ItLSTM, the formulation of time-LSTM is still the stan-
dard LSTM formulation, with Eqs. (1) — (5). As shown in



Figure 2, there is no time recurrence between layer-LSTMs
across different time steps. Hence, the formulation of layer-
LSTM only has the recurrence across layers as:
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The vectors ji, v}, el, m! are the activation of the input, output,
forget gates, and memory cell of the layer-LSTM, respectively.
gi is the output of the layer-LSTM. The matrices U, and U{g
terms are the weight matrices for the inputs hl and the recurrent
inputs gi’l, respectively. The d' are bias vectors. The qé, qlv,
qle are parameter vectors associated with peephole connections.

Comparing Egs. (1) — (5) with Egs. (8) — (12), we can see
the biggest difference is the recurrence now happens across the
layers with g’t’_1 in layer-LSTM, compared to the time recur-
rence with hl_; in time-LSTM. Layer-LSTM uses the output
of time-LSTM at current layer, hl, as the input, compared to
the x. in time-LSTM.

It is a common practice to deploy a complicated model
by reducing parallel computational time, e.g., [19]. Because
the forward-propagation of the time-LSTM at next time step
is independent of the calculation of the layer-LSTM at current
time step, the forward-propagation of time-LSTM and layer-
LSTM can be handled in two separate threads in parallel and the
network computational time is the same as the standard time-
LSTM which operates in a layer-by-layer and frame-by-frame
fashion. Another advantage of decoupling the time and layer
operation in ItLSTM is that layer-LSTM can be evaluated with
batching [20] which was proposed to improve the runtime of
feed-forward DNNs by evaluating the network scores from sev-
eral time frames at the same time. However, batching cannot
be applied to standard time-LSTM because the input of current
frame is from the output of previous frame. Since there is no
time recurrence between layer-LSTM across different frames,
batching can be applied to evaluate layer-LSTM once the time-
LSTM vectors have been calculated in multiple frames.

2.4. Comparison with grid LSTMs

Grid LSTM (gLSTM) [16] and prioritized grid LSTM
(pgLSTM) [12, 17] can be considered as a multidimensional
LSTM which arranges the LSTM memory cells along both
time and layer axis. They modify the LSTM units with multi-
dimensional formulation and still process the speech input in
a step-by-step and layer-by-layer fashion. The operation along
time and layer dimensions is mixed together. In contrast, ItL-
STM decouples the jobs of temporal modeling with time-LSTM
and target classification with layer-LSTM. The evaluation of
time-LSTM doesn’t rely on the value of layer-LSTM in pre-
vious time step or lower layer. Hence, ItLSTM enjoys clear
computational advantage as discussed in the previous section.
Because of the function decoupling, it is not necessary to use
LSTM units for modeling layer dependency. We can just re-
place layer-LSTM units with layer-DNN units or any other
units, which gives more modeling flexibility [21].

2.5. Factorized gate LSTM

The computational cost of LSTM is always a concern. There
are lots of attempts [22] to reduce the computational cost, such
as getting low-rank matrices with singular value decomposition
(SVD) [23, 24], model compression via teacher-student (T/S)
learning [25] or knowledge distillation [26], scalar quantization
[20], and vector quantization [27] etc. The computational cost
can also be reduced by exploring different model structures [7,
28] or using lower frame rate strategies [7, 29].

In this section, we focus on reducing the size of weight ma-
trices used to calculate input, output, and forget gates in the
LSTM unit. Those matrices usually are of large size, resulting
the major computational cost in the network evaluation. For ex-
ample, some typical LSTM-RNN systems usually have around
1024 memory cells [4, 30] in the LSTM unit, which means the
dimension of gate vectors is 1024. Usually a linear projection
layer is applied to the LSTM output vector to reduce its dimen-
sion, for example to 512. Hence the two weight matrices , W',
and W', , used to calculate the input gate vector in Eq. (1) are
of dimension 1024x512.

In Eq. (15), we factorize the input gate vector calculation
as the square root of the product of two vectors, 1f5 and {ifg}T,
which are calculated by Eqs. (13) and (14). vec(.) is the op-
eration that squashes a kxk matrix into a m-dimension vector,
where m = kxk. Peephole connections are not used in Egs.
(13) and (14) because of dimension mismatch between the state
vector (m dimension) and factorized gate vector (k dimension).
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For the above example, instead of having two 1024x512
matrices for the input gate calculation in Eq. (15), only four
32x512 matrices (1024 = 32x32) are involved in Egs. (13) and
(14). The computation cost is reduced to only 1/16 for the input
gate vector calculation.

Similar formulations can be applied to the forget and out-
put gates of the time-LSTM in Egs. (2) and (4), and the input,
forget, and output gates of layer-LSTM in Eqs. (8), (9) and (11).

3. Experiments

We compare standard multi-layer LSTM, ResLSTM, and the
proposed ItLSTM 1in this section. All these models use standard
LSTM units as basic building blocks, different from grid LSTM
which modifies the LSTM units with multi-dimensional formu-
lation. All models were trained with 30 thousand (k) hours of
anonymized and transcribed Microsoft production data, includ-
ing Cortana [30], xBox [31], and Conversation data, which is
a mixture of close-talk and far-field utterances from a variety
of devices. The first model was built as a 4-layer LSTM-RNN
with projection layer as what we usually did [30]. Each LSTM
layer has 1024 hidden units and the output size of each LSTM
layer is reduced to 512 using a linear projection layer. The out-
put layer has 9404 nodes, modeling the senone labels. The tar-
get senone label is delayed by 5 frames as in [4]. The input
feature is 80-dimension log Mel filter bank. We applied frame
skipping [7] to reduce the runtime cost. Note that in this study,
we only compare the baseline full-rank cross-entropy models.
If we want to deploy models into production, we will further
apply SVD training [23] and sequence discriminative training
using the maximum mutual information (MMI) criterion with



Table 1: WERs of LSTM, ResLSTM, and ItLSTM models on Cor-
tana and Conversation test sets. Both test sets are mixed with
close-talk and far-field utterances.

| Cortana | Conversation

4-layer LSTM 10.37 19.41
6-layer LSTM 9.85 19.20
10-layer LSTM 10.58 19.92
6-layer ResLSTM 9.99 18.85
10-layer ResLSTM 9.68 18.15
6-layer tLSTM 9.28 17.47

Table 2: Total and parallel per-thread computational costs of
LSTM, ResLSTM, and ItLSTM models in terms of million (M)
operations per frame.

‘ Total (M) ‘ Parallel per thread (M)

4-layer LSTM 22 22
6-layer LSTM 31 31
10-layer LSTM 49 49
6-layer ResLSTM 31 31
10-layer ResLSTM 49 49
6-layer ItLSTM 57 31

F-smoothing [32], as the systems described in [30]. The LM is
a 5-gram with around 100 million (M) ngrams.

We evaluate all models with Cortana and Conversation test
sets. Both sets contain mixed close-talk and far-field utterances,
with 439k and 111k words, respectively. The Cortana test set
has shorter utterances related to voice search and commands,
while the Conversation test set has longer utterances for conver-
sation. As shown in Table 1, the 4-layer LSTM model obtained
10.37% and 19.41% WER on these 2 test sets, respectively.

Then, we simply increased the number of LSTM layers
to 6 and 10. Increasing from 4 layers to 6 layers, the multi-
layer LSTM got improvement across all tasks, with 9.85% and
19.20% WERs on Cortana and Conversation test sets, respec-
tively. However, when increasing to 10 layers, the multi-layer
LSTM got lots of degradation, consistent with the observations
in literature [11, 12].

The 6-layer ResLSTM obtained very similar WERs as the
6-layer LSTM, with improvement on Conversation test sets, but
slight degradation on Cortana test sets. However, different from
the behavior of the 10-layer LSTM, consistent improvement
was obtained with the 10-layer ResLSTM which got 9.68% and
18.15% WERs on Cortana and Conversation test sets, respec-
tively. This clearly demonstrates the effectiveness of skipping
connection for reducing the gradient vanishing issue.

Finally, the 6-layer ItLSTM got significant improvement
over all models, obtaining 9.28% and 17.47% WERs on Cor-
tana and Conversation test sets, respectively. This represents
5.8% and 9.0% relative WER reduction from the 6-layer LSTM,
or 4.1% and 3.7% relative WER reduction from the 10-layer
ResLSTM on Cortana and Conversation test sets, respectively.

In Table 2, we examine the total and parallel computa-
tional costs of all LSTM, ResLSTM, and ItLSTM models. Both
LSTM and ResLSTM operate in a frame-by-frame and layer-
by-layer fashion, therefore the total and parallel computational
costs are same. As described in Section 2.3, the layer-LSTM
and time-LSTM inside ItLSTM can be evaluated in parallel as

Table 3: WERs of the 6-layer ItLSTM and its factorized gate
versions on Cortana and Conversation test sets. Both test sets
are mixed with close-talk and far-field utterances.

| Cortana | Conversation

full 9.28 17.47
factorized input 9.62 18.31
factorized output 9.50 18.11
factorized forget 9.57 17.97

there is no time recurrence between layer-LSTMs at different
time steps. As a result, the parallel computational cost is about
31 M per frame, which is the same as that of the 6-layer LSTM.

We applied factorized gate LSTM described in Section 2.5
to the 6-layer ItLSTM and evaluated the method in Table 3.
We factorized input gates in both time and layer LSTMs by
reducing the calculation of a 1024-dimension gate vector into
the calculation of two 32-dimension gate vectors as in Egs.
(13), (14), and (15). We also applied similar operation to fac-
torize output and forget gates in both time and layer LSTMs.
All the factorized gate operation increased WER. Clearly, no
magic happens even with the factorization in Eq.(15) because
two 32-dimension gate vectors carry much less information than
what a 1024-dimension gate vector can carry. The impact of
factorizing forget gate is the smallest, with relative 2.3% and
3.7% WER increase from the full version of ItLSTM without
any factorization, although it is still better than all the LSTM
and ResLSTM models. Factorizing input gates has the biggest
degradation. Given the loss, we didn’t evaluate the setup which
factorizes all the gates together. With single gate factorization,
the parallel computational cost is reduced to 25 M operation
per frame which is even lower than that of the 6-layer LSTM or
ResLSTM while the WER of factorized gate ItLSTM is clearly
better than that of the 6-layer LSTM or ResLSTM.

4. Conclusions and Future Works

In this paper, we proposed a novel model called ItLSTM which
scans the outputs of the multi-layer time-LSTM with a layer-
LSTM to learn layer trajectory information which is used for
classification. This model decouples the tasks of temporal mod-
eling and target classification by using time-LSTM and layer-
LSTM, respectively. It brings the benefits of both accuracy and
runtime. Trained with 30k hours of speech data, the 6-layer ItL-
STM improves the baseline 6-layer LSTM with relative 5.8%
and 9.0% WER reduction on Cortana and Conversation test sets
respectively and reduces the WERs of the 10-layer ResLSTM
by 4.1% and 3.7% relative. With parallel computation, the
model evaluation time of the 6-layer ItLSTM is kept the same as
that of the 6-layer LSTM. Furthermore, we proposed to factor-
ize gates inside LSTM units to reduce the runtime cost. Applied
to the 6-layer ItLSTM, the model has smaller parallel computa-
tional cost and better accuracy than that of the 6-layer LSTM or
ResLSTM.

Recently, we blended attention mechanism [33] into CTC
modeling and achieved very good accuracy improvement [34,
35]. We are now using similar idea to further improve ItLSTM.
As noted in Section 2.4, it is not necessary to use LSTM units
for modeling layer dependency. We are working on a general-
ized ItLSTM which can employ any units for modeling layer
dependency. All these works will be reported in [21].
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