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Abstract—Manycore chips are emerging as the architecture
of choice to provide power efficiency and improve performance,
while riding Moore’s Law. In these architectures, on-chip inter-
connects play a pivotal role in ensuring power and performance
scalability. As supply voltages begin to level off in future technolo-
gies, chip designs in general and interconnects in particular will
require specialization to meet power and performance objectives.

In this work, we make the observation that cache-coherent
manycore server chips exhibit a duality in on-chip network
traffic. Request traffic largely consists of simple control messages,
while response traffic often carries cache-block-sized payloads.
We present Cache-Coherence Network-on-Chip (CCNoC), a
design that specializes the NoC to fit the demands of server
workloads via a pair of asymmetric networks tuned to the
type of traffic traversing them. The networks differ in their
datapath width, router microarchitecture, flow control strategy,
and delay. The resulting heterogeneous CCNoC architecture
enables significant gains in power efficiency over conventional
NoC designs at similar performance levels. Our evaluation reveals
that a 4x4 mesh-based chip multiprocessor with the proposed
CCNoC organization running commercial server workloads is
15-28% more energy efficient than various state-of-the-art single-
and dual-network organizations.

I. INTRODUCTION

Today’s server chips feature up to one hundred cores [20],

and as chip integration levels keep increasing, future chips are

expected to accommodate hundreds of cores [11]. Manycore

chips rely on a network-on-chip (NoC) to lower design com-

plexity and improve scalability. Recent research has identified

high NoC power consumption as a significant obstacle in a

quest for efficient manycore chips [5]. For example, in the MIT

RAW processor, NoC power accounts for 40% of the overall

chip power [22]. With supply voltages leveling off [7], the key

design criteria for chips in general and NoCs in particular will

be power.

A number of techniques have been proposed for improving

NoC power consumption [1, 4, 13, 15, 23]. While the majority

of these approaches focus on improved efficiency in the

context of a single on-die network, Balfour and Dally [1] ad-

vocate using multiple networks as a practical way to improve

performance, power, and area in tiled chip multiprocessors

(CMPs). Using simple read/write messaging protocols, Balfour

and Dally conclude that a homogeneous dual-network NoC,

in which the two networks use identical microarchitectures

and datapath width, balances the load among short and long

messages and is preferred to a heterogeneous design.

Whereas prior work examined NoC efficiency in general-

purpose chips, we target efficiency through network-level

specialization in the context of server CMPs. Server chips

rely on cache-coherent architectures for software transparency,

and for facilitating software development and porting. Our

analysis of commercial server workloads in a cache-coherent

CMP reveals that network traffic does not follow simple

read/write messaging protocols, commonly assumed in prior

work, including Balfour and Dally [1]. In fact, traffic is highly

skewed among short and long messages with (short) request

messages primarily consisting of block fetch requests and

clean replacement notifications and (long) response messages

carrying a cache block.

These observations motivate us to propose Cache-

Coherence Network-on-Chip (CCNoC), a heterogeneous dual-

network architecture for manycore server chips. CCNoC op-

timizes power and performance based on the characteristics

of the two dominant message classes. The networks are

asymmetric in their datapath width and router architecture.

The request network is optimized for short messages, and thus

it has a narrow datapath. As requests (e.g., reads) and the

associated coherent requests (e.g., downgrades) travel through

the same network, the network relies on virtual channels to

segregate these message classes for deadlock avoidance. In

contrast, the response network does not require any virtual

channels and is customized for cache block transfers via a

wide datapath and low-complexity wormhole routers.

We use Flexus [24] for cycle-accurate full-system multipro-

cessor simulation running commercial server workloads and

augment it with custom power models to show that:

• Network traffic in server workloads is highly skewed

among short and long messages. Short requests account

for 94% of all requests and long responses account for

95% of all responses;

• Unlike NoCs for CMPs with simple messaging proto-

cols that favor homogeneous networks, NoCs for cache-

coherent CMPs require specialization and heterogeneity

to best take advantage of the network traffic;

• CCNoC is more energy efficient than various state-of-the-

art single- and dual-network organizations by 15-28%.

II. BACKGROUND

We first describe the chip architecture that we consider in

this paper. Next, we qualitatively explain how traffic duality
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arises in cache-coherent CMPs and, finally, describe protocol-

level deadlock issues.

Figure 1 depicts a canonical cache-coherent tiled CMP chip

architecture. Each tile consists of a processor core with L1

data and instruction caches, an L2 slice, a directory slice, a

network router, and two network interfaces (NIs). We assume

a shared L2 cache organization, in which each L2 slice is

a part of a shared last-level cache (LLC) and cache blocks

are address-interleaved among the L2 slices. While the shared

organization is preferred for server workloads, as it is more

effective at capturing their large instruction and data footprints,

our results equally hold for systems with a private LLC.

An invalidation-based directory protocol maintains coher-

ence among the L1 caches. We assume, without loss of

generality, a duplicate-tag directory scheme where each di-

rectory slice is responsible for the same range of address-

interleaved cache blocks as the co-located L2 slice. The choice

of directory encoding [26] may also affect the overall network

traffic, but does not fundamentally affect the breakdown of the

request and response message types.

Each tile uses two NIs, one for the core (i.e., L1 controllers)

and the other for the L2 slice and the directory controller.

This allows parallel accesses to the tile’s caches and directory

from remote cores. We assume a router architecture with four

network ports and two local ports (connected to the NIs).

A. Coherence protocol activity

Coherence protocols were introduced as a way to ensure that

any request for a cache block will get the most recent state of

that cache block. Figure 2 depicts the protocol transitions for

reading (data and instruction) and writing into cache blocks.

Figure 2 (left) shows the communication between a reader

core, a directory slice, and a potential writer. Control messages

are short and depicted with narrow dashed lines. Data mes-

sages carry a cache-block sized payload and are depicted with

thick solid lines. In the common case, a reader sends a request

for the read-only copy of a cache block, followed by a response

from the L2 cache with the data. Similarly, to keep the
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Figure 2: Read (left) and Write (right) protocol activity.

directory up-to-date with sharer information, clean cache block

replacements are also notified with small request messages. In

the less frequent case of a read from an active writer of a block,

the protocol implements a 3-hop transition. The read request

is forwarded to the writer, which then responds directly to the

reader and the directory with a data message and a notification

response, respectively. Thus, most requests (reads or eviction

notifications) for clean blocks are short messages and most

responses carry a cache block.

Figure 2 (right) depicts the protocol transitions for writing

into cache blocks. In general, write requests (i.e., fetch-block

or upgrade requests) are less frequent. Moreover, in server

workloads, writebacks account for a negligible fraction of the

overall traffic because data are rarely updated and instructions

are virtually never modified at runtime [6]. Finally, unlike

cache block fetches, writebacks are not latency sensitive and

therefore do not impact performance directly.

Even among the writes, there are common transitions that

fit the duality in traffic. For example, write misses to blocks

that are not actively shared have the same request/response

behavior as reads of clean blocks. Other transitions include

upgrade requests to a non-shared block, requiring a short

request message and a short response message as well. Among

write requests, those involving other readers and consequently

a large number of control messages for both requests and

responses are quite rare. In server workloads, data sharing and

migration across threads happen over large windows of time

– well beyond a typical L1 residency period [6]. As a result,

writers rarely modify blocks shared by other cores [10].

Commercial server [6] and emerging scale-out cloud [3]

applications are optimized for high reuse in the L1 data cache,

while their instruction working sets exceed the L1 instruction

cache capacity. Therefore, in server CMPs, coherence activity

is dominated by short requests (clean data and instruction

block fetches) and the associated long responses.

B. Protocol-level deadlock avoidance

Various message classes co-exist in cache-coherence proto-

cols (i.e., requests, coherence requests, and responses). Con-

sequently, protocol-level cyclic dependencies and deadlocks
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(a)

CMP Size 16-core for server workloads
8-core for multiprogrammed workloads

Processing Cores UltraSPARC III ISA; 2GHz 8-stage pipeline
2-wide dispatch / retirement, OoO

L1 Caches Split I/D, 32KB 4-/2-way, 1-/2-cycle load-to-use
3 ports, 32 MSHRs, 8-entry victim cache

L2 NUCA Cache 512KB per core, 8-way, 10-cycle latency, 64-byte
lines, 1 port, 32 MSHRs, 16-entry victim cache

Main Memory 3 GB total memory, 45 ns access latency

Memory Controller one per 4 cores, round-robin page interleaving

(b)

Online Transaction Processing (TPC-C)

DB2 100 warehouses (10 GB), 64 clients, 450 MB buffer pool

Oracle 100 warehouses (10 GB), 16 clients, 1.4 GB SGA

Decision Support Systems (TPC-H)

DB2 Mixed, Queries: 1, 6, 13, 16; 1 GB buffer pool

Web Server (SPECweb99)

APACHE 16K connections, fastCGI, worker threading model

ZEUS 16K connections, fastCGI

Multiprogrammed (SPEC CPU2000)

SPEC2K 2 copies from each of gcc, twolf, mcf, art; reference input

Table I: System parameters for the 16-core and 8-core CMPs (a) and application parameters (b).

may occur due to messages sharing network resources. To

avoid protocol-level deadlocks, conventional NoCs partition

the physical resources at each router’s input port among mul-

tiple virtual channels to allow independent routing of different

message types. An alternative organization consists of multiple

physical networks, with a dedicated network for each message

class. In both cases, deadlock is avoided by routing messages

of each class on a dedicated network (virtual or physical),

thereby preventing the formation of cyclic dependencies across

message classes.

III. CHARACTERIZATION OF NETWORK TRAFFIC

A. Methodology

We use Flexus [24] for cycle-accurate full-system sim-

ulation of a tiled CMP executing unmodified applications

and operating systems. Flexus extends the Virtutech Simics

functional simulator with timing models of processing tiles

with out-of-order cores, a detailed cache hierarchy, memory

controllers, and a NoC. We simulate a tiled CMP similar to

the one described in Figure 1 with a shared LLC.

Table I (a) summarizes our system architecture. We model

a server chip composed of 16 cores and an 8 MB last-level

cache. Recent work has demonstrated that cache capacities up

to 4-8 MB are beneficial for capturing the instruction footprint

and the small amount of shared data in server workloads [6,

8]. Cache capacities beyond 8 MB have a much lower utility

due to the enormous memory footprints of these applications.

We model a distributed (NUCA) LLC with 512 KB at each

tile, with cache coherence based on the MESI protocol.

Our simulated system runs the Solaris 8 operating system

and executes the workloads listed in Table I (b). We include a

wide range of commercial server workloads from the domains

of online transaction processing, decision support systems, and

web servers. We use the TPC-C v3.0 OLTP benchmark [21]

on IBM DB2 v8 ESE and Oracle 10g Enterprise Database

Server. We run a mix of queries 1, 6, 13, and 16 from the

TPC-H benchmark [21] on DB2. Queries 1 and 6 are scan-

bound, Query 16 is join-bound, and Query 13 exhibits a hybrid

behavior. To evaluate web server performance, we use the

SPECweb99 benchmark on Apache HTTP Server v2.0 and

Zeus Web Server v4.3. We use a separate client system to

drive the web servers, and hence do not include client activity

in our measurements.
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Figure 3: Network traffic distribution in server and multiprogrammed
workloads.

For comparison, we also simulate a multiprogrammed work-

load that consists of SPEC CPU2000 applications running

the reference input set. Because desktop applications lack

concurrency and do not benefit from many-core execution

substrates [2], we model an 8-core CMP for this study.

B. Characterization of network traffic

Figure 3 illustrates the distribution of short and long mes-

sages across on-chip request, coherence request, and response

messages. The request traffic primarily consists of instruction

fetches, cache-block reads, and clean eviction requests (i.e.,

short messages). Across server workloads, short messages

account for 94% of the request traffic. In OLTP and Web

workloads, which have big instruction footprints, instruction

block requests dominate the request traffic. In DSS and the

multiprogrammed workload, all with small instruction foot-

prints, read requests are the majority of the request traffic.

In server workloads, the writeback traffic accounts only for

6% of the request traffic, implying that the clean eviction

requests dominate the dirty eviction requests. In contrast, in

the multiprogrammed workload, the writeback traffic accounts

for 19% of the request traffic.

Coherence requests (i.e., invalidate and downgrade requests)

are short and account for a small fraction of the request traffic.

For the server workloads, coherence requests account for only

5% of the request traffic. The multiprogrammed workload does

not exhibit such traffic because each core runs a different

application and hence there is not any sharing among the cores.

Figure 3 indicates that the response traffic is also highly

skewed. On average, long response messages account for 95%
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Figure 4: CCNoC with mesh topology. CCNoC uses a pair of asymmet-
ric routers to optimize power and performance for the dominant traffic
type of the corresponding network.

of the response traffic. The majority of long responses are

messages carrying instruction or read data blocks.

Overall, our results reveal that cache-coherent tiled CMPs

exhibit duality in the network traffic when running server

workloads, with traffic primarily consisting of short requests

and long responses. This distribution differs from that in

desktop workloads, where 19% of the request messages are

long due to frequent writebacks of dirty cache blocks.

IV. CACHE-COHERENCE NETWORK-ON-CHIP

In this paper, we propose Cache-Coherence Network-on-

Chip (CCNoC), a design that capitalizes on the duality in

network traffic of cache-coherent server chips. CCNoC uses

two asymmetric networks to achieve higher efficiency as

compared to existing designs. Each network is optimized

for the dominant traffic type and hence the two networks

have different datapath widths, different buffer architectures,

and different pipeline lengths. Unlike NoCs for CMPs with

simple messaging protocols that favor homogeneous networks,

NoCs for cache-coherent CMPs require specialization and

heterogeneity to best take advantage of network traffic.

Figure 4 depicts the CCNoC architecture with a mesh

topology. Each tile consists of two routers, one of them

specialized for the request and the other for the response

network. Because requests primarily consist of short messages,

the request network can be built with a narrow datapath width

to reduce switch area and power with minimal impact on the

system performance. The response messages usually carry a

cache block and as such benefit from wider channels. The

NI connecting the core to the network has physical interfaces

to both request and response routers. The NI routes requests

into the narrow request network and responses into the wide

response network. To ensure that the cache coherence protocol

is not affected, the receiver NI keeps the order between the

request and response messages coming from the same source.

Our system features three types of network messages: (a)

normal requests (e.g., read or instruction fetch requests); (b)

coherence requests (invalidate or downgrade requests); and (c)

responses. Avoiding protocol-level deadlock among different

messages classes requires either dedicated virtual channels

(VCs) or different physical networks. Thus, single-network

topologies require three VCs per input port to guarantee

deadlock freedom. The same is true for homogeneous dual-

network schemes and heterogeneous organizations that split

the traffic based on message size (short, long). In contrast,

the proposed CCNoC organization segregates requests and

responses via dedicated networks, and as a result, requires

virtual channels only on the narrow request network to avoid

any cyclic dependencies between normal and coherence re-

quests. The wide response network is deadlock-free by default,

since all response messages are guaranteed to be consumed at

the destination. As such, it does not need virtual channels

for deadlock freedom, thereby improving area and energy

efficiency through reduced buffer requirements.

Specializing the CCNoC networks to traffic class enables

further optimizations at the router level. Conventional single-

and dual-mesh topologies use a three-stage router pipeline that

consists of virtual channel allocation (VA), switch allocation

(SA), and switch traversal (ST) stages. In CCNoC, the VC-

enabled request network features the same router pipeline;

however, wormhole routers in the response network can be

simplified by eliminating the VC allocation stage. This opti-

mization reduces communication delay and diminishes router

complexity in the CCNoC response network.

While speculation may also be used to reduce router de-

lay [17], existing schemes tend to increase router complexity

and adversely impact cycle time. More generally, speculation

and other potential microarchitectural mechanisms do not

change the benefits that CCNoC provides. The advantages of

the CCNoC design hold due to the server traffic characteristics

in cache-coherent CMPs.

V. EVALUATION

We compare CCNoC to traditional single-network topolo-

gies and other dual-network topologies proposed by prior re-

search [1] and show that CCNoC provides significant area and

power savings while achieving similar or better performance.

A. Methodology

We compare the performance, area, and energy efficiency

of CCNoC to state-of-the-art single- and dual-network topolo-

gies. Our reference single-network organization is a mesh with

a 176-bit datapath (Mesh-176). We also evaluate a single-

network 128-bit mesh (Mesh-128) with the understanding

that it offers inferior performance due to lower bisection

bandwidth, but better energy efficiency than the wide mesh.

We consider two dual-network schemes. The first is a

Homogeneous (i.e., replicated) organization that features two

identical 88-bit mesh networks. In this design, traffic is evenly

distributed among the two networks to maximize load balance.

The other organization is Heterogeneous, featuring a wide

network for long messages and a narrow network for short

packets. The networks are 112 and 64 bits wide, respectively.

Both single- and dual-network NoCs feature a three-stage

router pipeline and three VCs per router input port to avoid

protocol-level deadlocks.
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Figure 5: NoC power consumption normalized to Mesh-176 for (a)
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Figure 6: Injection rate (left) and average network latency (right).

Our proposed CCNoC architecture also features a narrow

(64-bit) request and a wide (112-bit) response networks.

However, as discussed in Section IV, the networks are spe-

cialized. The request network carries data request messages

and coherence protocol traffic. As such, it requires two VCs

per router input port for deadlock avoidance and a three-stage

router pipeline similar to reference NoC organizations. The

wide response network, on the other hand, is dedicated to

only one message class. This feature enables a simpler router

design based on wormhole flow control with no VCs and a

two-stage pipeline.

We use a custom methodology to assess the energy effi-

ciency of the examined NoC organizations. We target 32 nm

technology with an on-chip voltage of 0.9 V and a frequency

of 2 GHz. We use detailed wire parameters derived from

published sources [1, 19] to model the energy expanded in

links and router switch fabrics. To reduce link power, we

employ differential signaling with 125 mV swing voltage

in network channels routed on an intermediate metal layer

[18]. Our crossbars are segmented [23] and use full-swing

signaling on local wiring with 2x spacing. Each VC uses

six flit buffers. We estimate the energy expanded in flit

buffers by modifying CACTI 6 [16] to model shallow FIFO

configurations representative of typical NoC routers. We also

measure leakage power in router buffers and switch fabrics

using models derived from CACTI.

In all network organizations, we assume that power gating

techniques are applied to eliminate spurious toggling of inac-

tive portions of the datapath. This feature saves power in the
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Figure 7: System performance (User-IPC) normalized to Mesh-176.

cases that the width of the transmitted flit is smaller than the

width of the network’s datapath [1].

We use Orion 2.0 [9] to estimate the area of router buffers

and use our custom methodology to estimate the area of links

and crossbar.

B. Comparison to single-mesh NoC designs

We measure the total network power consumption and break

it down into major network components: buffers, crossbars,

and links. For buffers and crossbars, we track both dynamic

and leakage power consumption.

Figure 5 illustrates the network power breakdown for all

topologies across our server workloads normalized to Mesh-

176. The figure shows that CCNoC reduces total network

power by 28% and 18% when compared to Mesh-176 and

Mesh-128 respectively. The power savings of CCNoC com-

pared to these network topologies are two-fold.

First, CCNoC requires less total flit storage by virtue of

requiring fewer VCs than both Mesh-128 and Mesh-176. This

feature reduces combined dynamic and leakage buffer power

compared to the reference designs by 42% on average. As

buffer power accounts for up to 35% of the network power,

the savings are significant.

Second, as noted in Section III-B, a significant fraction of

the traffic are short request messages that travel through the

narrow request network. The compact crossbar in the associ-

ated routers diminishes CCNoC’s switch power by 40% and

13% when compared to Mesh-176 and Mesh-128, respectively.

As crossbars account for 24-30% of the network power in

single-mesh topologies, CCNoC considerably reduces their

effect on the NoC power consumption.

We evaluate CCNoC’s impact on performance by showing

both network and system1 performance across our benchmark

suite in Figures 6 and 7, respectively. Figure 6 (left) shows the

injection rate (flits/node/cycles) and Figure 6 (right) shows

the network latency (i.e., number of cycles to transfer a

message from source to destination). Compared to Mesh-

176, Mesh-128 has a narrower channel width resulting in

a higher effective load and, consequently, higher network

latency, resulting in a minor loss of performance of 5%.

1We use User-IPC which is proportional to system throughput [24].
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Figure 9: Load balance (left) and average network latency (right).

Long responses in a CCNoC system require one (two) addi-

tional flits when compared to Mesh-128 (Mesh-176). However,

the extra serialization delay is offset by the reduced load on the

response network thanks to the separate request NoC, as well

as the shallower pipeline of wormhole routers in the response

network. Figure 6 (right) shows that Mesh-128 and Mesh-

176 exhibit, respectively, worse and similar injection rate (and

network latency), compared to CCNoC’s response network.

The request network exhibits lower injection rate, because the

majority of injected messages are single-flit. Consequently,

the request network latency is slightly lower. Overall, as

Figure 7 shows, a CCNoC-enabled CMP matches the system

performance of a Mesh-176 organization and outperforms a

design based on Mesh-128 by 5%.

C. Comparison to dual-mesh NoC designs

We compare CCNoC to dual-mesh network topologies

proposed by Balfour and Dally [1]. As explained in Section

V-A, the Homogeneous organization splits the traffic across

two identical networks to maximize the load balance and thus

reduce network congestion. The Heterogeneous design uses

a narrow network to transport short messages and a wide

network to transport long messages.

Figure 8 shows that CCNoC consumes 11% and 18% less

power than Homogeneous and Heterogeneous organizations,

respectively, across our server workloads. The gains are largely

due to the efficient buffer architecture of CCNoC. Compared

to other dual-network designs, CCNoC features lower VC and

buffer requirements across the two networks reducing dynamic

and leakage power draw by 44%, on average. Compared to
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Figure 10: System performance (User-IPC) normalized to Homoge-
neous.

the single-network Mesh-176 design, all three dual-network

organizations are effective in reducing switch power by 40-

47% (not shown in the figure).

Figure 9 shows the impact of CCNoC on network per-

formance. The figure on the left illustrates the load balance

between the two networks. We define load balance as the ratio

of the injection rate, in flits, in the narrow network over the

injection rate in the wide network. The closer to one this ratio

is, the better is the achieved load balance. The figure on the

right illustrates the average latency across both networks.

By design, the Homogeneous organization evenly splits the

traffic across the two networks and achieves a perfect load

balance. In comparison, CCNoC and Heterogeneous designs

achieve a load balance ratio of 0.55 and 0.33, respectively,

across the two networks. CCNoC significantly improves the

load balance over the Heterogeneous design due to the pres-

ence of long request (dirty block eviction) messages, which

comprise 6% of the request traffic on average. In a CCNoC

system, these multi-flit messages travel on the narrow request

network, which improves its utilization. As dirty block evic-

tions are often not on the critical path, the impact on the

system performance is negligible. In contrast, long requests

must traverse the wide network in a Heterogeneous design,

which diminishes load balance and consumes more power.

In terms of latency, CCNoC bests other dual-network de-

signs due to its efficient architecture. The majority of long

messages traverse the wide response CCNoC, which improves

performance compared to the narrower networks in the Ho-

mogeneous design. The performance is also improved against

other dual-network organizations thanks to the shallower 2-

cycle router pipeline in the CCNoC response network.

Figure 10 plots the system performance of the dual-mesh

topologies normalized to Homogeneous. CCNoC slightly out-

performs both Homogeneous and Heterogeneous NoC designs

by 4% and 3%, respectively, thanks to its architecture that

specializes the networks to traffic type.

D. Area analysis

Figure 11 plots the NoC area for various single- and dual-

network designs. Compared to designs with same bisection

bandwidth, CCNoC reduces network area by 31-39%. As

buffers occupy 52-58% of the area in single- and dual-network
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Figure 11: NoC area for various network topologies.
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Figure 12: Energy-delay product for server workloads (averaged) and
the multiprogrammed workload for various networks.

designs, the gains are largely due to the efficient buffer

architecture of CCNoC. In particular, CCNoC reduces the

buffer area by 55% compared to Mesh-176, Homogeneous,

and Heterogeneous designs. Compared to the single-network

Mesh-176 design, all three dual-network organizations are

effective in reducing crossbar area by 48-50%.

Compared to a single-network NoC design with smaller

bisection bandwidth (i.e., Mesh-128), CCNoC is able to reduce

the NoC area by 10%. The gains are largely due to the efficient

buffer architecture of CCNoC which offsets the increase in the

link area. CCNoC reduces the buffer area by 38%. As crossbar

area is proportional to the square of the datapath width, the

cost of adding a narrow network is relatively low; as such,

CCNoC and Mesh-128 feature similar crossbar footprints.

E. Summary

We summarize our results by calculating the energy-delay

product of various network topologies which have same bi-

section bandwidth. We calculate the energy-delay product

of CCNoC, Mesh-176, Homogeneous, and Heterogeneous

designs as the product of the total network energy and the CPI

(i.e., the inverse of IPC). Figure 12 illustrates the energy-delay

product of all network organizations normalized to CCNoC

(i.e., dashed line). Across the server workloads, Mesh-176,

Homogeneous, and Heterogeneous achieve 37%, 16%, and

21% higher energy-delay product compared to CCNoC.

In workloads with lower network utilization, such as the

multi-programmed workload, leakage power constitutes a

much higher fraction of the overall buffer power. Because the

combined storage footprint of CCNoC networks is lower than

that of conventional organizations, CCNoC offers a significant

reduction in buffer power. Thus, CCNoC achieves higher

network power savings when network utilization is lower.

The figure shows that CCNoC improves the energy-delay

product by 43%, 23%, and 28% compared to Mesh-176,

Homogeneous, and Heterogeneous.

Our findings show that an asymmetric dual-network topol-

ogy which splits the network traffic according to the coherence

protocol patterns is superior to other single- or dual-network

topologies. In particular, across our benchmark suite, CCNoC

is more energy (area) efficient compared to single- and dual-

network topologies by 15-28% (31-39%).

VI. RELATED WORK

The MIT RAW architecture [22] uses four symmetric NoCs

(two static networks and two dynamic) which use packet-

switched flow control. The Tilera chip [20] extends the MIT

RAW architecture and uses five identical wormhole-routed net-

works to isolate: (a) communication to different sub-systems,

(b) memory traffic, and (c) user-specified traffic. In contrast,

CCNoC requires only a pair of networks to divide packets

at the protocol level. In addition, the networks in CCNoC

are asymmetric, yielding greater efficiency and performance

through specialization.

Balfour and Dally [1] propose splitting network traffic

into two heterogeneous or homogeneous networks to improve

performance and power efficiency. The former splits traffic

based on message size and the latter strives for load balance

across the two networks. Using simple read/write messaging

protocols, the authors conclude that the homogeneous design

is preferred to a heterogeneous. In this paper, we show that

a heterogeneous design which splits network traffic based on

message class (request, response) leads to better performance

and power efficiency than a homogeneous design for the case

of cache-coherent CMPs, as it requires fewer VCs for deadlock

avoidance. In addition, we show that a design which splits

network traffic based on message class rather than message

size leads to better performance and power efficiency, as it

achieves better load balance and requires fewer VCs.

Yoon et al. propose using four networks - one for each

message class of the MOESI protocol - as an alternative

to using virtual channels [25]. In contrast, the dual-network

hybrid organization, proposed in our work, makes better use of

wire resources by requiring fewer networks, improves network

load balance, and boosts performance under a fixed wire

budget by supporting a wider response network as compared

to a design with multiple dedicated NoCs.

Manevich et al. propose using a hybrid NoC architecture

with a bus to broadcast the short commands of the coherence

protocol [12]. This work can be considered similar to the

heterogeneous approach of Balfour and Dally [1], except

that it relies on a bus for the short messages instead of a

second network. While appealing for CMPs integrating a small

number of cores, a bus-based architecture is hard to scale to

many-core configurations that are likely in future server chips.

Prior work has proposed multi-NoC interconnects where

one NoC is packet-switched (used for non-localized traffic)

and the other is circuit-switched (used for localized traffic)

[14]. This optimization targets applications with localized
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traffic patterns and is not applicable to server workloads

running on cache-coherent CMPs, as the network traffic is

uniformly distributed.

Higher radix topologies [4] are considered a viable approach

for reducing NoC power consumption. These topologies rely

on rich physical connectivity to eliminate a fraction of router

traversals. However, the duality-based concept is orthogonal

to the network topology and hence the CCNoC concept can

be extended to higher radix topologies.

Much research has focused on reducing router buffer power

which accounts for a substantial fraction of overall NoC

power. The techniques range from those that target a more

efficient implementation of buffers [13], bypass buffers [23],

or eliminate buffers all together [15]. While many of these

techniques increase complexity, they are equally applicable

and complementary to CCNoC, as CCNoC targets both buffer

and crossbar power consumption.

VII. CONCLUSION

Server chips are increasingly relying on large number of

low-complexity cores to achieve power and performance scal-

ability. In these manycore designs, communication power is

becoming a significant fraction of total chip power, calling for

improvement in NoC efficiency.

In this work, we introduced Cache-Coherence Network-

on-Chip (CCNoC), a heterogeneous dual-network design that

capitalizes on the duality in on-chip network traffic observed

in cache-coherent multiprocessors and optimizes the routing

nodes accordingly. CCNoC employs two asymmetric networks

with different datapath widths and router microarchitectures

to separate requests and responses. The specialization allows

significant power savings with no impact on performance.

Through full-system simulation, we showed that CCNoC is

more energy efficient than single- and dual-network topologies

by 28% and 15%, respectively.
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