

# Research Faculty Summit 2018

Systems | Fueling future disruptions





How Formal-Methods Adoption Should Drive Changes to System Designs

Adam Chlipala Associate Professor, MIT CSAIL





#### System Development Processes



"Mechanized, end-to-end proofs of functional correctness"





#### **Mechanized** proofs



Research Faculty Summit 2018

Systems | Fueling future disruptions



#### Proofs of **Functional Correctness**







#### **End-to-End** Proofs



Layer 2











Layers Proved Modularly





### The Big Tradeoff







Is it *fundamental* that systems hackers need to spend their time writing intricate, bug-prone, low-level code?



#### Crypto is Hard (Adam Langley's Curve25519 C code)

```
d0 = r0 * 2;
d1 = r1 * 2;
d2 = r2 * 2 * 19;
d419 = r4 * 19;
d4 = d419 * 2;
t[0] = ((uint128_t) r0) * r0 + ((uint128_t) d4) * r1 + (((uint128_t) d2) * (r3)
t[1] = ((uint128_t) d0) * r1 + ((uint128_t) d4) * r2 + (((uint128_t) r3) * (r3 * 19));
t[2] = ((uint128_t) d0) * r2 + ((uint128_t) r1) * r1 + (((uint128_t) d4) * (r3)
t[3] = ((uint128_t) d0) * r3 + ((uint128_t) d1) * r2 + (((uint128_t) r4) * (d419 ));
t[4] = ((uint128_t) d0) * r4 + ((uint128_t) d1) * r3 + (((uint128_t) r2) * (r2)
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c;
        c = r1 \gg 51; r1 = r1 \& 0x7fffffffffffff;
r2 += c;
```

### But the experts know how to do all this, right?



Labor-intensive adaptation, with each combination taking

at least several days for an expert.

Library Reuse

Cryptography





And by the way, sometimes there are serious bugs.

Research Faculty Summit 2018



## Correct-by-Construction Cryptography

Abstract security property



"Knowledge of the secret key is needed to produce a signature in polynomial time."

Mathematical algorithm



$$y^2 = x^3 - x + 1$$

Low-level code



specialized assembly code

protocol verification

implementation synthesis



Correct-by-Construction Cryptography

Mathematical algorithm

Optimized point format

High-level modular arithmetic

Low-level code

point = (x, y)

Proved abstraction relation

point = (x, y, z, t)

Proved abstraction relation

 $x = x_0, x_1, ..., x_n$ 

(mathematical integers)

specialized low-level code (assumes fixed set of integer sizes)

classic verification of functional programs

classic verification of functional programs

compile-time code specialization

compiler verification





## Fiat Cryptography



Joint work with Andres Erbsen, Jade Philipoom, Jason Gross, and Robert Sloan

#### Implementation of Multiplication?

Just compute all the cross terms.

```
E.g., [(a, x), (b, y)] \times [(c, u), (d, v)]
    \rightarrow [(ac, xu), (ad, xv), (bc, yu), (bd, yv)]
Definition mul (p q:list (Z*Z)) : list (Z*Z) :=
  flat_map (fun t =>
    map (fun t' =>
       (fst t * fst t', (snd t * snd t')%RT))
  q) p.
Lemma eval_mul p q :
  eval (mul p q) = eval p * eval q.
```

#### Putting It All Together

Convert from fixed base system to simpler custom form at start of execution.

```
Definition mulmod {n} (a b:tuple Z n): tuple Z n
:= let a_a := to_associational a in
let b_a := to_associational b in
let ab_a := Associational.mul a_a b_a in
let abm_a := Associational.reduce s c ab_a in
from_associational n abm_a.

Compute in custom form.
```

Convert back at end.





#### Time for Some Partial Evaluation







#### Performance on Curve25519

| Implementation           | CPU cycles |  |
|--------------------------|------------|--|
| amd64-64, asm            | 151586     |  |
| this work B, 64-bit      | 152195     |  |
| sandy2x, asm             | 154313     |  |
| hacl-star, 64-bit        | 154982     |  |
| donna64, <b>64-bit</b> C | 168502     |  |
| this work A, 64-bit      | 174637     |  |
| this work, 32-bit        | 310585     |  |
| donna32, 32-bit C        | 529812     |  |

#### Performance on Many Curves

#### 64-Bit Field Arithmetic Benchmarks



#### 32-Bit Field Arithmetic Benchmarks



#### And We're in Chrome Now!

via the BoringSSL library

for Curve25519 & P256

Coming soon, pending internship success: P384



#### The Big Tradeoff



Is it *fundamental* that systems hackers need to spend their time writing intricate, bug prone, low level code?

Is it fundamental that abstractions bring runtime performance costs?



#### A General Schema for Goals of Systems SW/HW?



Real, optimized system

Research Faculty Summit 2018

Systems | Fueling future disruptions



#### Going All-In with Compile-Time Verification

- Goal: platform for efficient execution of functional programs, written in high-level notation so simple that auditing catches bugs well
- Proof-Carrying Code: no code (SW or HW) allowed on the system, in any digital component, without proof of functional correctness.
- End-to-End Proofs: all proofs connected together in a proved way, for a small TCB consisting of proof checker, plus semantics of hardware description language (~1000 lines?) and applications and system API (~1000 lines?).
- No Runtime Enforcement of Isolation (it's all in the proofs.)



### Simplifying the Runtime Story

Functional code (spec) C-like code Machine code **Processors** Memory System

Uses object capabilities and other patterns

Compiler analysis infers object lifetimes

**No type system!** Expose memory directly. Fixed type systems are vestigial w/ program proof.

Compiler computes worst-case running time,

Thanks to proved characterizations of functions, knows which handlers need which objects. Moves objects into CPU caches preemptively, providing a clean **transactions** view to SW. No more **weak memory**!

Research Faculty Summit 2018

Systems | Fueling future disruptions



#### In Summary....

- Surprisingly many hard systems challenges go away when we commit to requiring functional-correctness proofs of all installed SW.
- That kind of regime is more practical than folks would assume if they've held onto 20<sup>th</sup>-century perspectives!
- Fun question to leave you with: for various important domains, what would be the dollar cost of rewriting all platform software (& maybe digital hardware, too), with functional-correctness proofs?
  - [Conjecture: it's a small fraction of venture-capital investment in tech startups each year.]



# Thank you!

