
Systems | Fueling future disruptions

Research
Faculty Summit 2018

How Formal-Methods Adoption
Should Drive Changes to
System Designs
Adam Chlipala
Associate Professor, MIT CSAIL

System Development Processes

Design
Requirements

Implementation
Coding

Release

Fuzzy
feeling
inside

Testing,
debugging,
code review, ...

Proved

Formal Methods

“Mechanized, end-to-end proofs of functional correctness”

Real System
(source code)

Proof
(source code)

Specification
(source code)

Proof Checker
(algorithm)

(e.g., Coq
proof assistant,
which we use)

Mechanized proofs

Real System
(source code)

no
segfaults

Specification

outputs
right answer

Proofs of Functional Correctness

Layer 1

Whole-System
Specification

Layer 2

Layer 3

Layers Proved
Modularly

End-to-End Proofs

The Big Tradeof

vs.

Is it fundamental that systems hackers need to spend their time writing
intricate, bug-prone, low-level code?

d0 = r0 * 2;
d1 = r1 * 2;
d2 = r2 * 2 * 19;
d419 = r4 * 19;
d4 = d419 * 2;

t[0] = ((uint128_t) r0) * r0 + ((uint128_t) d4) * r1 + (((uint128_t) d2) * (r3));
t[1] = ((uint128_t) d0) * r1 + ((uint128_t) d4) * r2 + (((uint128_t) r3) * (r3 * 19));
t[2] = ((uint128_t) d0) * r2 + ((uint128_t) r1) * r1 + (((uint128_t) d4) * (r3));
t[3] = ((uint128_t) d0) * r3 + ((uint128_t) d1) * r2 + (((uint128_t) r4) * (d419));
t[4] = ((uint128_t) d0) * r4 + ((uint128_t) d1) * r3 + (((uint128_t) r2) * (r2));

r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;

Crypto is Hard (Adam Langley's Curve25519 C code)

Cryptography

Library Reuse

rockstar
coders

Algorithms Prime #s


HW Arches


Labor-intensive adaptation, with each combination taking
at least several days for an expert.

And by the way,
sometimes there
are serious bugs.

But the experts know how to do all this, right?

Abstract
security
property

“Knowledge of the secret key is needed
to produce a signature in polynomial
time.”

Mathematical
algorithm y2 = x3 – x + 1

protocol
verification

Low-level
code

implementation
synthesisspecialized assembly code

Correct-by-Construction Cryptography

Mathematical
algorithm point = (x, y)

High-level
modular
arithmetic

x = x
0
, x

1
, …, x

n

(mathematical integers)

classic verification
of functional programs

Low-level
code

compile-time code
specialization

compiler verificationspecialized low-level code
(assumes fixed set of integer sizes)

classic verification
of functional programs

Optimized point
format point = (x, y, z, t)

Proved abstraction relation

Proved abstraction relation

Correct-by-Construction Cryptography

Fiat Cryptography

(logo shared with other parts of project)

Joint work with Andres Erbsen, Jade Philipoom, Jason Gross, and Robert Sloan

Just compute all the cross terms.

E.g., [(a, x), (b, y)]  [(c, u), (d, v)]
→ [(ac, xu), (ad, xv), (bc, yu), (bd, yv)]

Definition mul (p q:list (Z*Z)) : list (Z*Z) :=
 flat_map (fun t =>
 map (fun t' =>
 (fst t * fst t', (snd t * snd t')%RT))
 q) p.
Lemma eval_mul p q :
eval (mul p q) = eval p * eval q.

Implementation of Multiplication?

Definition mulmod {n} (a b:tuple Z n) : tuple Z n
 := let a_a := to_associational a in
 let b_a := to_associational b in
 let ab_a := Associational.mul a_a b_a in
 let abm_a := Associational.reduce s c ab_a in
 from_associational n abm_a.

Convert from fixed base system to simpler custom form at start of execution.

Compute in custom form.

Convert back at end.

Putting It All Together

Digit
Bitwidths s Digits t Digits

s × t Digits

Multiply Multiply

Digit
Bitwidths s Digits t Digits

s × t Digits

Specialize

Multiply

s Digits t Digits

s × t Digits

Reduce

In Coq:
just partially
applying a
curried function

In Coq:
just calling
a standard
term-reduction tactic

Time for Some Partial Evaluation

Performance on Curve25519

Performance on Many Curves

via the BoringSSL library

And We're in Chrome Now!

for Curve25519 & P256

Coming soon, pending internship success: P384

The Big Tradeof

vs.

Is it fundamental that systems hackers need to spend their time writing
intricate, bug-prone, low-level code?

Is it fundamental that abstractions bring runtime performance costs?

A General Schema for Goals of Systems SW/HW?

high-level
language/API

CPU

Storage

Network Ports

Impenetrable
Wall

Real, optimized system

Specification?

Going All-In with Compile-Time Verification

• Goal: platform for efficient execution of functional programs,
written in high-level notation so simple that auditing catches
bugs well

• Proof-Carrying Code: no code (SW or HW) allowed on the system, in any
digital component, without proof of functional correctness.

• End-to-End Proofs: all proofs connected together in a proved way, for a
small TCB consisting of proof checker, plus semantics of hardware
description language (~1000 lines?) and applications and system API
(~1000 lines?).

• No Runtime Enforcement of Isolation (it's all in the proofs.)

Simplifying the Runtime Story

Functional code (spec)

C-like code

Machine code

Processors

Memory System

Uses object capabilities and other patterns
that bring security and isolation by construction.

Compiler analysis infers object lifetimes
to insert manual memory management.No type system! Expose memory directly.

Fixed type systems are vestigial w/ program proof.

Compiler computes worst-case running time,
sometimes relying on proved annotations.

No virtual memory or interrupts!

Dispatches IO events to handler functions on CPUs

Thanks to proved characterizations of functions,
knows which handlers need which objects.

Moves objects into CPU caches preemptively,
providing a clean transactions view to SW.

No more weak memory!

In Summary....

• Surprisingly many hard systems challenges go away when we commit to
requiring functional-correctness proofs of all installed SW.

• That kind of regime is more practical than folks would assume if they've
held onto 20th-century perspectives!

• Fun question to leave you with: for various important domains, what would
be the dollar cost of rewriting all platform software (& maybe digital
hardware, too), with functional-correctness proofs?
– [Conjecture: it's a small fraction of venture-capital investment in tech

startups each year.]

Thank you!

	Research�Faculty Summit 2018
	Confidential Computing
	Slide palette info
	Text with bullet points—adjusting list levels
	Headline goes here
	Headline goes here
	Headline goes here
	Headline goes here
	Headline goes here
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Adam Chlipala_Verification and Secure Systems_Chris Hawblitzel.pdf
	Slide 1
	Slide 2
	Headline goes here
	Slide 4
	Slide 5
	Slide 6
	Headline goes here
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

