
SBEED: Convergent Reinforcement Learning with
Nonlinear Function Approximation

Bo Dai1, Albert Shaw1, Lihong Li2, Lin Xiao3, Niao He4, Zhen Liu1, Jianshu Chen5, Le Song1

1Georgia Insititute of Technology
2Google Inc., 3Microsoft Research, Redmond

4University of Illinois at Urbana Champaign, 5Tencent AI Lab, Bellevue

June 7, 2018

Abstract

When function approximation is used, solving the Bellman optimality equation with stability guarantees
has remained a major open problem in reinforcement learning for decades. The fundamental difficulty
is that the Bellman operator may become an expansion in general, resulting in oscillating and even
divergent behavior of popular algorithms like Q-learning. In this paper, we revisit the Bellman equation,
and reformulate it into a novel primal-dual optimization problem using Nesterov’s smoothing technique
and the Legendre-Fenchel transformation. We then develop a new algorithm, called Smoothed Bellman
Error Embedding, to solve this optimization problem where any differentiable function class may be
used. We provide what we believe to be the first convergence guarantee for general nonlinear function
approximation, and analyze the algorithm’s sample complexity. Empirically, our algorithm compares
favorably to state-of-the-art baselines in several benchmark control problems.

1 Introduction

In reinforcement learning (RL), the goal of an agent is to learn a policy that maximizes long-term returns by
sequentially interacting with an unknown environment (Sutton & Barto, 1998). The dominating framework
to model such an interaction is the Markov decision process, or MDP, in which the optimal value function are
characterized as a fixed point of the Bellman operator. A fundamental result for MDP is that the Bellman
operator is a contraction in the value-function space, so the optimal value function is the unique fixed point.
Furthermore, starting from any initial value function, iterative applications of the Bellman operator ensure
convergence to the fixed point. Interested readers are referred to the textbook of Puterman (2014) for details.

Many of the most effective RL algorithms have their root in such a fixed-point view. The most prominent
family of algorithms is perhaps the temporal-difference algorithms, including TD(λ) (Sutton, 1988), Q-
learning (Watkins, 1989), SARSA (Rummery & Niranjan, 1994; Sutton, 1996), and numerous variants such
as the empirically very successful DQN (Mnih et al., 2015) and A3C (Mnih et al., 2016) implementations.
Compared to direct policy search/gradient algorithms like REINFORCE (Williams, 1992), these fixed-point
methods make learning more efficient by bootstrapping (a sample-based version of Bellman operator).

When the Bellman operator can be computed exactly (even on average), such as when the MDP has finite
state/actions, convergence is guaranteed thanks to the contraction property (Bertsekas & Tsitsiklis, 1996).
Unfortunately, when function approximatiors are used, such fixed-point methods easily become unstable or
even divergent (Boyan & Moore, 1995; Baird, 1995; Tsitsiklis & Van Roy, 1997), except in a few special cases.
For example,
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• for some rather restrictive function classes, such as those with a non-expansion property, some of the
finite-state MDP theory continues to apply with modifications (Gordon, 1995; Ormoneit & Sen, 2002;
Antos et al., 2008);

• when linear value function approximation in certain cases, convergence is guaranteed: for evaluating
a fixed policy from on-policy samples (Tsitsiklis & Van Roy, 1997), for evaluating the policy using a
closed-form solution from off-policy samples (Boyan, 2002; Lagoudakis & Parr, 2003), or for optimizing
a policy using samples collected by a stationary policy (Maei et al., 2010).

In recent years, a few authors have made important progress toward finding scalable, convergent TD algorithms,
by designing proper objective functions and using stochastic gradient descent (SGD) to optimize them (Sutton
et al., 2009; Maei, 2011). Later on, it was realized that several of these gradient-based algorithms can be
interpreted as solving a primal-dual problem (Mahadevan et al., 2014; Liu et al., 2015; Macua et al., 2015;
Dai et al., 2016). This insight has led to novel, faster, and more robust algorithms by adopting sophisticated
optimization techniques (Du et al., 2017). Unfortunately, to the best of our knowledge, all existing works
either assume linear function approximation or are designed for policy evaluation. It remains a major open
problem how to find the optimal policy reliably with general nonlinear function approximators such as neural
networks, especially in the presence of off-policy data.

Contributions In this work, we take a substantial step towards solving this decades-long open problem,
leveraging a powerful saddle-point optimization perspective, to derive a new algorithm called Smoothed
Bellman Error Embedding (SBEED) algorithm. Our development hinges upon a novel view of a smoothed
Bellman optimality equation, which is then transformed to the final primal-dual optimization problem.
SBEED learns the optimal value function and a stochstic policy in the primal, and the Bellman error (also
known as Bellman residual) in the dual. By doing so, it avoids the non-smooth max-operator in the Bellman
operator, as well as the double-sample challenge that has plagued RL algorithm designs (Baird, 1995). More
specifically,

• SBEED is stable for a broad class of nonlinear function approximators including neural networks, and
provably converges to a solution with vanishing gradient. This holds even in the more challenging
off-policy case;

• it uses bootstrapping to yield high sample efficiency, as in TD-style methods, and is also generalized to
cases of multi-step bootstrapping and eligibility traces;

• it avoids the double-sample issue and directly optimizes the squared Bellman error based on sample
trajectories;

• it uses stochastic gradient descent to optimize the objective, thus very efficient and scalable.

Furthermore, the algorithm handles both the optimal value function estimation and policy optimization in a
unified way, and readily applies to both continuous and discrete action spaces. We compare the algorithm
with state-of-the-art baselines on several continuous control benchmarks, and obtain excellent results.

2 Preliminaries

In this section, we introduce notation and technical background that is needed in the rest of the paper. We
denote a Markov decision process (MDP) as M = (S,A, P,R, γ), where S is a (possible infinite) state space,
A an action space, P (·|s, a) the transition probability kernel defining the distribution over next states upon
taking action a on state s, R(s, a) the average immediate reward by taking action a in state s, and γ ∈ (0, 1)
a discount factor. Given an MDP, we wish to find a possibly stochastic policy π : S → PA to maximize the

expected discounted cumulative reward starting from any state s ∈ S: E
[∑∞

t=0 γ
tR(st, at)

∣∣∣s0 = s, π
]
, where

PA denotes all probability measures over A. The set of all policies is denoted by P := (PA)S .
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Define V ∗(s) := maxπ(·|s) E [
∑∞
t=0 γ

tR(st, at)|s0 = s, π] to be the optimal value function. It is known that
V ∗ is the unique fixed point of the Bellman operator T , or equivalently, the unique solution to the Bellman
optimality equation (Bellman equation, for short) (Puterman, 2014):

V (s) = (T V )(s) := max
a

R(s, a) + γEs′|s,a [V (s′)]. (1)

The optimal policy π∗ is related to V ∗ by the following:

π∗(a|s) = argmax
a

{
R(s, a) + γEs′|s,a [V ∗(s′)]

}
.

It should be noted that in practice, for convenience we often work on the Q-function instead of the state-value
function V ∗. In this paper, it suffices to use the simpler V ∗ function.

3 A Primal-Dual View of Bellman Equation

In this section, we introduce a novel view of Bellman equation that enables the development of the new
algorithm in Section 4. After reviewing the Bellman equation and the challenges to solve it, we describe the
two key technical ingredients that lead to our primal-dual reformulation.

We start with another version of Bellman equation that is equivalent to Eqn (1) (see, e.g., Puterman
(2014)):

V (s) = max
π(·|s)∈PA

Ea∼π(·|s)
[
R(s, a) + γEs′|s,a [V (s′)]

]
. (2)

Eqn (2) makes the role of a policy explicit. Naturally, one may try to jointly optimize over V and π to
minimize the discrepancy between the two sides of (2). For concreteness, we focus on the square distance
in this paper, but our results can be extended to other convex loss functions. Let µ be some given state
distribution so that µ(s) > 0 for all s ∈ S. Minimizing the squared Bellman error gives the following:

min
V

Es∼µ

[(
max

π(·|s)∈PA
Ea∼π(·|s)

[
R(s, a) + γEs′|s,a [V (s′)]

]
− V (s)

)2
]
. (3)

While natural, this approach has several major difficulties when it comes to optimization, which are to be
dealt with in the following subsections:

• The max operator over PA introduces non-smoothness to the objective function. A slight change in V
may cause large differences in the RHS of Eqn (2).

• The conditional expectation, Es′|s,a [·], composed within the square loss, requires double samples (Baird,
1995) to obtain unbiased gradients, which is often impractical in most but simulated environments.

3.1 Smoothed Bellman Equation

To avoid the instability and discontinuity caused by the max operator, we use the smoothing technique of
Nesterov (2005) to smooth the Bellman operator T . Since policies are conditional distributions over A, we
choose entropy regularization, and Eqn (2) becomes:

Vλ(s) = max
π(·|s)∈PA

(
Ea∼π(·|s)

(
R(s, a) + γEs′|s,a [Vλ(s′)]

)
+ λH(π, s)

)
, (4)

where H(π, s) := −
∑
a∈A π(a|s) log π(a|s), and λ > 0 controls the degree of smoothing. Note that with

λ = 0, we obtain the standard Bellman equation. Moreover, the regularization may be viewed a shaping
reward added to the reward function of an induced, equivalent MDP; see Appendix C.2 for more details.
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Since negative entropy is the conjugate of the log-sum-exp function (Boyd & Vandenberghe, 2004,
Example 3.25), Eqn (4) can be written equivalently as

Vλ(s) = (TλVλ) (s) := λ log

(∑
a∈A

exp

(
R(s, a) + γEs′|s,a [Vλ(s′)]

λ

))
(5)

where the log-sum-exp is an effective smoothing approximation of the max-operator.

Remark. While Eqns (4) and (5) are inspired by Nestorov smoothing technique, they can also be derived
from other principles (Rawlik et al., 2012; Fox et al., 2016; Neu et al., 2017; Nachum et al., 2017; Asadi &
Littman, 2017). For example, Nachum et al. (2017) use entropy regularization in the policy space to encourage
exploration, but arrive at the same smoothed form; the smoothed operator Tλ is called “Mellowmax” by
Asadi & Littman (2017), which is obtained as a particular instantiation of the quasi-arithmetic mean. In the
rest of the subsection, we review the properties of Tλ, although some of the results have appeared in the
literature in slightly different forms. Proofs are deferred to Appendix A.

First, we show Tλ is also a contraction, as with the standard Bellman operator (Fox et al., 2016; Asadi &
Littman, 2017):

Proposition 1 (Contraction) Tλ is a γ-contraction. Consequently, the corresponding smoothed Bellman
equation (4), or equivalently (5), has a unique solution V ∗λ .

Second, we show that while in general V ∗ 6= V ∗λ , their difference is controlled by λ. To do so, define
H∗ := maxs∈S,π(·|s)∈PA H(π, s). For finite action spaces, we immediately have H∗ = log(|A|).

Proposition 2 (Smoothing bias) Let V ∗ and V ∗λ be fixed points of (2) and (4), respectively. Then,

‖V ∗(s)− V ∗λ (s)‖∞ 6
λH∗

1− γ
.

Consequently, as λ→ 0, V ∗λ converges to V ∗ pointwisely.

Finally, the smoothed Bellman operator has the very nice property of temporal consistency (Rawlik et al.,
2012; Nachum et al., 2017):

Proposition 3 (Temporal consistency) Assume λ > 0. Let V ∗λ be the fixed point of (4) and π∗λ the
corresponding policy that attains the maximum on the RHS of (4). Then, (V ∗λ , π

∗
λ) is the unique (V, π) pair

that satisfies the following equality for all (s, a) ∈ S ×A:

V (s) = R(s, a) + γEs′|s,a [V (s′)]− λ log π(a|s) . (6)

In other words, Eqn (6) provides an easy-to-check condition to characterize the optimal value function and
optimal policy on arbitrary pair of (s, a), therefore, which is easy to incorporate off-policy data. It can also be
extended to the multi-step or eligibility-traces cases (Appendix C; see also Sutton & Barto (1998, Chapter 7)).
Later, this condition will be one of the critical foundations to develop our new algorithm.

3.2 Bellman Error Embedding

A natural objective function inspired by (6) is the mean squared consistency Bellman error, given by:

min
V,π∈P

`(V, π) := Es,a
[(
R(s, a) + γEs′|s,a [V (s′)]− λ log π(a|s)− V (s)

)2]
, (7)

where Es,a[·] is shorthand for Es∼µ(·),a∼πb(·|s)[·]. Unfortunately, due to the inner conditional expectation, it
would require two independent sample of s′ (starting from the same (s, a)) to obtain an unbiased estimate
of gradient of f , a problem known as the double-sample issue (Baird, 1995). In practice, however, one can
rarely obtain two independent samples except in simulated environments.
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To bypass this problem, we make use of the conjugate of the square function (Boyd & Vandenberghe,
2004): x2 = maxν

(
2νx− ν2

)
, as well as the interchangeability principle (Shapiro et al., 2009; Dai et al.,

2016) to rewrite the optimization problem (7) into an equivalent form:

min
V,π∈P

max
ν∈FS×A

L(V, π; ν) := 2Es,a,s′
[
ν(s, a)

(
R(s, a) + γV (s′)− λ log π(a|s)− V (s)

)]
− Es,a,s′

[
ν2(s, a)

]
, (8)

where FS×A is the set of real-valued functions on S ×A, Es,a,s′ [·] is shorthand for Es∼µ(·),a∼πb(·|s),s′∼P (·|s,a)[·].
Note that (8) is not a standard convex-concave saddle-point problem: the objective is convex in V for any
fixed (π, ν), and concave in ν for any fixed (V, π), but not necessarily convex in π ∈ P for any fixed (V, ν).

Remark. In contrast to our saddle-point formulation (8), Nachum et al. (2017) get around the double-sample

obstacle by minimizing an upper bound of `(V, π): ˜̀(V, π) := Es,a,s′
[
(R(s, a) + γV (s′)− λ log π(a|s)− V (s))

2
]
.

As is known (Baird, 1995), the gradient of ˜̀ is different from that of f , as it has a conditional variance
term coming from the stochastic outcome s′. In problems where this variance is highly heterogeneous across
different (s, a) pairs, impact of such a bias can be substantial.

Finally, substituting the dual function ν(s, a) = ρ(s, a)− V (s), the objective in the saddle point problem
becomes

min
V,π

max
ρ∈FS×A

L1(V, π; ρ) := Es,a,s′
[
(δ(s, a, s′)− V (s))

2
]
− Es,a,s′

[
(δ(s, a, s′)− ρ(s, a))

2
]

(9)

where δ(s, a, s′) := R(s, a) + γV (s′)− λ log π(a|s). Note that the first term is ˜̀(V, π), and the second term
will cancel the extra variance term (see Proposition 8 in Appendix B). The use of an auxiliary function to
cancel the variance is also observed by Antos et al. (2008). On the other hand, when function approximation
is used, extra bias will also be introduced. We note that such a saddle-point view of debiasing the extra
variance term leads to a useful mechanism for better bias-variance trade-offs, leading to the final primal-dual
formulation we aim to solve in the next section:

min
V,π∈P

max
ρ∈FS×A

Lη(V, π; ρ) := Es,a,s′
[
(δ(s, a, s′)− V (s))

2
]
− ηEs,a,s′

[
(δ(s, a, s′)− ρ(s, a))

2
]
, (10)

where η ∈ [0, 1] is a hyper-parameter controlling the trade-off. When η = 1, this reduces to the original
saddle-point formulation (8). When η = 0, this reduces to the surrogate objective considered by Nachum
et al. (2017).

4 Smoothed Bellman Error Embedding

In this section, we derive the Smoothed Bellman Error EmbeDding (SBEED) algorithm, based on stochastic
mirror descent (Nemirovski et al., 2009), to solve the smoothed Bellman equation. For simplicity of exposition,
we mainly discuss the one-step optimization (10), although it is possible to generalize the algorithm to the
multi-step and eligibility-traces settings; see Appendices C.2 and C.3 for details.

Due to the curse of dimensionality, the quantities (V, π, ρ) are often represented by compact, parametric
functions in practice. Denote these parameters by w = (wV , wπ, wρ). Abusing notation a little bit, we now
write the objective function Lη(V, π; ρ) as Lη(wV , wπ;wρ).

First, we note that the inner (dual) problem is standard least-squares regression with parameter wρ,
so can be solved using a variety of algorithms (Bertsekas, 2016); in the presence of special structures like
convexity, global optima can be found efficiently (Boyd & Vandenberghe, 2004). The more involved part is to
optimize the primal (wV , wπ), whose gradients are given by the following theorem.

Theorem 4 (Primal gradient) Define ¯̀
η(wV , wπ) := Lη(wV , wπ;w∗ρ), where w∗ρ = arg maxwρ Lη(wV , wπ;wρ).

Let δs,a,s′ be a shorthand for δ(s, a, s′), and ρ̂ be dual parameterized by w∗ρ. Then,

∇wV ¯̀
η =2Es,a,s′ [(δs,a,s′ − V (s)) (γ∇wV V (s′)−∇wV V (s))]− 2ηγEs,a,s′ [(δs,a,s′ − ρ̂(s, a))∇wV V (s′)] ,

∇wπ ¯̀
η =− 2λEs,a,s′

[
((1− η)δs,a,s′ + ηρ̂(s, a)− V (s)) · ∇wπ log π(a|s)

]
.
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Algorithm 1 Online SBEED learning with experience replay

1: Initialize w = (wV , wπ, wρ) and πb randomly, set ε.
2: for episode i = 1, . . . , T do
3: for size k = 1, . . . ,K do
4: Add new transition (s, a, r, s′) into D by executing behavior policy πb.
5: end for
6: for iteration j = 1, . . . , N do
7: Update wjρ by solving

min
wρ

Ê{s,a,s′}∼D
[
(δ(s, a, s′)− ρ(s, a))

2
]
.

8: Decay the stepsize ζj in rate O(1/j).

9: Compute the stochastic gradients w.r.t. wV and wπ as ∇̂wV ¯̀(V, π) and ∇̂wπ ¯̀(V, π).
10: Update the parameters of primal function by solving the prox-mappings, i.e.,

update V : wjV = Pwj−1
V

(ζj∇̂wV ¯̀(V, π))

update π: wjπ = Pwj−1
π

(ζj∇̂wπ ¯̀(V, π))

11: end for
12: Update behavior policy πb = πN .
13: end for

With gradients given above, we may apply stochastic mirror descent to update wV and wπ; that is, given a
stochastic gradient direction (for either wV or wπ), we solve the following prox-mapping in each iteration,

PzV (g) = argmin
wV

〈wV , g〉+DV (wV , zV ),

Pzπ (g) = argmin
wπ

〈wπ, g〉+Dπ(wπ, zπ).

where zV and zπ can be viewed the current weight, and DV (w, z) and Dπ(w, z) are Bregman divergences.
We can use Euclidean metric for both wV and wπ, and possibly KL-divergence for wπ. The per-iteration
computation complexity is therefore very low, and the algorithm can be scaled up to complex nonlinear
approximations.

Algorithm 1 instantiates SBEED, combined with experience replay (Lin, 1992) for greater data efficiency,
in an online RL setting. New samples are added to the experience replay buffer D at the beginning of each
episode (Lines 3–5) with a behavior policy. Lines 6–11 correspond to the stochastic mirror descent updates
on the primal parameters. Line 12 sets the behavior policy to be the current policy estimate, although other
choices may be used. For example, πb can be a fixed policy (Antos et al., 2008), which is the case we will
analyze in the next section.

Remark (Role of dual variables): The dual variable is obtained by solving

min
ρ

Es,a,s′
[(
R(s, a) + γV (s′)− λ log π(a|s)− ρ(s, a)

)2]
.

The solution to this optimization problem is

ρ∗(s, a) = R(s, a) + γEs′|s,a [V (s′)]− λ log π(a|s) .

Therefore, the dual variables try to approximate the one-step smoothed Bellman backup values, given a (V, π)
pair. Similarly, in the equivalent (8), the optimal dual variable ν(s, a) is to fit the one-step smoothed Bellman
error. Therefore, each iteration of SBEED could be understood as first fitting a parametric model to the
one-step Bellman backups (or equivalently, the one-step Bellman error), and then applying stochastic mirror
descent to adjust V and π.
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Remark (Connection to TRPO and NPG): The update of wπ is related to trust region policy
optimization (TRPO) (Schulman et al., 2015) and natural policy gradient (NPG) (Kakade, 2002; Rajeswaran
et al., 2017) when Dπ is the KL-divergence. Specifically, in Kakade (2002) and Rajeswaran et al. (2017),
wπ is update by argminwπ E [〈wπ,∇wπ log πt(a|s)A(a, s)〉] + 1

η KL(πwπ ||πwoldπ ), which is similar to Pwj−1
π

with the difference in replacing the log πt(a|s)A(a, s) with our gradient. In Schulman et al. (2015), a
related optimization with hard constraints is used for policy updates: minwπ E [π(a|s)A(a, s)], such that
KL(πwπ ||πwoldπ ) 6 η. Although these operations are similar to Pwj−1

π
, we emphasize that the estimation

of the advantage function, A(s, a), and the update of policy are separated in NPG and TRPO. Arbitrary
policy evaluation algorithm can be adopted for estimating the value function for current policy. While in our
algorithm, (1− η)δ(s, a) + ηρ∗(s, a)− V (s) is different from the vanilla advantage function, which is designed
appropriate for off-policy particularly, and the estimation of ρ(s, a) and V (s) is also integrated as the whole
part.

5 Theoretical Analysis

In this section, we give a theoretical analysis for our algorithm in the same setting of Antos et al. (2008) where
samples are prefixed and from one single β-mixing off-policy sample path. For simplicity, we consider the case
that applying the algorithm for η = 1 with the equivalent optimization (8). The analysis is applicable to (9)
directly. There are three groups of results. First, in Section 5.1, we show that under appropriate choices of
stepsize and prox-mapping, SBEED converges to a stationary point of the finite-sample approximation (i.e.,
empirical risk) of the optimization (8). Second, in Section 5.2, we analyze generalization error of SBEED.
Finally, in Section 5.3, we give an overall performance bound for the algorithm, by combining four sources of
errors: (i) optimization error, (ii) generalization error, (iii) bias induced by Nesterov smoothing, and (iv)
approximation error induced by using function approximation.

Notations. Denote by Vw, Pw and Hw the parametric function classes of value function V , policy π, and
dual variable ν, respectively. Denote the total number of steps in the given off-policy trajectory as T . We
summarize the notations for the objectives after parametrization and finite-sample approximation and their
corresponding optimal solutions in the table for reference:

minimax obj. primal obj. optimum
original L(V, π; ν) `(V, π) (V ∗λ , π

∗
λ)

parametric Lw(Vw, πw; νw) `w(Vw, πw) (V ∗w , π
∗
w)

empirical L̂T (Vw, πw; νw) ̂̀
T (Vw, πw) (V̂ ∗w , π̂

∗
w)

Denote the L2 norm of a function f w.r.t. µ(s)πb(a|s) by ‖f‖2 :=
∫
f(s, a)2µ(s)πb(a|s)dsda. We introduce

a scaled norm : ‖V ‖2µπb =
∫ (
γEs′|s,a [V (s′)]− V (s)

)2
µ(s)πb(a|s)dsda; for value function; this is indeed a

well-defined norm since ‖V ‖2µπb = ‖(γP − I)V ‖22 and I − γP is injective.

5.1 Convergence Analysis

It is well-known that for convex-concave saddle point problems, applying stochastic mirror descent ensures
global convergence in a sublinear rate (Nemirovski et al., 2009). However, this no longer holds for prob-
lems without convex-concavity. Our SBEED algorithm, on the other hand, can be regarded as a special
case of the stochastic mirror descent algorithm for solving the non-convex primal minimization problem
minVw,πw

̂̀
T (Vw, πw). The latter was proven to converge sublinearly to a stationary point when stepsize is

diminishing and Euclidean distance is used for the prox-mapping (Ghadimi & Lan, 2013). For completeness,
we list the result below.

Theorem 5 (Convergence, Ghadimi & Lan (2013)) Consider the case when Euclidean distance is used

in the algorithm. Assume that the parametrized objective ̂̀T (Vw, πw) is K-Lipschitz and variance of its

7



stochastic gradient is bounded by σ2. Let the algorithm run for N iterations with stepsize ζk = min{ 1
K ,

D′

σ
√
N
}

for some D′ > 0 and output w1, . . . , wN . Setting the candidate solution to be (V̂ Nw , π̂Nw ) with w randomly

chosen from w1, . . . , wN such that P (w = wj) =
2ζj−Kζ2j∑N

j=1(2ζj−Kζ2j )
, then it holds that E

[∥∥∥∇̂̀T (V̂ Nw , π̂Nw )
∥∥∥2] 6

KD2

N + (D′ + D
D′ )

σ√
N

where D :=

√
2(̂̀T (V 1

w , π
1
w)−min ̂̀T (Vw, πw))/K represents the distance of the initial

solution to the optimal solution.

The above result implies that the algorithm converges sublinearly to a stationary point, whose rate will
depend on the smoothing parameter.

In practice, once we parametrize the dual function, ν or ρ, with neural networks, we cannot achieve the
optimal parameters. However, we can still achieve convergence by applying the stochastic gradient descent
to a (statistical) local Nash equilibrium asymptotically. We provided the detailed Algorithm 2 and the
convergence analysis in Appendix D.3.

5.2 Statistical Error

In this section, we characterize the statistical error, namely, εstat(T ) := `w(V̂ ∗w , π̂
∗
w)− `w(V ∗w , π

∗
w), induced by

learning with finite samples. We first make the following standard assumptions about the MDPs:

Assumption 1 (MDP regularity) Assume ‖R(s, a)‖∞ 6 CR and that there exists an optimal policy,
π∗λ(a|s), such that ‖log π∗λ(a|s)‖∞ 6 Cπ.

Assumption 2 (Sample path property, Antos et al. (2008)) Denote µ(s) as the stationary distribu-
tion of behavior policy πb over the MDP. We assume πb(a|s) > 0, ∀ (s, a) ∈ S × A, and the corresponding

Markov process Pπb(s′|s) is ergodic. We further assume that {si}Ti=1 is strictly stationary and exponentially
β-mixing with a rate defined by the parameters (b, κ)1.

Assumption 1 ensures the solvability of the MDP and boundedness of the optimal value functions, V ∗ and V ∗λ .

Assumption 2 ensures β-mixing property of the samples {(si, ai, Ri)}Ti=1 (see e.g., Proposition 4 in Carrasco
& Chen (2002)) and is often necessary to prove large deviation bounds.

Invoking a generalized version of Pollard’s tail inequality to β-mixing sequences and prior results in Antos
et al. (2008) and Haussler (1995), we show that

Theorem 6 (Statistical error) Under Assumption 2, it holds with at least probability 1− δ,

εstat(T ) 6 2

√
M (max (M/b, 1))

1/κ

C2T
,

where M,C2 are some constants.

Detailed proof can be found in Appendix D.2.

5.3 Error Decomposition

As one shall see, the error between (V̂ Nw , ŵN ) (optimal solution to the finite sample problem) and the true
optimal (V ∗, π∗) to the Bellman equation consists three parts: i) the error introduced by smoothing, which
has been characterized in Section 3.1, ii) the approximation error, which is tied to the flexibility of the
parametrized function classes Vw, Pw, Hw, and iii) the statistical error. More specifically, we arrive at the
following explicit decomposition:

Denote επapp := supπ∈P infπ′∈Pw ‖π − π′‖∞ as the function approximation error between Pw and P.

Denote εVapp and ενapp as approximation errors for V and ν, accordingly. More specifically, we arrive at

1A β-mixing process is said to mix at an exponential rate with parameter b, κ > 0 if βm = O(exp(−bm−κ)).
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Theorem 7 Under Assumptions 1 and 2, it holds that
∥∥∥V̂ Nw − V ∗∥∥∥2

µπb
6 12(K+C∞)ενapp+2Cν(1+γ)εVapp(λ)+

6Cνε
π
app(λ) + 16λ2C2

π +
(
2γ2 + 2

) (
γλ
1−γH

∗
)2

+ 2εstat(T ) + 2
∥∥∥V̂ Nw − V̂ ∗w∥∥∥2

µπb
, where C∞ = max

{
CR
1−γ , Cπ

}
and Cν = maxν∈Hw ‖ν‖2.

Detailed proof can be found in Appendix D.1. Ignoring the constant factors, the above results can be
simplified as ∥∥∥V̂ Nw − V ∗∥∥∥2

µπb
6 εapp(λ) + εsm(λ) + εstat(T ) + εopt,

where εapp(λ) := O(ενapp + εVapp(λ) + επapp(λ)) corresponds to the approximation error, εsm(λ) := O(λ2)

corresponds to the bias induced by smoothing, and εstat(T ) := O(1/
√
T ) corresponds to the statistical error.

There exists a delicate trade-off between the smoothing bias and approximation error. Using large λ
increases the smoothing bias but decreases the approximation error since the solution function space is better
behaved. The concrete correspondence between λ and εapp(λ) depends on the specific form of the function
approximators, which is beyond the scope of this paper. Finally, when the approximation is good enough
(i.e., zero approximation error and full column rank of feature matrices), then our algorithm will converge to
the optimal value function V ∗ as λ→ 0, N,T →∞.

6 Related Work

One of our main contributions is a provably convergent algorithm when nonlinear approximation is used in
the off-policy control case. Convergence guarantees exist in the literature for a few rather special cases, as
reviewed in the introduction (Boyan & Moore, 1995; Gordon, 1995; Tsitsiklis & Van Roy, 1997; Ormoneit &
Sen, 2002; Antos et al., 2008; Melo et al., 2008). Of particular interest is the Greedy-GQ algorithm (Maei
et al., 2010), who uses two time-scale analysis to shown asymptotic convergence only for linear function
approximation in the controlled case. However, it does not take the true gradient estimator in the algorithm,
and the update of policy may become intractable when the action space is continuous.

Algorithmically, our method is most related to RL algorithms with entropy-regularized policies. Different
from the motivation in our method where the entropy regularization is introduced in dual form for smooth-
ing (Nesterov, 2005), the entropy-regularized MDP has been proposed for exploration (de Farias & Van Roy,
2000; Haarnoja et al., 2017), taming noise in observations (Rubin et al., 2012; Fox et al., 2016), and ensuring
tractability (Todorov, 2006). Specifically, Fox et al. (2016) proposed soft Q-learning for the tabular case,
but its extension to the function approximation case is hard, as the summation operation in log-sum-exp of
the update rule becomes a computationally expensive integration. To avoid such a difficulty, Haarnoja et al.
(2017) approximate the integral via Monte-Carlo method with Stein variational gradient descent sampler, but
limited theory is provided. Another related algorithm is developed by Asadi & Littman (2017) for the tabular
case, which resembles SARSA with a particular policy; also see Liu et al. (2017) for a Bayesian variant.
Observing the duality connection between soft Q-learning and maximum entropy policy optimization, Neu
et al. (2017) and Schulman et al. (2017) investigate the equivalence between these two types of algorithms.

Besides the difficulty to generalize these algorithms to multi-step trajectories in off-policy setting, the
major drawback of these algorithms is the lack of theoretical guarantees when accompanying with function
approximators. It is not clear whether the algorithms converge or not, do not even mention the quality
of the stationary points. That said, Nachum et al. (2017, 2018) also exploit the consistency condition in
Theorem 3 and propose the PCL algorithm which optimizes the upper bound of the mean squared consistency
Bellman error (7). The same consistency condition is also discovered in Rawlik et al. (2012), and the
proposed Φ-learning algorithm can be viewed as fix-point iteration version of the the unified PCL with
tabular Q-function. However, as we discussed in Section 3, the PCL algorithms becomes biased in stochastic
environment, which may lead to inferior solutions Baird (1995).

Several recent works (Chen & Wang, 2016; Wang, 2017; Dai et al., 2018) have also considered saddle-point
formulations of Bellman equations, but these formulations are fundamentally different from ours. These
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Figure 1: The ablation study of the SBEED on Swimmer-v1. We varied λ, η, and k to justify the effect of
each component in the algorithm.

saddle point problems are derived from the Lagrangian dual of the linear programming formulation of Bellman
equations (Schweitzer & Seidmann, 1985; de Farias & Van Roy, 2003). In contrast, our formulation is
derived from the Bellman equation directly using Fenchel duality/transformation. It would be interesting to
investigate the connection between these two saddle-point formulations in future work.

7 Experiments

The goal of our experimental evalation is two folds: i), to better understand of the effect of each algorithmic
component in the proposed algorithm, and ii), to demonstrate the stability and efficiency of SBEED in both
off-policy and on-policy settings. Therefore, we conducted an ablation study on SBEED, and a comprehensive
comparison to state-of-the-art reinforcement learning algorithms. While we derive and present SBEED for
single-step Bellman error case, it can be extended to multi-step cases (Appendix C.2). In our experiment, we
used this multi-step version.

7.1 Ablation Study

To get a better understanding of the trade-off between the variance and bias, including both the bias from
the smoothing technique and the introduction of the function approximator, we performed ablation study in
the Swimmer-v1 environment with stochastic transition by varying the coefficient for entropic regularization
λ and the coefficient of the dual function η in the optimization (10), as well as the number of the rollout
steps, k.

The effect of smoothing. We introduced the entropy regularization to avoid non-smoothness in Bellman
error objective. However, as we discussed, it also introduces bias. We varied λ and evaluated the performance
of SBEED. The results in Figure 1(a) are as expected: there is indeed an intermediate value for λ that gives
the best bias/smoothness balance.

The effect of dual function. One of the important components in our algorithm is the dual function,
which cancels the variance. The effect of such cancellation is controlled by η ∈ [0, 1], and we expected an
intermediate value gives the best performance. This is verified by the experiment of varying η, as shown in
Figure 1(b).

The effect of multi-step. SBEED can be easily extended to the multi-step version. However, increasing
the length of steps will also increase the variance. We tested the performance of the algorithm with different
k values. The results shown in Figure 1(c) confirms that an intermediate value for k yields the best result.
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Figure 2: The results of SBEED against TRPO, Dual AC and DDPG. Each plot shows average reward during
training across 5 random runs, with 50% confidence interval. The x-axis is the number of training iterations.
SBEED achieves significant better performance than the competitors on all tasks.

7.2 Comparison in Continuous Control Tasks

We tested SBEED across multiple continuous control tasks from the OpenAI Gym benchmark (Brockman et al.,
2016) using the MuJoCo simulator (Todorov et al., 2012), including Pendulum-v0, InvertedDoublePendulum-
v1, HalfCheetah-v1, Swimmer-v1, and Hopper-v1. For fairness, we follows the default setting of the MuJoCo
simulator in each task in this section. These tasks have dynamics of different natures, so are helpful for
evaluating the behavior of the proposed SBEED in different scenarios. We compared SBEED with several state-
of-the-art algorithms, including two on-policy algorithms, trust region policy optimization (TRPO) (Schulman
et al., 2015) dual actor-critic (Dual AC) (Dai et al., 2018), and one off-policy algorithm, deep deterministic
policy gradient (DDPG) (Lillicrap et al., 2015). We did not include PCL (Nachum et al., 2017) as it is a
special case of our algorithm by setting η = 0, i.e., ignoring the updates for dual function. Since TRPO and
Dual-AC are only applicable for on-policy setting, for fairness, we also conducted the comparison with these
two algorithm in on-policy setting. Due to the space limitation, the results can be found in Appendix E.

We ran the algorithm with 5 random seeds and reported the average rewards with 50% confidence intervals.
The results are shown in Figure 2. We can see that our SBEED algorithm achieves significantly better
performance than all other algorithms across the board. These results suggest that the SBEED can exploit
the off-policy samples efficiently and stably, and achieve a good trade-off between bias and variance.

It should be emphasized that the stability of algorithm is an important issue in reinforcement learning.
As we can see from the results, although DDPG can also exploit the off-policy sample, which promotes its
efficiency in stable environments, e.g., HalfCheetah-v1 and Swimmer-v1, it may fail to learn in unstable
environments, e.g., InvertedDoublePendulum-v1 and Hopper-v1, which was observed by Henderson et al.
(2018) and Haarnoja et al. (2018). In contrast, SBEED is consistently reliable and effective in different tasks.
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8 Conclusion

We provide a new optimization perspective of the Bellman equation, based on which we develop the new
SBEED algorithm for policy optimization in reinforcement learning. The algorithm is provably convergent
even when nonlinear function approximation is used on off-policy samples. We also provide PAC bound to
characterize the sample complexity based on one single off-policy sample path collected by a fixed behavior
policy. Empirical study shows the proposed algorithm achieves superior performance across the board,
compared to state-of-the-art baselines on several MuJoCo control tasks.
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Appendix

A Properties of Smoothed Bellman Operator

After applying the smoothing technique (Nesterov, 2005), we obtain a new Bellman operator, T̃ , which
is contractive. By such property, we can guarantee the uniqueness of the solution; a similar result is also
presented in Fox et al. (2016); Asadi & Littman (2017).
Proposition 1 (Contraction) Tλ is a γ-contraction. Consequently, the corresponding smoothed Bellman
equation (4), or equivalently (5), has a unique solution V ∗λ .
Proof For any V1, V2 : S → R, we have∥∥∥T̃ V1 − T̃ V2∥∥∥

∞

=
∥∥∥max

π

{〈
π,R(s, a) + γEs′|s,a [V1(s′)]

〉
+ λH(π)

}
−max

π

{〈
π,R(s, a) + γEs′|s,a [V2(s′)]

〉
+ λH(π)

}∥∥∥
∞

6
∥∥∥max

π

{〈
π,R(s, a) + γEs′|s,a [V1(s′)]

〉
+ λH(π)−

〈
π,R(s, a) + γEs′|s,a [V2(s′)]

〉
− λH(π)

}∥∥∥
6

∥∥∥max
π

〈
π, γEs′|s,a [V1(s′)− V2(s′)]

〉∥∥∥
∞

6 γ ‖V1 − V2‖∞ .

Tλ is therefore a γ-contraction and, by the Banach fixed point theorem, admits a unique fixed point.

Moreover, we may characterize the bias introduced by the entropic smoothing, similar to the simulation
lemma (see, e.g., Kearns & Singh (2002) and Strehl et al. (2009)):
Proposition 2 (Smoothing bias) Let V ∗ and V ∗λ be the fixed points of (2) and (4), respectively. It holds
that

‖V ∗ − V ∗λ ‖∞ 6
λH∗

1− γ
.

As λ→ 0, V ∗λ converges to V ∗ pointwisely.
Proof Using the triangle inequality and the contraction property of Tλ, we have

‖V ∗ − V ∗λ ‖∞ = ‖T V ∗ − TλV ∗λ ‖∞
= ‖V ∗ − TλV ∗ + TλV ∗ − TλV ∗λ ‖∞
6 ‖V ∗ − TλV ∗‖∞ + ‖TλV ∗ − TλV ∗λ ‖∞
6 λH∗ + γ ‖V ∗ − V ∗λ ‖∞ ,

which immediately implies the desired bound.

The smoothed Bellman equation involves a log-sum-exp operator to approximate the max-operator, which
increases the nonlinearity of the equation. We further characterize the solution of the smoothed Bellman
equation, by the temporal consistency conditions.
Theorem 3 (Temporal consistency) Assume λ > 0. Let V ∗λ be the fixed point of (4) and π∗λ the
corresponding policy that attains the maximum on the RHS of (4). Then, (V, π) = (V ∗λ , π

∗
λ) if and only if

(V, π) satisfies the following equality for all (s, a) ∈ S ×A:

V (s) = R(s, a) + γEs′|s,a [V (s′)]− λ log π(a|s) . (7)

16



Proof The proof has two parts.
(Necessity) We need to show (V ∗λ , π

∗
λ) is a solution to (6). Simple calculations give the closed form of π∗λ:

π∗λ(a|s) = Z(s)−1 exp

(
R(s, a) + γEs′|s,a [V ∗λ (s′)]

λ

)
,

where Z(s) :=
∑
a∈A exp

(
R(s,a)+γEs′|s,a[V ∗λ (s′)]

λ

)
is a state-dependent normalization constant. Therefore, for

any a ∈ A,

R(s, a) + γEs′|s,a [V ∗λ (s′)]− λ log π∗λ(a|s)

= R(s, a) + γEs′|s,a [V ∗λ (s′)]− λ
(
R(s, a) + γEs′|s,a [V ∗λ (s′)]

λ
− logZ(s)

)
= λ logZ(s) = V ∗λ (s) ,

where the last step is from (5). Therefore, (V ∗λ , π
∗
λ) satisfies (6).

(Sufficiency) Assume V̄ and π̄ satisfies (6), then we have for all (s, a) ∈ S ×A that

V̄ (s) = R(s, a) + γEs′|s,a
[
V̄ (s′)

]
− λ log π̄(a|s)

π(a|s) = exp

(
R(s, a) + γEs′|s,a

[
V̄ (s′)

]
− V̄ (s)

λ

)
.

Recall π(·|s) ∈ P, we have

∑
a∈A

exp

(
R(s, a) + γEs′|s,a

[
V̄ (s′)

]
− V̄ (s)

λ

)
= 1

⇒
∑
a∈A

exp

(
R(s, a) + γEs′|s,a

[
V̄ (s′)

]
λ

)
= exp

(
V̄ (s)

λ

)

⇒ V̄ (s) = λ log

(∑
a∈A

exp

(
R(s, a) + γEs′|s,a

[
V̄ (s′)

]
λ

))
= TλV̄ (s) .

The last equation holds for all s ∈ S, so V̄ is a fixed point of T . It then follows from Proposition 1 that
V̄ = V ∗λ . Finally, π̄ = π∗λ due to strong concavity of the entropy function

The same conditions have been re-discovered several times, e.g., (Rawlik et al., 2012; Nachum et al., 2017),
from a completely different point of views.

B Variance Cancellation via the Saddle Point Formulation

The second term in the saddle point formulation (9) will cancel the variance Vs,a,s′ [γV (s′)]. Formally,

Proposition 8 Given any fixed (V, π), we have

max
ρ∈F(S×A)

−Es,a,s′
[
(R(s, a) + γV (s′)− λ log π(a|s)− ρ(s, a))

2
]

= −γ2Es,a
[
Vs′|s,a [V (s′)]

]
. (11)

Proof Recall from (9) that δ(s, a, s′) = R(s, a) + γV (s′)− λ log π(a|s). Then,

max
ρ
−Es,a,s′

[
(R(s, a) + γV (s′)− λ log π(a|s)− ρ(s, a))

2
]

= −min
ρ

Es,a
[
Es′|s,a

[
(δ(s, a, s′)− ρ(s, a))

2
]]
.
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Clearly, the minimizing function ρ∗ may be determined for each (s, a) entry separately. Fix any (s, a) ∈ S×A,

and define a function on R as q(x) := Es′|s,a
[
(δ(s, a, s′)− x)

2
]
. Obviously, this convex function is minimized

at the stationary point x∗ = Es′|s,a [δ(s, a, s′)]. We therefore have ρ∗(s, a) = Es′|s,a [δ(s, a, s′)] for all (s, a), so

min
ρ

Es,a
[
Es′|s,a

[
(δ(s, a, s′)− ρ(s, a))

2
]]

= Es,a
[
Es′|s,a

[(
δ(s, a, s′)− Es′|s,a [δ(s, a, s′)]

)2]]
= Es,a

[
Vs′|s,a [δ(s, a, s′)]

]
= Es,a

[
Vs′|s,a [γV (s′)]

]
= γ2Es,a

[
Vs′|s,a [V (s′)]

]
,

where the second last step is due to the fact that, conditioned on s and a, the only random variable in
δ(s, a, s′) is V (s′).

C Details of SBEED

In this section, we provide further details of the SBEED algorithms, including its gradient derivation and
multi-step/eligibility-trace extension.

C.1 Unbiasedness of Gradient Estimator

In this subsection, we compute the gradient with respect to the primal variables. Let (wV , wπ) be the
parameters of the primal (V, π), and wρ the parameters of the dual ρ. Abusing notation a little bit, we now
write the objective function Lη(V, π; ρ) as Lη(wV , wπ;wρ). Recall the quantity δ(s, a, s′) from (9).
Theorem 4 (Gradient derivation) Define ¯̀

η(wV , wπ) := Lη(wV , wπ;w∗ρ), where w∗ρ = arg maxwρ Lη(wV , wπ;wρ).
Let δs,a,s′ be a shorthand for δ(s, a, s′), and ρ̂ be dual parameterized by w∗ρ. Then,

∇wV ¯̀
η =2Es,a,s′ [(δs,a,s′ − V (s)) (γ∇wV V (s′)−∇wV V (s))]− 2ηγEs,a,s′ [(δs,a,s′ − ρ̂(s, a))∇wV V (s′)] ,

∇wπ ¯̀
η =− 2λEs,a,s′

[
((1− η)δs,a,s′ + ηρ̂(s, a)− V (s)) · ∇wπ log π(a|s)

]
.

Proof First, note that w∗ρ is an implicit function of (wV , wπ). Therefore, we must use the chain rule to
compute the gradient:

∇wV ¯̀
η = 2Es,a,s′ [(δs,a,s′ − V (s;wV )) (γ∇wV V (s′;wV )−∇wV V (s;wV ))]

−2ηγEs,a,s′
[(
δs,a,s′ − ρ(s, a;w∗ρ)

)
∇wV V (s′;wV )

]
+2ηγEs,a,s′

[(
δs,a,s′ − ρ(s, a;w∗ρ)

)
∇wV ρ(s, a;w∗ρ)

]
.

We next show that the last term is zero:

Es,a,s′
[(
δs,a,s′ − ρ(s, a;w∗ρ)

)
∇wV ρ(s, a;w∗ρ)

]
= Es,a,s′

[(
δs,a,s′ − ρ(s, a;w∗ρ)

)
· ∇wV w∗ρ · ∇wρρ(s, a;w∗ρ)

]
= ∇wV w∗ρ · Es,a,s′

[(
δs,a,s′ − ρ(s, a;w∗ρ)

)
· ∇wρρ(s, a;w∗ρ)

]
= ∇wV w∗ρ · 0 = 0 ,

where the first step is the chain rule; the second is due to the fact that ∇wV w∗ρ is not a function of (s, a, s′),
so can be moved outside of the expectation; the third step is due to the optimality of w∗ρ. The gradient w.r.t.
wV is thus derived. The case for wπ is similar.
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C.2 Multi-step Extension

One way to interpret the smoothed Bellman equation (4) is to treat each π(·|s) as a (mixture) action; in
other words, the action space is now the simplex PA. With this interpretation, the introduced entropy
regularization may be viewed as a shaping reward: given a mixture action π(·|s), its immediate reward is
given by

R̃(s, π(·|s)) := Ea∼π(·|s) [R(s, a)] + λH(π, s) .

The transition probabilities can also be adapted accordingly as follows

P̃ (s′|s, π(·|s)) := Ea∈π(·|s) [P (s′|s, a)] .

It can be verified that the above constructions induce a well-defined MDP M̃ = 〈S,PA, P̃ , R̃, γ〉, whose
standard Bellman equation is exactly (4).

With this interpretation, the proposed framework and algorithm can be easily applied to multi-step and
eligibility-traces extensions. Specifically, one can show that (V ∗λ , π

∗
λ) is the unique solution that satisfies the

multi-step expansion of (6): for any k > 1 and any (s0, a0, a1, . . . , ak−1) ∈ S ×Ak,

V (s0) =
k−1∑
t=0

γtEst|s0,a0:t−1
[R(st, at)− λ log π(at|st)] + γkEsk|s0,a0:k−1

[V (sk)] . (12)

Clearly, when k = 1 (the single-step bootstrapping case), the above equation reduces to (6).
The k-step extension of objective function (7) now becomes

min
V,π

Es0,a0:k−1

(k−1∑
t=0

γtEst|s0,a0:t−1
[R(st, at)− λ log π(at|st)] + γkEsk|s0,a0:k−1

[V (sk)]− V (s0)

)2
 .

Applying the Legendre-Fenchel transformation and the interchangeability principle, we arrive at the following
multi-step primal-dual optimization problem:

min
V,π

max
ν

Es0,a0:t−1

[
ν(s0, a0:t−1)

( k−1∑
t=0

γtEst|s0,a0:k−1
[R(st, at)− λ log π(at|st)]

+γkEsk|s0,a0:k−1
[V (sk)]− V (s0)

)]
− 1

2
Es0,a0:k−1

[
ν(s0, a0:k−1)2

]
= min

V,π
max
ν

Es0:k,a0:k−1

[
ν(s0, a0:k−1)

( k−1∑
t=0

γt (R(st, at)− λ log π(at|st))

+γkV (sk)− V (s0)

)]
− 1

2
Es0,a0:k−1

[
ν(s0, a0:k−1)2

]
.

Similar to the single-step case, defining

δ(s0:k, a0:k−1) :=

k−1∑
t=0

γt (R(st, at)− λ log π(at|st)) + γkV (sk) .

and using the substitution ρ(s0, a0:k−1) = ν(s0, a0:k−1)+V (s0), we reach the following saddle-point formulation:

min
V,π

max
ρ

L(V, π; ρ) := Es0:k,a0:k−1

[
(δ(s0:k, a0:k−1)− V (s0))

2 − η (δ(s0:k, a0:k−1)− ρ(s0, a0:k−1))
2
]

(13)

where the dual function now is ρ(s0, a0:k−1), a function on S ×Ak, and η > 0 is again a parameter used to
balance between bias and variance. It is straightforward to generalize Theorem 4 to the multi-step setting,
and to adapt SBEED accordingly,
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C.3 Eligibility-trace Extension

Eligibility traces can be viewed as an approach to aggregating multi-step bootstraps for k ∈ {1, 2, · · · }; see
Sutton & Barto (1998) for more discussions. The same can be applied to the multi-step consistency condition
(12), using an exponential weighting parameterized by ζ ∈ [0, 1). Specifically, for all (s0, a0:k−1) ∈ S ×Ak,
we have

V (s0) = (1− ζ)

∞∑
k=1

ζk−1

(
k−1∑
t=0

γtEst|s0,a0:k−1
[R(st, at)− λ log π(at|st)] + γkEsk|s0,a0:k−1

[V (sk)]

)
. (14)

Then, following similar steps as in the previous subsection, we reach the following saddle-point optimization:

min
V,π

max
ρ

Es0:∞,a0:∞

((1− ζ)

∞∑
k=1

ζk−1δ(s0:k, a0:k−1)− V (s0)

)2


−η Es0:∞,a0:∞

((1− ζ)

∞∑
k=1

ζk−1δ(s0:k, a0:k−1)− ρ(s0, a0:∞)

)2
 . (15)

In practice, ρ(s0, a0:∞) can be parametrized by neural networks with finite length of actions as input as an
approximation.

D Proof Details of the Theoretical Analysis

In this section, we provide the details of the analysis in Theorems 6 and 7. We start with the boundedness of
V ∗ and V ∗λ under Assumption 1. Given any measure on the state space S,

‖V ∗‖µ 6 ‖V ∗‖∞ 6 (1 + γ + γ2 + · · · )CR = CV :=
CR

1− γ
.

A similar argument may be used on V ∗λ to get

‖V ∗λ ‖µ 6
CR +H∗

1− γ
.

It should be emphasized that although Assumption 1 ensures boundedness of V ∗ and log π∗(a|s), it does
not imply the continuity and smoothness. In fact, as we will see later, λ controls the trade-off between
approximation error (due to parameterization) and bias (due to smoothing) in the solution of the smoothed
Bellman equation.

D.1 Error Decomposition

Recall that

• (V ∗, π∗) corresponds to the optimal value function and optimal policy to the original Bellman equation,
namely, they are solutions to the optimization problem (3);

• (V ∗λ , π
∗
λ) corresponds to the optimal value function and optimal policy to the smoothed Bellman equation,

namely, they are solutions to the optimization problem (7) with objective `(V, π);

• (V ∗w , π
∗
w) correponds to the optimal solution to the optimization problem (7) under nonlinear function

approximation, with objective `w(Vw, πw);

• (V̂ ∗w , π̂
∗
w) stands for the optimal solution to the finite sample approximation of (7) under nonlinear

function approximation, with objective ̂̀T (Vw, πw).
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Hence, we can decompose the error between (V̂ ∗w , π̂
∗
w) and (V ∗λ , π

∗
λ) under the ‖·‖µπb norm.

∥∥∥V̂ ∗w − V ∗∥∥∥2
µπb

6 2
∥∥∥V̂ ∗w − V ∗λ ∥∥∥2

µπb
+ 2 ‖V ∗λ − V ∗‖

2
µπb

. (16)

We first look at the second term from smoothing error, which can be similarly bounded, as shown in
Proposition 2.

Lemma 9 (Smoothing bias) ‖V ∗λ − V ∗‖
2
µπb

6 (2γ2 + 2)
(
γλ
1−γ maxπ∈P H(π)

)2
.

Proof For ‖V ∗λ − V ∗‖
2
µπb

, we have

‖V ∗λ − V ∗‖
2
µπb

=

∫ (
γEs′|s,a [V ∗(s′)− V ∗λ (s′)]− (V ∗(s)− V ∗λ (s))

)2
µ(s)πb(a|s)dsda

6 2γ2
∥∥Es′|s,a [V ∗(s′)− V ∗λ (s′)]

∥∥2
∞ + 2 ‖V ∗(s)− V ∗λ (s)‖∞

6 (2γ2 + 2)

(
γλ

1− γ
max
π∈P

H(π)

)2

,

where the final inequality is because Lemma 2.

We now look at the first term and show that

Lemma 10 ∥∥∥V̂ ∗w − V ∗λ ∥∥∥2
µπb

6 2
(
`(V̂ ∗w , π̂

∗
w)− `(V ∗λ , π∗λ)

)
+ 4λ2 ‖log π̂∗w(a|s)− log π̂∗w(a|s)‖22

+4λ2 ‖log π∗w(a|s)− log π∗λ(a|s)‖22 .

Proof Specifically, due to the strongly convexity of square function, we have

`(V̂ ∗w , π̂
∗
w)− `(V ∗λ , π∗λ) = 2E

[
∆̄V ∗λ ,π

∗
λ
(s, a)

(
∆̄V̂ ∗w ,π̂

∗
w

(s, a)− ∆̄V ∗λ ,π
∗
λ
(s, a)

)]
+ Eµπb

[(
∆̄V̂ ∗w ,π̂

∗
w

(s, a)− ∆̄V ∗λ ,π
∗
λ
(s, a)

)2]
>

∫ (
∆̄V̂ ∗w ,π̂

∗
w

(s, a)− ∆̄V ∗λ ,π
∗
λ
(s, a)

)2
µ(s)πb(a|s)dsda

:=
∥∥∥∆̄V̂ ∗w ,π̂

∗
w

(s, a)− ∆̄V ∗λ ,π
∗
λ
(s, a)

∥∥∥2
2
,

where ∆(s, a, s′) = R(s, a) + γV (s′)− λ log π(a|s)− V (s) and the second inequality is because the optimality
of V ∗λ and π∗λ. Therefore, we have√

`(V̂ ∗w , π̂
∗
w)− `(V ∗λ , π∗λ) >

∥∥∥∆̄V̂ ∗w ,π̂
∗
w

(s, a)− ∆̄V ∗λ ,π
∗
λ
(s, a)

∥∥∥
2

>
∣∣∣∥∥∥γEs′|s,a [V̂ ∗w(s′)− V ∗λ (s′)

]
−
(
V̂ ∗w(s)− V ∗λ (s)

)∥∥∥
2
− λ ‖log π̂∗w(a|s)− log π∗λ(a|s)‖2

∣∣∣
=

∣∣∣∣∥∥∥V̂ ∗w − V ∗λ ∥∥∥
µπb
− λ ‖log π̂∗w(a|s)− log π∗λ(a|s)‖2

∣∣∣∣
which implies∥∥∥V̂ ∗w − V ∗λ ∥∥∥2

µπb
6 2

(
`(V̂ ∗w , π̂

∗
w)− `(V ∗λ , π∗λ)

)
+ 2λ2 ‖log π̂∗w(a|s)− log π∗λ(a|s)‖22

6 2
(
`(V̂ ∗w , π̂

∗
w)− `(V ∗λ , π∗λ)

)
+ 4λ2 ‖log π̂∗w(a|s)− log π∗w(a|s)‖22

+4λ2 ‖log π∗w(a|s)− log π∗λ(a|s)‖22 .
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In regular MDP with Assumption 1, with appropriate C, such constraint does not introduce any loss. We
denote the family of value functions and policies by parametrization as Vw, Pw, respectively. Then, for V and

log π uniformly bounded by C∞ = max
{
CR
1−γ , Cπ

}
and the square loss is uniformly K-Lipschitz continuous,

by proposition in Dai et al. (2016), we have

Corollary 11 `(V, π)− `w(V, π) 6 (K +C∞)ενapp where εapp = supν∈C infh∈H ‖ν − h‖∞ with C denoting the
Lipschitz continuous function space and H denoting the hypothesis space.

Proof Denote the φ(V, π, ν) := Es,a,s′ [ν(s, a) (R(s, a) + γV (s′)− λ log π(a|s)− V (s))]− 1
2Es,a,s′

[
ν2(s, a)

]
,

we have φ(V, π, ν) is (K + C∞)-Lipschitz continuous w.r.t. ‖·‖∞. Denote ν∗V,π = argmaxν φ(V, π, ν), νHV,π =

argmaxν∈H φ(V, π, ν), and ν̂V,π = minν∈H
∥∥ν − ν∗V,π∥∥∞

`(V, π)− `w(V, π) = φ(V, π, ν∗V,π)− φ(V, π, νHV,π)

6 φ(V, π, ν∗V,π)− φ(V, π, ν̂V,π) 6 (K + C∞)ενapp.

For the third term in Lemma 10, we have

λ ‖log π∗w(a|s)− log π∗λ(a|s)‖22 6 ` (V, π∗w)− ` (V, π∗λ) (17)

= `w (V, π∗w)− `w (V, π∗λ) + (` (V, π∗w)− `w (V, π∗w))− (` (V, π∗λ)− `w (V, π∗λ))

6 Cν inf
πw
‖λ log πw − λ log π∗λ‖∞ + 2(K + C∞)ενapp

6 Cνε
π
app(λ) + 2(K + C∞)ενapp

where Cν = maxν∈Hw ‖ν‖2. The first inequality comes from the strongly convexity of ` (V, π) w.r.t.
λ log π, the second inequality comes from Section 5 in Bach (2014) and Corollary 11 with επapp(λ) :=
supπ∈Pλ infπw∈Pw ‖λ log πw − λ log π‖∞ with

Pλ :=

{
π ∈ P, π(a|s) = exp

(
Q(s, a)− L(Q)

λ

)
, ‖Q‖2 6 CV

}
.

Based on the derivation of Pλ, with continuous A, it can be seen that as λ→ 0,

P0 =
{
π ∈ P, π(a|s) = δamax(s)(a)

}
,

which results επapp(λ) → ∞, and as λ increasing as finite, the policy becomes smoother, resulting smaller
approximate error in general. With discrete A, although the επapp(0) is bounded, the approximate error still

decreases as λ increases. The similar correspondence also applies to εVapp(λ). The concrete correspondence
between λ and εapp(λ) depends on the specific form of the function approximators, which is an open problem
and out of the scope of this paper.

For the second term in 10,

λ ‖log π̂∗w(a|s)− log π∗w(a|s)‖2 6 λ ‖log π̂∗w(a|s)‖2 + λ ‖log π∗w(a|s)‖2 6 2λCπ. (18)

For the first term, we have

`(V̂ ∗w , π̂
∗
w)− `(V ∗λ , π∗λ) (19)

= `(V̂ ∗w , π̂
∗
w)− `w(V̂ ∗w , π̂

∗
w) + `w(V̂ ∗w , π̂

∗
w)− `w(V ∗λ , π

∗
λ) + `w(V ∗λ , π

∗
λ)− `(V ∗λ , π∗λ)

6 2(K + C∞)ενapp + `w(V̂ ∗w , π̂
∗
w)− `w(V ∗λ , π

∗
λ)

= 2(K + C∞)ενapp + `w(V̂ ∗w , π̂
∗
w)− `w(V ∗w , π

∗
w) + `w(V ∗w , π

∗
w)− `w(V ∗λ , π

∗
λ)

6 2(K + C∞)ενapp + Cν
(
(1 + γ)εVapp(λ) + επapp(λ)

)
+ `w(V̂ ∗w , π̂

∗
w)− `w(V ∗w , π

∗
w).
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The last inequality is because

`w(V ∗w , π
∗
w)− `w(V ∗λ , π

∗
λ) = inf

Vw,πw
`w(Vw, πw)− `w(V ∗λ , π

∗
λ)

6 Cν inf
Vw,πw

((1 + γ) ‖Vw − V ∗λ ‖∞ + λ ‖log πw − log π∗λ‖∞)

6 Cν
(
(1 + γ)εVapp(λ) + επapp(λ)

)
,

where the second inequality comes from Section 5 in Bach (2014).
Combine (17), (18) and (19) into Lemma 10 and Lemma 9 together with (16), we achieve

Lemma 12 (Error decomposition)∥∥∥V̂ ∗w − V ∗∥∥∥2
µπb

6 2
(
4(K + C∞)ενapp + Cν(1 + γ)εVapp(λ) + 3Cνε

π
app(λ)

)︸ ︷︷ ︸
approximation error due to parametrization

+ 16λ2C2
π +

(
2γ2 + 2

)( γλ

1− γ
max
π∈P

H(π)

)2

︸ ︷︷ ︸
bias due to smoothing

+ 2
(
`w(V̂ ∗w , π̂

∗
w)− `w(V ∗w , π

∗
w)
)

︸ ︷︷ ︸
statistical error

.

We can see that the bound includes the errors from three aspects: i), the approximation error induced by
parametrization of V , π, and ν; ii), the bias induced by smoothing technique; iii), the statistical error. As we
can see from Lemma 12, λ plays an important role in balance the approximation error and smoothing bias.

D.2 Statistical Error

In this section, we analyze the generalization error. For simplicity, we denote the T finite-sample approximation
of

L(V, π, ν) = E[φV,π,ν(s, a,R, s′)] := E
[
2ν(s, a) (R(s, a) + γV (s′)− V (s)− λ log π(a|s))− ν2(s, a)

]
,

as

L̂T (V, π, ν) =
1

T

T∑
i=1

φV,π,ν(s, a,R, s′) :=
1

T

T∑
i=1

(
2ν(si, ai) (R(si, ai) + γV (s′i)− V (si)− λ log π(ai|si))− ν2(si, ai)

)
,

where the samples {(si, ai, s′i, Ri)}
T
i=0 are sampled i.i.d. or from β-mixing stochastic process.

By definition, we have,

`w(V̂ ∗w , π̂
∗
w)− `w(V ∗w , π

∗
w)

= max
ν∈Hw

Lw

(
V̂ ∗w , π̂

∗
w, ν

)
− max
ν∈Hw

Lw (V ∗w , π̂
∗
w, ν)

= Lw

(
V̂ ∗w , π̂

∗
w, νw

)
− Lw (V ∗w , π̂

∗
w, νw) + Lw (V ∗w , π̂

∗
w, νw)− max

ν∈Hw
Lw (V ∗w , π̂

∗
w, ν)︸ ︷︷ ︸

60

6 Lw

(
V̂ ∗w , π̂

∗
w, νw

)
− Lw (V ∗w , π̂

∗
w, νw)

6 2 sup
V,π,ν∈Fw×Pw×Hw

∣∣∣L̂T (V, π, ν)− Lw (V, π, ν)
∣∣∣

where νw = maxν∈Hw Lw

(
V̂ ∗w , π̂

∗
w, ν

)
.

The latter can be bounded by covering number or Rademacher complexity on hypothesis space Fw ×

Pw ×Hw with rate O
(√

log T
T

)
with high probability if the samples are i.i.d. or from β-mixing stochastic

processes (Antos et al., 2008).
We will use a generalized version of Pollard’s tail inequality to β-mixing sequences, i.e.,
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Lemma 13 [Lemma 5, Antos et al. (2008)] Suppose that z1, . . . , ZN ∈ Z is a stationary β-mixing process
with mixing coefficient {βm} and that G is a permissible class of Z → [−C,C] functions, then,

P

(
sup
g∈G

∣∣∣∣∣ 1

N

N∑
i=1

g(Zi)− E [g(Z1)]

∣∣∣∣∣ > ε

)
6 16E

[
N1

( ε
8
,G, (Z ′i; i ∈ H)

)]
exp

(
−mN ε

2

128C2

)
+ 2mNβkN+1,

where the “ghost” samples Z ′i ∈ Z and H = ∪mNj=1Hi which are defined as the blocks in the sampling path.

The covering number is highly related to pseudo-dimension, i.e.,

Lemma 14 [Corollary 3, Haussler (1995)] For any set X , any points x1:N ∈ XN , any class F of functions
on X taking values in [0, C] with pseudo-dimension DF <∞, and any ε > 0,

N
(
ε,F , x1:N

)
6 e (DF + 1)

(
2eC

ε

)DF
Once we have the covering number of Φ(V, π, ν), plug it into lemma 13, we will achieve the statistical error,

Theorem 6 (Stochastic error) Under Assumption 2, with at least probability 1− δ,

`w(V̂ ∗w , π̂
∗
w)− `w(V ∗w , π

∗
w) 6 2

√
M (max (M/b, 1))

1/κ

C2T
,

where M = D
2 log t+ log (e/δ) + log+

(
max

(
C1C

D/2
2 , β̄

))
.

Proof We use lemma 13 with Z = S ×A×R×S and G = φFw×Pw×Hw . For ∀Φ(V, π, ν) ∈ G, it is bounded
by C = 2

1−γCR + λCπ. Thus,

P

(
sup

V,π,ν∈Fw×Pw×Hw

∣∣∣∣∣ 1

T

T∑
i=1

φV,π,ν ((s, a, s′, R)i)− E [φV,π,ν ]

∣∣∣∣∣ > ε/2

)
(20)

6 16E
[
N
( ε

16
,G, (Z ′i; i ∈ H)

)]
exp

(
−mt

2

(
ε2

16C

)2
)

+ 2mTβkT . (21)

With some calculation, the distance in G can be bounded,

1

T

∑
i∈H
|φV1,π1,ν1(Z ′i)− φV2,π2,ν2(Z ′i)|

6
4C

T

∑
i∈H
|ν1(si, ai)− ν2(si, ai)|+

2(1 + γ)C

T

∑
i∈H
|V1(si)− V2 (si)|

+
2λC

T

∑
i∈H
|log π1(ai|si)− log π2(ai|si)| ,

which leads to

N (12Cε′,G, (Z ′i; i ∈ H)) 6 N (ε′,Fw, (Z ′i; i ∈ H))N (ε′,Pw, (Z ′i; i ∈ H))N (ε′,Hw, (Z ′i; i ∈ H))

with λ ∈ (0, 2]. To bound these factors, we apply lemma 14. We denote the psuedo-dimension of Fw, Pw,
and Hw as DV , Dπ, and Dν , respectively. Thus,

N (12Cε′,G, (Z ′i; i ∈ H)) 6 e3 (DV + 1) (Dπ + 1) (Dν + 1)

(
4eC

ε′

)DV +Dπ+Dν

,

24



which implies

N
( ε

16
,G, (Z ′i; i ∈ H)

)
6 e3 (DV + 1) (Dπ + 1) (Dν + 1)

(
768eC2

ε′

)DV +Dπ+Dν

= C1

(
1

ε

)D
,

where C1 = e3 (DV + 1) (Dπ + 1) (Dν + 1)
(
768eC2

)D
and D = DV +Dπ +Dν , i.e., the “effective” psuedo-

dimension.
Plug this into Eq. (20), we obtain

P

(
sup

V,π,ν∈Fw×Pw×Hw

∣∣∣∣∣ 1

T

T∑
i=1

φV,π,ν ((s, a, s′, R)i)− E [φV,π,ν ]

∣∣∣∣∣ > ε/2

)

6 C1

(
1

ε

)D
exp

(
−4C2mtε

2
)

+ 2mTβkT ,

with C2 = 1
2

(
1
8C

)2
. If D > 2, and C1, C2, β̄, b, κ > 0, for δ ∈ (0, 1], by setting kt = d

(
C2Tε

2/b
) 1
κ+1 e and

mT = T
2kT

, by lemma 14 in Antos et al. (2008), we have

C1

(
1

ε

)D
exp

(
−4C2mT ε

2
)

+ 2mTβkT < δ,

with ε =

√
M(max(M/b,1))1/κ

C2t
where M = D

2 log T + log (e/δ) + log+ 2
(

max
(
C1C

D/2
2 , β̄

))
.

With the statistical error bound provided in Theorem 6 for solving the derived saddle point problem with
arbitrary learnable nonlinear approximators using off-policy samples, we can achieve the analysis of the total
error, i.e.,

Theorem 7 Let V̂ Tw be a candidate solution output from the proposed algorithm based on off-policy samples,
with at least probability 1− δ, we have∥∥∥V̂ Nw − V ∗∥∥∥2

µπb
6 2

(
6(K + C∞)ενapp + Cν(1 + γ)εVapp(λ) + 3Cνε

π
app(λ)

)︸ ︷︷ ︸
approximation error due to parametrization

+ 16λ2C2
π +

(
2γ2 + 2

)( γλ

1− γ
max
π∈P

H(π)

)2

︸ ︷︷ ︸
bias due to smoothing

+ 4

√
M (max (M/b, 1))

1/κ

C2T︸ ︷︷ ︸
statistical error

+
∥∥∥V̂ Nw − V̂ ∗w∥∥∥2

µπb︸ ︷︷ ︸
optimization error

.

where M is defined as above.
This theorem can be proved by combining Theorem 6 into Lemma 12.

D.3 Convergence Analysis

As we discussed in Section 5.1, the SBEED algorithm converges to a stationary point if we can achieve the
optimal solution to the dual functions. However, in general, such conditions restrict the parametrization of
the dual functions. In this section, we first provide the proof for Theorem 5. Then, we provide a variant of the
SBEED in Algorithm 2, which still achieve the asymptotic convergence with arbitrary function approximation
for the dual function, including neural networks with smooth activation functions.
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Algorithm 2 A variant of SBEED learning

1: Initialize w = (wV , wπ, wρ) and πb randomly, set ε.
2: for episode i = 1, . . . , T do
3: for size k = 1, . . . ,K do
4: Add new transition (s, a, r, s′) into D by executing behavior policy πb.
5: end for
6: for iteration j = 1, . . . , N do
7: Sample mini-batch {s, a, s′}m ∼ D.
8: Compute the stochastic gradient w.r.t. wρ as Gρ = − 1

m

∑
{s,a,s′}∼D (δ(s, a, s′)− ρ(s, a))∇wρρ(s, a)

9: Compute the stochastic gradients w.r.t. wV and wπ as (4) with wtρ, denoted as GV and Gπ,
respectively.

10: Decay the stepsize ξj and ζj .
11: Update the parameters of primal function by solving the prox-mappings, i.e.,

update ρ: wjρ = Pwj−1
ρ

(−ξjGρ)
update V : wjV = Pwj−1

V
(ζjGV )

update π: wjπ = Pwj−1
π

(ζjGπ)

12: end for
13: Update behavior policy πb = πN .
14: end for

Theorem 5[Convergence, Ghadimi & Lan (2013)] Consider the case when Euclidean distance is

used in the algorithm. Assume that the parametrized objective ̂̀T (Vw, πw) is K-Lipschitz and variance of its

stochastic gradient is bounded by σ2. Let the algorithm run for N iterations with stepsize ζk = min{ 1
K ,

D′

σ
√
N
}

for some D′ > 0 and output w1, . . . , wN . Setting the candidate solution to be (V̂ Nw , π̂Nw ) with w randomly

chosen from w1, . . . , wN such that P (w = wj) =
2ζj−Kζ2j∑N

j=1(2ζj−Kζ2j )
, then it holds that E

[∥∥∥∇̂̀T (V̂ Nw , π̂Nw )
∥∥∥2] 6

KD2

N + (D′ + D
D′ )

σ√
N

where D :=

√
2(̂̀T (V 1

w , π
1
w)−min ̂̀T (Vw, πw))/K represents the distance of the initial

solution to the optimal solution.
The Theorem 5 straightforwardly generalizes the convergence result in Ghadimi & Lan (2013) to saddle-point
optimization.
Proof As we discussed, given the empirical off-policy samples, the proposed algorithm can be understood as
solving minVw,πw

̂̀
T (Vw, πw) := L̂T (Vw, πw; ν∗w), where ν∗w = arg maxνw L̂T (Vw, πw; νw).

Following the Theorem 2.1 in Ghadimi & Lan (2013), as long as the gradients ∇Vw ̂̀T (Vw, πw) and

∇πw ̂̀T (Vw, πw) are unbiased, under the provided conditions, the finite-step convergence rate can be obtained.
The unbiasedness of the gradient estimator is already proved in Theorem 4.

Next, we will show that in the setting that off-policy samples are given, under some mild conditions on
the neural networks parametrization, the Algorithm 2 will achieve a local Nash equilibrium of the empirical
objective asymptotically, i.e.,

(
w+
V , w

+
π , w

+
ρ

)
, such that

∇wV ,wπ L̂η
(
w+
V , w

+
π , w

+
ρ

)
= 0, ∇wρL̂η

(
w+
V , w

+
π , w

+
ρ

)
= 0.

In fact, by applying different decay rate of the stepsizes appropriately for the primal and dual variables in
the two time scales updates, the asymptotic convergence of the Algorithm 2 to local Nash equilibrium can
be easily obtained by applying the Theorem 1 in Heusel et al. (2017), which is original provided by Borkar
(1997). We omit the proof which is not the major contribution of this paper. Please refer to Heusel et al.
(2017); Borkar (1997) for further details.

26



E More Experiments

E.1 Experimental Details

Policy and value function parametrization The choices of the parametrization of policy are largely
based on the recent paper by Rajeswaran et al. (2017), which shows the natural policy gradient with RBF
neural network achieves the state-of-the-art performances of TRPO on MuJoCo. For the policy distribution,
we parametrize it as πθπ(a|s) = N (µθπ(s),Σθπ), where µθπ(s) is a two-layer neural nets with the random
features of RBF kernel as the hidden layer and the Σθπ is a diagonal matrix. The RBF kernel bandwidth is
chosen via median trick (Dai et al., 2014; Rajeswaran et al., 2017). Same as Rajeswaran et al. (2017), we use
100 hidden nodes in InvertedDoublePendulum, Swimmer, Hopper, and use 500 hidden nodes in HalfCheetah.
This parametrization was used in all on-policy and off-policy algorithms for their policy functions. We
adapted the linear parametrization for control variable in TRPO and Dual-AC following Dai et al. (2018). In
DDPG and our algorithm SBEED, we need the parametrization for V and ρ (or Q) as fully connected neural
networks with two tanh hidden layers with 64 units each.

In the implementation of SBEED, we use the Euclidean distance for wV and the KL-divergence for wπ in
the experiments. We emphasize that other Bregman divergences are also applicable.

Training hyperparameters For all algorithms, we set γ = 0.995. All V and ρ (or Q) functions of
SBEED and DDPG were optimized with ADAM. The learning rates were chosen with a grid search over
{0.1, 0.01, 0.001, 0.001}. For the SBEED, a stepsize of 0.005 was used. For DDPG, an ADAM optimizer
was also used to optimize the policy function. The learning rate is set to be 1e− 4 was used. For SBEED,
η was set from a grid search of {0.004, 0, 01, 0.04, 0.1, 0.04} and λ from a grid search in {0.001, 0.01, 0.1}.
The number of the rollout steps, k was chosen by grid search from {1, 10, 20, 100}. For off-policy SBEED, a
training frequency was chosen from {1, 2, 3} × 103 steps. A batch size was tuned from {10000, 20000, 40000}.
DDPG updated it’s values every iteration and trained with a batch size tuned from (32, 64, 128). For DDPG,
τ was set to 1e− 3, reward scaling was set to 1, and the O-U noise σ was set to 0.3.

E.2 On-policy Comparison in Continuous Control Tasks

We compared the SBEED to TRPO and Dual-AC in on-policy setting. We followed the same experimental set
up as it is in off-policy setting. We ran the algorithm with 5 random seeds and reported the average rewards
with 50% confidence intervals. The empirical comparison results are illustrated in Figure 3. We can see that
in all these tasks, the proposed SBEED achieves significantly better performance than the other algorithms.
This can be thought as another ablation study that we switch off the “off-policy” in our algorithm. The
empirical results demonstrate that the proposed algorithm is more flexible to way of the data sampled.

We set the step size to be 0.01 and the batch size to be 52 trajectories in each iteration in all algorithms
in the on-policy setting. For TRPO, the CG damping parameter is set to be 10−4.
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Figure 3: The results of SBEED against TRPO and Dual-AC in on-policy setting. Each plot shows average
reward during training across 5 random runs, with 50% confidence interval. The x-axis is the number of
training iterations. SBEED achieves better or comparable performance than TRPO and Dual-AC on all
tasks.
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