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Abstract
The goal of this work is to develop a meeting transcription sys-
tem that can recognize speech even when utterances of differ-
ent speakers are overlapped. While speech overlaps have been
regarded as a major obstacle in accurately transcribing meet-
ings, a traditional beamformer with a single output has been
exclusively used because previously proposed speech separa-
tion techniques have critical constraints for application to real
meetings. This paper proposes a new signal processing module,
called an unmixing transducer, and describes its implementa-
tion using a windowed BLSTM. The unmixing transducer has a
fixed number, say J, of output channels, where J may be differ-
ent from the number of meeting attendees, and transforms an in-
put multi-channel acoustic signal into J time-synchronous audio
streams. Each utterance in the meeting is separated and emitted
from one of the output channels. Then, each output signal can
be simply fed to a speech recognition back-end for segmenta-
tion and transcription. Our meeting transcription system using
the unmixing transducer outperforms a system based on a state-
of-the-art neural mask-based beamformer by 10.8%. Significant
improvements are observed in overlapped segments. To the best
of our knowledge, this is the first report that applies overlapped
speech recognition to unconstrained real meeting audio.
Index Terms: speech separation, overlapped speech recogni-
tion, far-field audio, meeting transcription

1. Introduction
Automatic speech recognition (ASR) technology has made a
significant stride over the past decade, achieving human parity
in some domains [1,2]. However, when it comes to dealing with
speech overlaps, the machines still lag far behind humans. Our
brains can attend to one speaker in a noisy multi-talker environ-
ment and recognize what he/she has spoken even when his/her
voice is overlapped by utterances of other speakers, as demon-
strated by the cocktail party effect. By contrast, the current ASR
systems fail miserably when utterances of two or more speakers
overlap. Computational implementation of the ability of tran-
scribing individual utterances that may or may not be overlap-
ping in the multi-talker settings will be a cornerstone of a range
of far-field conversation transcription systems, e.g., for meet-
ings [3–6] and doctor-patient dialogs [7, 8].

In this paper, we develop a multi-microphone meeting tran-
scription system that can recognize overlapped speech. While
speech recognition in the meeting space has a long history of
research, most systems developed in the past was not able to
handle speech overlaps. Overlap segments account for 10+% of
the speaking time [9], which is too much to ignore.

Challenges that need to be overcome for the ASR systems
to be able to recognize overlapped speech in practical far-field
settings include an unknown and varying number of speakers,
unknown speaker identities, unknown speech activity segments,

Figure 1: Unmixing transducer converts an input J-channel
signal into a fixed number of time-synchronous audio streams.
Each utterance “spurts” from one of the output channels. The
ouptut from each channel is fed to an ASR back-end for segmen-
tation and recognition.

the presence of background noise and reverberation, and on-
line operation. Numerous approaches have been proposed for
speech separation or overlapped speech recognition, such as in-
dependent component analysis, time-frequency bin clustering,
and deep neural networks [10–14]. However, previous research
in these areas was mostly conducted in in vitro settings, e.g.,
by supposing prior knowledge of the number of meeting atten-
dees. While techniques like overlap detection or speaker count-
ing may help close the gap between the laboratory and practical
settings, orchestrating many different error-prone components
is not so easy as it appears.

We show that those challenges can be addressed by a novel
signal processing module, called an unmixing transducer, fol-
lowed by an array of ASR back-ends. The unmixing trans-
ducer continuously receives microphone signals and generates
a fixed number of time-synchronous audio streams as illustrated
in Fig. 1. The acoustic signal of each utterance found in the in-
put “spurts” from one of the output channels. When the number
of active speakers is fewer than that of the outputs, the extra
channels generate zero-valued signals. The signal from each
output channel is segmented and transcribed by the back-end
recognizer connected to that channel.

The unmixing transducer is implemented by extending our
recently proposed method [15], which is based on acoustic
beamformers driven by a multi-microphone speech separation
neural network using permutation invariant training (PIT) [16].
Our extensions include the use of a windowed BLSTM for han-
dling long audio streams, a new model architecture suitable for
beamforming, improved feature normalization taking account
of phase wrapping, and addition of spherically isotropic ran-
dom noise to training data. Dereverberation is also performed
by using the weighted prediction error (WPE) method [17, 18]
to further improve the reverberation robustness.

Our proposed meeting transcription system is shown to
work reasonably well for real meeting data that we collected
at our speech group meetings. Compared with a state-of-the-art
neural mask-based beamformer, the proposed unmixing trans-
ducer is demonstrated to be particularly effective in dealing with
overlaps.



2. Unmixing Transducer
This section describes what the functionality of the unmixing
transducer is and how it is fulfilled in our proposed system. For
simplicity and conciseness, we assume the maximum number
of overlaps to be two at each time instant, which is true 98+%
of the time according to [9]. Extension to more overlaps is
straightforward. No assumption is made on the total number
of meeting attendees.

2.1. Problem
As shown in Fig. 1, the unmixing transducer receives acoustic
signals from a microphone array, in which utterances from dif-
ferent speakers are reverberated and mixed. It separates each
utterance from coincident utterances, if any, and emits the sep-
arated signal from either of its two output channels. Each utter-
ance should not be broken up and distributed to multiple output
channels. For time segments where zero or one speaker is ac-
tive, the extra output channel yields a zero-valued signal. In this
way, it always produces two time-synchronous audio streams.

While the above description may be sufficient, we provide a
more formal definition of the problem in the following. We rep-
resent signals in the time-frequency domain by denoting time
and frequency by t and f , respectively. For each utterance in the
meeting, we consider a padded utterance signal, uk,t f , where k
is the utterance index. Each padded utterance signal is as long
as the meeting and is created by taking the time-localized utter-
ance signal as measured by a reference (e.g., the first) micro-
phone and padding the inactive time segments with zero. Now,
we consider mapping ϕ : {0, · · · ,K−1} 7→ {0,1} with K being
the total number of the utterances. This defines which output
channel for each utterance to go. The inverse of the mapping
can also be defined as ϕ−1[i] = {k;ϕ[k] = i}, which, for out-
put channel i, returns the set of the utterances that are mapped
to i by ϕ . We call ϕ a nonmixing mapping when it meets the
following condition for all t values1:

uk,t f , 0, ∃ f =⇒ uk′,t f = 0, ∀ f , ∀k′ ∈ ϕ
−1[ϕ[k]]\{k}. (1)

Nonmixing mappings keep each utterance isolated from each
other, ensuring that the following superimposed signal consists
of at most one utterance at any time:

si,t f = ∑
0≤k<K, ϕ[k]=i

uk,t f , i ∈ {0,1}. (2)

We want to find such “unmixed” signals for some nonmixing
mapping.

2.2. Masking approach
We start by a simple approach using spectral masking. While
the system we eventually develop does not perform masking,
the mask estimation processing constitutes an essential element
of our system. Let x j,t f and yi,t f denote the jth input to and
ith output from the unmixing transducer, respectivey. For each
output channel i, spectral mask mi,t f , whose value is bounded
between 0 and 1, is estimated. The mask is applied to the refer-
ence microphone, with index R, to obtain the ith output signal
as yi,t f = mi,t f xR,t f . We want yi,t f to be close to si,t f which can
be derived with some nonmixing mapping.

1Condition uk,t f , 0, ∃ f is assumed to be equivalent to the kth ut-
terance being active at frame t. The utterance is regarded as inactive iff
uk,t f = 0, ∀ f .

Figure 2: Mask estimation with windowed BLSTM.

We propose to calculate the spectral masks with a win-
dowed BLSTM2 as illustrated in Fig. 2. The incoming audio
signals, which may last for tens of minutes to hours in typical
office meetings, are broken up into overlapping time windows.
Our system uses a 2.4-sec sliding window with a 75% over-
lap. Feature vectors in each window are fed to a speech sepa-
ration BLSTM that yields the spectral masks for the respective
window. The spectral masks from the adjacent windows are
“stitched” to form sequences of spectral masks in a way that
does not split an utterance to different output channels (see Sec.
2.2.3 for details).

The windowed BLSTM is chosen for two reasons. First, the
model can be trained on a collection of short (i.e., not as long
as a typical meeting) speech mixtures, which can be easily cre-
ated by simulation. Secondly, it can efficiently capture temporal
feature dependency, which is critical for the separated speaker
signals not to be swapped within each window.

2.2.1. Input features

As input to the BLSTM, we make use of both spectral and spa-
tial features. The magnitude spectrum of the reference micro-
phone is used as the spectral features. As regards the spatial
features, inter-microphone phase differences (IPDs) relative to
the reference microphone are used. All the features are mean-
normalized by using a rolling window of four seconds. Unlike
in [15], to prevent aliasing at the π/-π boundary, the argument
operation is performed after the mean normalization processing.
Thus, the IPD features are calculated as

Arg

(
x j,t f

xR,t f
−Eτ

( x j,τ f

xR,τ f

))
, j , R, (3)

where the time averaging operator, Eτ , is applied over the nor-
malization window.

2.2.2. Training

The BLSTM is trained with PIT so that the resultant model can
consistently assign each separated utterance to either channel
within a window. Our training set comprises simulated multi-
channel signals of up to 10 seconds. Each signal can be a single
utterance or a mixture of two utterances with different lengths,

2The windowed BLSTM was previously proposed for acoustic mod-
eling [19].



levels, and reverberations, corrupted by background noise. The
PIT loss for the lth training sample is defined as

min
( j0, j1)∈{(0,1),(1,0)}

1

∑
i=0

∑
t f

(
m(l)

i,t f

∣∣x(l)R,t f

∣∣− ∣∣s(l)ji,t f

∣∣)2
, (4)

where m(l)
i,t f , x(l)R,t f , and s(l)i′,t f are the ith output from the model,

the reference microphone signal, and the i′th source signal as
measured at the reference microphone position, respectively.
For the training samples involving only one utterance, s(l)i′,t f = 0
for the extra source. Further details are described in Section 2.4.

2.2.3. Stitching adjacent windows

Because the PIT-trained network has no specific preference as
to the ordering of the separated signals, the permutations of the
separated signals need to be aligned across the windows at test
time. Suppose that the permutations have already been deter-
mined up to the previous window. To decide the output signal
permutation for the current window, we calculate the cost of
each possible permutation and pick the one that provides the
lower cost. The cost is defined as the sum of the squared differ-
ences between the separated signals of the adjacent windows,
where the sum is computed over the overlapping frames.

After the permutation alignment processing, the masks for
the nonoverlapping frames of the current window are used. This
minimizes the processing latency while being not optimal in
terms of accuracy.

2.3. Beamforming approach
While spectral masking provides perceptually enhanced sounds,
there is a shared belief that the processing artifacts created by
masking are detrimental to the current ASR technology. To
overcome this drawback, a mask-based beamforming approach
was proposed [20, 21] and showed the state-of-the-art results in
far-field ASR tasks [22, 23].

With beamforming, the output signals are computed as

yi,t f =wH
c,i, fxt f , (5)

where wc,i, f is a beamformer coefficient vector for output chan-
nel i, xt f is a vector stacking the microphone signals, and
c is the window index which yi,t f belongs to. By using the
MVDR method [24, 25], the optimal beamfomer is obtained
as wc,i, f =Ψ−1

c,i, fΦc,i, fe/ρc,i, f , where the normalization term,

ρc,i, f , is calculated as ρc,i, f = tr(Ψ−1
c,i, fΦc,i, f ). Here, e is the J-

dimensional standard basis vector with 1 at the reference micro-
phone position. The two matrices, Φc,i, f and Ψc,i, f , represent
the spatial covariance matrix of the utterance to be output from
the ith channel (which may be referred to as the target utterance)
and that of the sounds overlapping the target. These matrices
were previously estimated as weighted spatial covariance ma-
trices of the microphone signals, where each microphone signal
vector was weighted by mi,t f for the target or 1−mi,t f for the
interference [15]. In the following, we propose an improved
spatial covariance matrix estimator using a different model ar-
chitecture.

2.3.1. Speech-speech-noise architecture

The spatial covariance matrix estimator that uses 1−mi,t f as
the interference mask is not very accurate. This is because the
trained speech separation network cares only about the target
signal estimation accuracy, as evident from (4).

Figure 3: SSN model and the network for training it.

A more accurate estimate of the interference spatial covari-
ance matrix can be obtained by explicitly factorizing it to the
spatial covariance matrix of the other talker’s speech and that of
the background noise, Φc,N, f , as follows:

Ψc,i, f =Φc,ī, f +Φc,N, f , (6)

where ī = 0 for i = 1 and ī = 1 for i = 0.
To obtain Φc,N, f , we add another output channel to the sep-

aration network so that the noise masks can also be obtained.
Figure 3 shows a diagram of the new model, called the speech-
speech-noise (SSN) model3, and the computational network for
training it. As shown in the diagram, we apply the PIT frame-
work only to the first two (i.e., speech) output channels. The
loss function is defined as the sum of the PIT loss and the
squared error in noise estimation.

The “sig-cov” method of [15] was used when computing
the spatial covariance matrices. The gain adjustment technique
of [15] was also applied to reduce insertion errors.

2.4. Details
We built an unmixing transducer by using a three-layer 1024-
unit BLSTM. Input features were transformed by a 1024-unit
projection layer with ReLU nonlinearity before being fed to the
BLSTM. On top of the last BLSTM layer, there was a three-
head fully connected sigmoid layer, where each head produced
spectral masks for either speech or noise. Each of the heads
consisted of 257 units, each uniquely associated with a particu-
lar frequency bin.

567 hours of speech mixture data were created for training.
Source speech signals were taken from WSJ SI-284 and Lib-
riSpeech. Each training sample was created as follows. First,
the number of speakers (1 or 2) was randomly chosen. For the
two-speaker case, the start and end times of each utterance was
randomly determined so that we have a balanced mix of the
four configurations described in [15]. The source signals were
reverberated with the image method [26], mixed together in the
two-speaker case, and corrupted by additive noise. The multi-
channel additive noise signals were simulated by assuming a
spherical isotropic noise field. The generated training samples
were clipped to 10 seconds.

Distributed training with 1-bit SGD [27] was performed on
16 GPUs by uisng Microsoft Cognitive Toolkit. The learning
rate started from 2.0×10−4 and divided by 10 after 150 epochs.

3SSN also stands for Speech Separation Network.



The model was saved after each epoch. The model snapshot
with the lowest validation loss was picked after convergence.

At test time, two additional tricks were utilized. First, for
the two network heads producing the speech masks, we esti-
mated the direction of signal arrivals (DOAs). When the DOA
difference was less than 15 degrees, we assumed that there were
actually only one speaker and thus merged the masks while ze-
roing out the masks of the less significant head. Secondly, for
each time frequency bin, the three masks were normalized to
sum to one.

3. Meeting Transcription Experiments
3.1. System build
We developed a meeting transcription system with a seven-
channel circular array by using the unmixing transduer de-
scribed above. The system consists of three kinds of modules,
each performing dereverberation, speech separation, or ASR.
The dereverberation module estimates a multi-input multi-
output dereverberation filter for converting a seven-channel mi-
crophone array signal to a less reverberant one with seven chan-
nels [17]. The dereverberation filter was updated every sec-
ond. Then, the unmixing transducer transforms the derever-
berated seven-channel audio into two-channel separated speech
streams. The model was built as per Section 2.4. Each output
signal from the unmixing transducer was provided to an ASR
back-end that performs segmentation and recognition.

For ASR, we trained an acoustic model on ∼7K hours of
spontaneous speech audio, which were collected from various
sources, both public (e.g., Switchboard and Fisher) and private
(e.g., Microsoft Research lecture talks). The audio quality was
not consistent due to the effects of noise, channel, and so on,
which seemed to improve the robustness of the acoustic model.
The model input was 40-channel mel filterbank energies com-
pressed with 10th-root nonlinearity. The model consisted of
four 1024-unit LSTM layers. It was trained with a cross en-
tropy criterion, followed by sequence training. Decoding was
performed with a dictionary of ∼240K words and our internal
trigram language model built for conversational tasks.

3.2. Task
To evaluate the meeting transcription system, six meetings were
recorded at our speech group and professionally transcribed.
The meetings took place in several different rooms and lasted
for 30 minutes to an hour. The recordings were made with both
headset microphones and a seven-channel circular microphone
array. They were manually segmented and transcribed. The
transcribers were allowed to access both types of microphones.
The average overlap rate was 14.7%, which was twice as high
as that of AMI [9]. While the overlap rate value varies depend-
ing on the annotation policy, based on an informal inspection,
we feel our meetings had noticeably more overlaps than those
of AMI. The more frequent overlaps may be attributed to the
fact that the participants in our meetings knew each other well
and were discussing work-related topics.

The system outputs were scored with asclite tool [28],
which aligns multiple hypotheses against multiple references.
Tighter reference segmentations were used when calculating a
word error rate (WER) for single-speaker segments so as not to
discard segments that had overlaps only in nonspeech frames.
Note that this might have resulted in a slight WER overestima-
tion because asclite makes use of the reference time stamps to
find segments for alignment.

Table 1: %WER of different front-ends.

System Overlapped segments
Included Excluded

No processing (mic0) 44.6 40.9
Dereverb. [17] 42.1 38.7

+BeamformIt [29] 43.2 40.6
+MaskBF [23] 37.9 32.8
+Unmix. Trans. (proposed) 33.8 30.4
+UT trained only on WSJMix 34.2 30.8
+UT without noise channel 36.8 34.5

3.3. Results
Table 1 lists the WERs obtained with different front-ends in-
cluding our system. Without microphone array processing, the
WER was 44.6%. Dereverberation improved the recognition
accuracy by 5.6% relative. BeamformIt [29], the default beam-
former used by Kaldi’s recipe for AMI [30], provided no im-
provement. A neural mask-based beamformer, which yielded
state-of-the-art results in both CHiME-3/4 [22] and more prac-
tical large vocabulary settings [23], was also examined. Here,
we used the best model we obtained in [23] and applied it to our
meeting data by using a 2.4-sec sliding window. This improved
the performance by 10.0%, achieving a WER of 37.9%. How-
ever, this beamformer provided a 15.2% gain for single-speaker
segments, indicating that this method was not effective at han-
dling overlaps. Nevertheless, we used this single-output beam-
former as our baseline because no speech separation method
was previously applied to meetings with unknown and varying
numbers of attendees.

The proposed system achieved a WER of 33.8%, outper-
forming the strong baseline system by 10.8%. It is notewor-
thy that the gain was 7.3% when the overlapped segments were
excluded. This means that, while the proposed approach pro-
vided a modest improvement even for single-speaker segments,
its advantage was prominent in overlapped segments. When
the unmixing transducer was trained only on the WSJ-derived
data, which amounted to 219 hours, the recognition accuracy
slightly deteriorated. When the network estimated only speech
masks, i.e., when the SSN architecture was not used, the recog-
nition performance was degraded to 36.8%. The degradation
was profound especially in single-speaker segments, indicating
the importance of explicitly estimating the noise masks. Over-
all, the proposed meeting transcription system, comprising the
dereverberator, unmixing transducer, and ASR back-ends, im-
proved the WER by 24.2% compared with the single distant
microphone system.

4. Conclusion
In this paper, we described a meeting transcription system that
can handle speech overlaps. The system is based on the un-
mixing transducer, a novel signal processing module for con-
verting multi-channel audio signals into a fixed number of sep-
arated speech streams. We implemented it by using a windowed
BLSTM. The SSN architecture was proposed to effectively
leverage beamforming capability. Significant gains in meet-
ing transcription performance were obtained compared with a
strong neural mask-based beamformer. Further results on both
public and private data will be reported in a follow-up paper.

As far as we know, this is the first overlapped speech recog-
nition system that has been demonstrated to work for actual
unconstrained meetings. We believe the proposed approach is
promising and anticipate further investigation in this direction.
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