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• Vertical & Horizontal Decomposition:
• Who does what, at what timescale, how to glue them together?
• Allocation of functions, not just resources
• Vertical: Layering as decomposition
• Horizontal: Cloud – Edge/Fog as decomposition

• Architecture supports Applications: 
• Source-channel separation: Digital communication
• TCP/IP: Internet applications
• Edge/Fog: IoT / 5G / Dispersive AI

Network Decomposition 



2009

Distribute functions to network edge



2015

Decompose functions along Cloud-2-Things Continuum



Interfaces

Massive storage
Heavy duty computation 
Global coordination
Wide-area connectivity 

Real time processing
Rapid innovation
User-centric
Edge resource pooling



• Decompose machine learning into multiple geographically distributed 
components, collectively or jointly operating
 Optimize communication costs and centralized data processing costs
 Make best use of local/proximal resources 

Applications to Dispersive AI

• Design machine learning algorithms that support fast responses 
 Enable IoT systems with intelligence here and now

• Proactively pre-position content and computing  
 Parallel successive refinement for streaming mining  
 Reduce infrastructure costs and improve quality of experience 



Testing Decompositions of Machine Learning

• Specialized testbed developed 
• Linear regression decomposition: 70% reduction in data 
transmission

• Demonstrations: IEEE FWC’17, ACM SenSys’17 NYC Media 
Lab Summit’17.  
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• Re-visit MapReduce for Fog environment
• Coordination & consistency
• Robustness through redundancy
• Computation decomposition
• Task placement and scheduling along C2T
• Automating deployment

• Prototype provides primary MapReduce APIs
• Filter
• Map
• Reduce
• ReduceByKey
• MapByKey

New MapReduce
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Fog App Decomposition

EDGE Lab. Fog Testbed



Simple Example: Counting Words in a File



• Heterogeneity/Under-organization of resources/devices

• Variability/Volatility in availability/mobility 

• Bandwidth/Battery constraints 

• Proximity to sensors/actuators 

Unique Features in Edge/Fog



• Drone Camera Network
• Aakanksha Chowdhery, Shirley Wang

• Personalized Placement Learning in AR/VR
• Surin Ahn, Maria Gorlatova, Parinaz Naghizadeh

Two Toy Examples



Outdoor Live Coverage 

• Stadiums use 30-50 cameras to capture 
games nationally broadcast

• NFL recently introduced cameras over 
crosswires: SkyCam, SpiderCam



Network Decomposition

• Distributed 
• Make decision locally; low latency
• Suboptimal: all drones prioritize covering the most important scene

• Centralized
• Cloud makes decisions, cost benefits and efficiency
• Round-trip time limits drone trajectory coordination rate, response to 

game dynamics 

• One decomposition:  
• Drones form a fog network: trajectory planning, collision avoidance
• Centralized coordination for next target location, drone function



One Choice of Decomposition



Coverage vs. Throughput

• Sensors on players/ball (location, speed)
• Predict locations of next importance scenes
• Match drones to each important scene

• Max throughput: drone selects the best server
• Throughput boosting: drone as relay



Joint Optimization and drone allocation 

Optimal allocation of drones as relay



Observations

• A system to coordinate a network of drones to capture and broadcast a 
sports game from drone cameras over a wireless channel

• Joint Optimization
• Maximize the coverage of interesting scenes: drone location assignment algorithm.
• Maximize video quality: drone-server association scheme, drone as relay.

• Evaluation: optimal 4 drones for coverage, 4 as relay
• achieve 94% coverage
• support 2K video streaming at 20Mbps



Personalized AR Object Placement: 
Where Does Learning Happen?



Network Decomposition

• Policy learning phase:
• Present users with simulated 

environments; collect their 
actions

• Use imitation learning to 
learn personalized hologram 
placements

• Policy execution 
phase:
• Send to powerful devices  
• Run on behalf of resource-

constrained devices



Personalized Placement Learning

User-controlled hologram Agent-controlled hologram
Birds-eye view shows 
matching trajectories in 
addition to placements



Learning A User’s Preference Fast

4 
Demos

13 
Demos

Each circle represents the users’ desired destination. Dots represent 
algorithm’s action. As early as 13 demos, agent achieves accuracy.



State Space Reduction Helps

Reduced state-space

Hologram destinations after 12 trials when using the full AR image as the state. 
Compared with the reduced state-space there is degradation in  accuracy. 

Full image as state



Overarching Questions 

• Where to place a function/data set? 

• What is the interface among modules?



The Edge/Fog Advantage: SCALE

• Security

• Cognition

• Agility 

• Latency 

• Efficiency 



Thank you!
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