|y

=@ Microsoft

\\
,

\

l

i
‘\\ \\\\\““\ e -
i i,

\
A

NN
AN/

NN

=

7o

77—\
o I

i

\

\ ,ﬁ,{.\. 2 / M\\\,.‘\\rww \) :

W\»
~/
N S

—~
=~
=/

\
\\

1/

/ Z/ \\%\ /

AN = \\

//M/%WWW/N@ \
\

i

/)

)

0
A\
-
O\l
=
-
-
D)
L W
& >
(O +—
%U
U
Q
D_q_d

Systems | Fueling future disruptions

@% Work partially done at

MITCSAIL

Learned Index Structures

(joint work with Alex Beutel, Ed H. Chi,
Jeffrey Dean, Neoklis Polyzotis)

Tim Kraska <kraska@mit.edu>
[Disclaimer: | am NOT talking on behalf of Google]

Comments on chial Media

“‘Machine Learning Just Ate Algorithms In
One Large Blte .. .” [Christopher Manning, Professor at Stanford]

Disclaimer

Fundamental
Building Blocks
Of Data Management
Systems

(or almost any system/application)

B
"
; .; ?“ ~ N r /
' v

JASSUMPTIONS ¢/~

Goal:

Index All Integers from 900 to 800M

900

901

902

903

904

905

906

907

908

909

=« |300M

B-Tree?

—

Goal:

Index All Integers from 900 to 800M

900

901

902

903

904

905

906

907

908

909

=« |300M

data array[lookup key - 900]

Goal:

Index All Integers from 900 to 800M

900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 [==-|800M

Index All Even Integers from 900 to 800M

900 | 902 | 904 | 906 | 908 | 910 | 912 | 914 | 916 | 918 | =--|800M

data array[(lookup key — 900) / 2]

Still holds for other data distributions

E’WF
=
==

Key Insight

.

Knowing the (empirical) Data
Distribution allows for Instance-
based Optimizations

(e.g., lookups: O(log n) = O(1)
storage: O(n) = O(1))

Building A System From Scratch For Every
Use Case Is Not Economical

B-Tree As An Example

Tree

VAN

B-Tree As An Example

Tree

VAN

For the moment focus on
in-memory immutable B-Trees

Assumptions No Inserts
No Paging
will talk about those issues later.

Conceptually a
B-Tree maps a key to a page

key

B-Tree

i

Assume: Data is stored in a continuous main memory region

Alternative View
B-Tree maps a key to a position with a fixed min/max error

1. B-tree: key=>pos
2. Binary search within
err..., (0) and

B-T
ree err,.., (page-size)
pos ition
Sc*'ed Array
pos + 0 pos + page-size

For simplicity assume all pages are continuously stored in main memory

A B-Tree Is A Model

key

{

/ osition
 gre Sy
/]

pos - errmin pos + errmax

A B-Tree Is A Model

key

b

/ osition
 gre Sy
/o

POS - err i, POS + err,, .«

Finding an item
1. Any model: key — pos
2. Binary search in
[pos - err,i, pos + err...]

err... and err. . are known from
the training process

A B-Tree Is A Model

key

}

/osition
} Sied Array

/]

pPoOS - err i, POS + err,, .«

A CDF model

f(x)
1

F(a) = P(X<a)

a

Pos-estimate = F(key) * #keys

The B-Tree is Also A Model

key

Regression Tree

B-Tree

position

7

pos + 0

0S + page-size

What Does This Mean

What Does This Mean

Database people

were the first to do
large scale machine learning :)

Potential Advantages of Learned B-Tree Models

* Smaller indexes - less (main-memory) storage
* Faster Lookups?

* More parallelism - Sequential if-statements are exchanged for
multiplications

* Hardware accelerators - Lower power, better S/compute....

* Cheaper inserts? - more on that later. For the moment, assume
read-only

A First Attempt

‘® Tensor

* 200M web-server log records by timestamp-sorted
e 2 layer NN, 32 width, ReLU activated

* Prediction task: timestamp = position within sorted
array

A First Attempt

A\

Cache-Optimized
B-Tree

=250ns ?297?

A First Attempt

A\

Cache-Optimized
B-Tree

=250ns =80,000ns

Reasons

Problem I: Tensorflow is designed
for large models

NN\ 2777
4/ /
{

:A‘;_‘__‘ 040) ¢ A.;I; —
AN :

Problem lll: B-Trees are
cache-efficient

] Level 1 [l Level 2 Levl 3 | o1 Main
ou |) 0y
a1) A Memory

e/

—m

Problem II: Search does not take
advantage of the prediction

S

Problem IV: B-Trees are great for
overfitting

Reasons

Problem Ill: B-Trees are Problem IV: B-Trees are great for
cache-efficient overfitting

Solution:
Recursive Model Index (RMI)

l Key

S Model 1.1
&
/ \
Al
% Model 2.1 Model 2.2 Model 2.3
&
o
S | Model 3.1 Model 3.2 Model 3.3 Model 3.4 | ..
5 -

l Position
Lo = Z(fo(l’) - y)2

(z,y)

M —1(x N
EZZ(E(L efe-1(x)/ J)(Z)—y)2

(z,y)

How Does The Lookup-Code Look Like

Model on stage 1: £0 (key type key)

Models on stage two: £1[]
(e.g., the first model in the second stage isis £1[0] (key_type key))

Lookup Code for a 2-stage RMI:
pos _estimate €& f1[£f0(key)](key)
pos € exp search(key, pos estimate, data);

How Does The Lookup-Code Look Like

Model on stage 1: £0 (key type key)

Models on stage two: £1[]
(e.g., the first model in the second stage isis £1[0] (key_type key))

Lookup Code for a 2-stage RMI:
pos _estimate €& f1[£f0(key)](key)
pos € exp search(key, pos estimate, data);

Operations with a 2-stage RMI with linear regression models

offset € a + b * key R 2x multiplies

weights2 €& weights stage2[offset] ' 2x additions

pos estimate €& weights2.a + 1x array-lookup
weights2.b * key —

pos €& exp search(key, pos estimate, data)

Hybrid RMI

l Key

fgj» Model 1.1
%) .
Al
% Model 2.1 Model 2.2 Model 2.3
%)
- \
S Model 3.2 Model 3.4
%) B-Tree 3.1 B-Tree 3.5
Posmon

Worst-Case Performance is the one of a B-Tree

Does it have to be

DEEP LEARNING

Does It Work?

200M records of map data (e.g., restaurant locations). index on longitude
Intel-E5 CPU with 32GB RAM without GPU/TPUs No Special SIMD optimization (there is a lot of potential)

Type Config Lookup | Speedup | Size (MB) | Size vs.
time vs. BTree Btree

BTree page size: 128 260 ns 1.0X 12.98 MB 1.0X

Does It Work?

200M records of map data (e.g., restaurant locations). index on longitude
Intel-E5 CPU with 32GB RAM without GPU/TPUs No Special SIMD optimization (there is a lot of potential)

Type Config Lookup | Speedup | Size (MB) | Size vs.
time vs. BTree Btree
BTree page size: 128 260 ns 1.0X 12.98 MB 1.0X
Learned index |2nd stage size: 10000 222 ns 1.17X 0.15 MB 0.01X
Learned index |2nd stage size: 50000 162 ns 1.60X 0.76 MB 0.05X
Learned index |2nd stage size: 100000 144 ns 1.67X 1.53 MB 0.12X
Learned index |2nd stage size: 200000 126 ns 2.06X 3.05 MB 0.23X

60% faster at 1/20th the space, or 17% faster at 1/100th the space

Certain
BIC cje Po

@ rasT

T§
?
®
256
o |
N
® 32 I
— Lookup
% 4 Table ‘
~ o Learned Fixed-Size Read-Optimized
o] Index 'B—Tree w/ interpolation search
@
0.5 Better Worse

_____ﬁ

0 50 100 150 200 250 300 350
Lookup-Time (ns)

Big thanks to Thomas Neumann as his blog post actually helped us a lot to
improve our experiment section.

What About Our Assumptions

* Updates and Inserts?

* Paging

1 A-Tree: A Bounded Approximate Index Structure,
https://arxiv.org/abs/1801.10207

Fundamental Algorithms & Data Structures

Join Sorting Tree Hash-Map Bloom-Filter

M il A WY

Range-Filter Priority Queue Scheduling Cache Policy

Multi-Dimensional
Index

Problems with (R-Tree / KD-Tree)

| e—
A A G s - o E—
—
-
-
B
W ———

Machine Learning Is Good For
Multi-Dimensional Data

.
= . | ‘o ® ".4'
> P \'\/ 'y\ \\,/
R - Y ‘ \,_
“ ' = ~3 & ‘.
» &

There is Only
1-Dim Order
On Disk*

*Sure the disk is more complicated, but the APl and the scanning of records is usually 1-dim

i)
c
=
@)
£
<
o
=
o

Order Zip Code

Equal Importance

i)
c
=
@)
£
<
o
=
o

Order Zip Code

Is It PCA?

i)
c
=
@)
£
<
o
=
o

Order Zip Code

Most Queries Are about Order Amount

i)
c
=
@)
£
<
o
=
o

Order Zip Code

Most Queries Are about Order Zip Code

i)
c
=
@)
£
<
o
=
o

Order Zip Code

Can | mix the projections?

i)
c
=
@)
£
<
o
=
o

Order Zip Code

Can | mix the projections?

i)
c
=
@)
£
<
o
=
o

Order Zip Code

2 Models

The projector

Root node define a primary
direction

Project points on the root

Partition the space

Define directions for each sub-
space

This is an RMI
Model not a BTree

Recurse for any depth

After Projection Locator
iIs a Normal BTree RMI

Early results (1M points, synthetic)

 ~200ns for point queries

« ~2x speed, ~10x space vs
R-Trees

Future Work

Join Sorting Tree Hash-Map Bloom-Filter
Range-Filter Priority Queue Scheduling Cache Policy

= [l <.

How Would You Design Your Algorithms/Data Structure
If You Have a Model for the Empirical Data Distribution?

CTSR

.

The Power of Continﬁ]

Learned Adaptation

Big Potential For TPUs/GPUs

Can Lower the Complexity Class

Q
Q
(©
Q.
V)
-
o
)
=
-

data array|[(lookup key — 900)]

4T - Warning
N = + Not An Almighty Solution

' &
- ¥ llj-.
+ - i *. o
® | @ 2 ¥ _ RLA
.- R . Ty - i 1
It' - : 4 l.tL 1- | "
\ _rr ;,,1 # .:'-;""'"- \\ i
k % . o b
e i
o Al
. - .

< _

-

Data System for Al Lab DSAIL@ CSAIL

Data Systems for Al
Vi for Data Systems

Research
Area

System
Faculty

Faculty

ML

Founding
Sponsors

GOUS[Q M Microsoft (iﬂté')

Work partially done at

Tim Kraska I -
GO \ /8[6 <kraska@mit.edu> I I

* A new approach to indexing
* Framework to rethink many existing data structures/algorithms

* Under certain conditions, it might allow to change the
complexity class of data structures

* The idea might have implications within and outside of DBMS

Related Work

» Succinct Data Structures = Most related, but succinct data structures
usually are carefully, manually tuned for each use case

* B-Trees with Interpolation search = Arbitrary worst-case
performance

* Perfect Hashing = Connection to our Hash-Map approach, but they
usually increase in size with N

* Mixture of Expert Models - Used as part of our solution
» Adaptive Data Structures / Cracking - orthogonal problem

* Local Sensitive Hashing (LSH) (e.g., learened by NN)
— Has nothing to do with Learned Structures

Thank you!

=@ Microsoft

© Copyright Microsoft Corporation. All rights reserved.

