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Comments on chial Media

“‘Machine Learning Just Ate Algorithms In
One Large Blte .. .” [Christopher Manning, Professor at Stanford]



Disclaimer




Fundamental
Building Blocks
Of Data Management
Systems

(or almost any system/application)




B
"
; .; ?“ ~ N r /
' v

JASSUMPTIONS ¢/~



Goal:

Index All Integers from 900 to 800M
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Goal:

Index All Integers from 900 to 800M

900

901

902

903

904

905

906

907

908

909

=« |300M

data array[lookup key - 900]




Goal:

Index All Integers from 900 to 800M

900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 [ ==-|800M

Index All Even Integers from 900 to 800M

900 | 902 | 904 | 906 | 908 | 910 | 912 | 914 | 916 | 918 | =--|800M

data array[ (lookup key — 900) / 2]



Still holds for other data distributions
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Key Insight

.

Knowing the (empirical) Data
Distribution allows for Instance-
based Optimizations

(e.g., lookups: O(log n) = O(1)
storage: O(n) = O(1))



Building A System From Scratch For Every
Use Case Is Not Economical




B-Tree As An Example

Tree

VAN




B-Tree As An Example

Tree

VAN

For the moment focus on
in-memory immutable B-Trees

Assumptions No Inserts
No Paging
will talk about those issues later.




Conceptually a
B-Tree maps a key to a page

key

B-Tree

i

Assume: Data is stored in a continuous main memory region



Alternative View
B-Tree maps a key to a position with a fixed min/max error

1. B-tree: key=>pos
2. Binary search within
err..., (0) and

B-T
ree err,.., (page-size)
pos ition
Sc*'ed Array
pos + 0 pos + page-size

For simplicity assume all pages are continuously stored in main memory



A B-Tree Is A Model

key
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A B-Tree Is A Model

key

b

/ osition
 gre Sy
/o

POS - err i, POS + err,, .«

Finding an item
1. Any model: key — pos
2. Binary search in
[pos - err,i, pos + err...]

err... and err. . are known from
the training process



A B-Tree Is A Model

key

}

/osition
} Sied Array

/]

pPoOS - err i, POS + err,, .«

A CDF model

f(x)
1

F(a) = P(X<a)

a

Pos-estimate = F(key) * #keys



The B-Tree is Also A Model

key

Regression Tree

B-Tree

position

7

pos + 0

0S + page-size



What Does This Mean



What Does This Mean

Database people

were the first to do
large scale machine learning :)



Potential Advantages of Learned B-Tree Models

* Smaller indexes - less (main-memory) storage
* Faster Lookups?

* More parallelism - Sequential if-statements are exchanged for
multiplications

* Hardware accelerators - Lower power, better S/compute....

* Cheaper inserts? - more on that later. For the moment, assume
read-only



A First Attempt

‘® Tensor

* 200M web-server log records by timestamp-sorted
e 2 layer NN, 32 width, ReLU activated

* Prediction task: timestamp = position within sorted
array



A First Attempt

A\

Cache-Optimized
B-Tree

=250ns ?297?




A First Attempt

A\

Cache-Optimized
B-Tree

=250ns =80,000ns



Reasons

Problem I: Tensorflow is designed
for large models

NN\ 2777
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Problem lll: B-Trees are
cache-efficient

] Level 1 [l Level 2 Levl 3 | o1 Main
ou | ) 0y
a1) A Memory

e/

—m

Problem II: Search does not take
advantage of the prediction

S

Problem IV: B-Trees are great for
overfitting




Reasons

Problem Ill: B-Trees are Problem IV: B-Trees are great for
cache-efficient overfitting




Solution:
Recursive Model Index (RMI)

l Key

S Model 1.1
&
/ \
Al
% Model 2.1 Model 2.2 Model 2.3
&
o
S | Model 3.1 Model 3.2 Model 3.3 Model 3.4 | ..
5 -

l Position
Lo = Z(fo(l’) - y)2

(z,y)

M —1(x N
EZZ(E(L efe-1(x)/ J)(Z)—y)2

(z,y)



How Does The Lookup-Code Look Like

Model on stage 1: £0 (key type key)

Models on stage two: £1[ ]
(e.g., the first model in the second stage isis £1[0] (key_type key))

Lookup Code for a 2-stage RMI:
pos _estimate €& f1[£f0(key)](key)
pos € exp search(key, pos estimate, data);



How Does The Lookup-Code Look Like

Model on stage 1: £0 (key type key)

Models on stage two: £1[ ]
(e.g., the first model in the second stage isis £1[0] (key_type key))

Lookup Code for a 2-stage RMI:
pos _estimate €& f1[£f0(key)](key)
pos € exp search(key, pos estimate, data);

Operations with a 2-stage RMI with linear regression models

offset € a + b * key R 2x multiplies

weights2 €& weights stage2[offset] ' 2x additions

pos estimate €& weights2.a + 1x array-lookup
weights2.b * key —

pos €& exp search(key, pos estimate, data)



Hybrid RMI

l Key

fgj» Model 1.1
%) .
Al
% Model 2.1 Model 2.2 Model 2.3
%)
- \
S Model 3.2 Model 3.4
%) B-Tree 3.1 B-Tree 3.5
Posmon

Worst-Case Performance is the one of a B-Tree



Does it have to be

DEEP LEARNING




Does It Work?

200M records of map data (e.g., restaurant locations). index on longitude
Intel-E5 CPU with 32GB RAM without GPU/TPUs No Special SIMD optimization (there is a lot of potential)

Type Config Lookup | Speedup | Size (MB) | Size vs.
time vs. BTree Btree

BTree page size: 128 260 ns 1.0X 12.98 MB 1.0X




Does It Work?

200M records of map data (e.g., restaurant locations). index on longitude
Intel-E5 CPU with 32GB RAM without GPU/TPUs No Special SIMD optimization (there is a lot of potential)

Type Config Lookup | Speedup | Size (MB) | Size vs.
time vs. BTree Btree
BTree page size: 128 260 ns 1.0X 12.98 MB 1.0X
Learned index |2nd stage size: 10000 222 ns 1.17X 0.15 MB 0.01X
Learned index |2nd stage size: 50000 162 ns 1.60X 0.76 MB 0.05X
Learned index |2nd stage size: 100000 144 ns 1.67X 1.53 MB 0.12X
Learned index |2nd stage size: 200000 126 ns 2.06X 3.05 MB 0.23X

60% faster at 1/20th the space, or 17% faster at 1/100th the space
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Big thanks to Thomas Neumann as his blog post actually helped us a lot to
improve our experiment section.



What About Our Assumptions

* Updates and Inserts?

* Paging

1 A-Tree: A Bounded Approximate Index Structure,
https://arxiv.org/abs/1801.10207



Fundamental Algorithms & Data Structures

Join Sorting Tree Hash-Map Bloom-Filter

M il A WY

Range-Filter Priority Queue Scheduling Cache Policy




Multi-Dimensional
Index




Problems with (R-Tree / KD-Tree)
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Machine Learning Is Good For
Multi-Dimensional Data
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There is Only
1-Dim Order
On Disk*

*Sure the disk is more complicated, but the APl and the scanning of records is usually 1-dim
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Equal Importance

i)
c
=
@)
£
<
o
=
o

Order Zip Code




Is It PCA?
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Most Queries Are about Order Amount
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Most Queries Are about Order Zip Code
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Can | mix the projections?
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Can | mix the projections?
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2 Models




The projector

Root node define a primary
direction

Project points on the root

Partition the space

Define directions for each sub-
space

This is an RMI
Model not a BTree

Recurse for any depth




After Projection Locator
iIs a Normal BTree RMI




Early results (1M points, synthetic)

 ~200ns for point queries

« ~2x speed, ~10x space vs
R-Trees




Future Work

Join Sorting Tree Hash-Map Bloom-Filter
Range-Filter Priority Queue Scheduling Cache Policy

= [l <.



How Would You Design Your Algorithms/Data Structure
If You Have a Model for the Empirical Data Distribution?

CTSR

.

The Power of Continﬁ ]




Learned Adaptation




Big Potential For TPUs/GPUs




Can Lower the Complexity Class
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data array|[ (lookup key — 900) ]
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Work partially done at

Tim Kraska I -
GO \ /8[6 <kraska@mit.edu> I I

* A new approach to indexing
* Framework to rethink many existing data structures/algorithms

* Under certain conditions, it might allow to change the
complexity class of data structures

* The idea might have implications within and outside of DBMS



Related Work

» Succinct Data Structures = Most related, but succinct data structures
usually are carefully, manually tuned for each use case

* B-Trees with Interpolation search = Arbitrary worst-case
performance

* Perfect Hashing = Connection to our Hash-Map approach, but they
usually increase in size with N

* Mixture of Expert Models - Used as part of our solution
» Adaptive Data Structures / Cracking - orthogonal problem

* Local Sensitive Hashing (LSH) (e.g., learened by NN)
— Has nothing to do with Learned Structures



Thank you!
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