
Systems | Fueling future disruptions

Research
Faculty Summit 2018

Spice: Verifiable state machines
A foundation for building high-throughput confidential blockchains

Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee
Microsoft Research UT Austin and NYU

clients

verifiers

testsaccept/reject

stateful service

Verifiable state machines

store

fully untrusted
(no trusted hardware)

clients

verifiers

testsaccept/reject

stateful service

• Correctness: If the service’s behavior is equivalent to a serial execution, verifiers accept
• Soundness: If the service misbehaves, Pr[a verifier outputs accept] < ϵ
• Zero-knowledge: Trace does not reveal anything beyond correct execution
• Succinctness: Each entry in the trace is small

Verifiable state machines

store

fully untrusted
(no trusted hardware)

Prior work on verifiable state machines

• Pantry[SOSP13], Geppetto[Oakland15], CTV[EUROCRYPT15], vSQL[Oakland17], …

• The underlying theory dates back to 90s: Babai et al.[STOC91]

• Pepper [HotOS11, NDSS12], CMT [ITCS12], Ginger [Security12], TRMP [HotCloud12]

• Zaatar[EuroSys13], Pinocchio[Oakland13], SNARKS-for-C[CRYPTO13]

Storage interfaces: key-value stores, SQL databases, etc.

Cost reductions by 1020x

Support stateful computations

Prior work on verifiable state machines

• Pantry[SOSP13], Geppetto[Oakland15], CTV[EUROCRYPT15], vSQL[Oakland17], …

• The underlying theory dates back to 90s: Babai et al.[STOC91]

• Pepper [HotOS11, NDSS12], CMT [ITCS12], Ginger [Security12], TRMP [HotCloud12]

• Zaatar[EuroSys13], Pinocchio[Oakland13], SNARKS-for-C[CRYPTO13]

Storage interfaces: key-value stores, SQL databases, etc.

Cost reductions by 1020x

Support stateful computations

Two key limitations of recent systems:
• Storage ops. are expensive: tens of seconds to minutes of CPU-time
• Support only a sequential execution model

Prior work can only support < 0.15 reqs/sec (even for simple services)

Prior work on verifiable state machines

• Pantry[SOSP13], Geppetto[Oakland15], CTV[EUROCRYPT15], vSQL[Oakland17], …

• The underlying theory dates back to 90s: Babai et al.[STOC91]

• Pepper [HotOS11, NDSS12], CMT [ITCS12], Ginger [Security12], TRMP [HotCloud12]

• Zaatar[EuroSys13], Pinocchio[Oakland13], SNARKS-for-C[CRYPTO13]

Storage interfaces: key-value stores, SQL databases, etc.

Cost reductions by 1020x

Support stateful computations

Two key limitations of recent systems:
• Storage ops. are expensive: tens of seconds to minutes of CPU-time
• Support only a sequential execution model

Prior work can only support < 0.15 reqs/sec (even for simple services)

Our system, Spice [OSDI18, to appear]:
• Features a storage primitive that is >100x faster
• Supports a concurrent execution model
• Throughput: 488—1048 reqs/sec (512 CPU-cores)

Rest of this talk

• Applications of verifiable state machines

• Background and overview of Spice

• Experimental results

Why are we interested in verifiable state machines?

They enable us to build:
1. Cloud services without trusting the cloud infrastructure

2. Private and efficient blockchains
• Permissionless (e.g., Ethereum)
• Permissioned (e.g., Hyperledger Fabric, Quorum, etc.)

Cloud-hosted ledgers
(inspired by https://sequence.io)

clients service state

ClientI
d

Asse
t

Balanc
e

0x2ff1 USD 200

0xfad1 USD 500

0xba21 Euro 100auditor(s)

accept/reject

1. Issue(clientId, asset, balance, issuerSig)

2. Transfer(senderId, recvId, asset, amount, senderSig)

3. Retire(clientId, asset, amount, clientSig)

request types

Value proposition:
An auditor can verify
the service---without
access to requests or
trusting the service

Private and fast smart contracts

Smart contract

Ethereum
blockchain

• All transactions and contract state are
public  no confidentiality

• Every app-level request must be processed
by blockchain limits throughput

With verifiable state machines

Ethereum runs
a verifier

service

succinct ZK
trace

• Only a succinct trace is public  strong
confidentiality

• Ethereum processes a succinct trace 
can support high-throughput apps

• Applications

• Background and overview of Spice

• Experimental results

A quick overview of Pantry[SOSP13]

• Extends Zaatar[EuroSys13] and Pinocchio[Oakland13] to support state

front-end
(translates C to constraints)

Equations over variables in a
large (256-bit) finite field 𝔽𝔽p

int f(int a, int b) {
return a*2 – b;

}

C program

a = 3
b = 4

back-end
(an argument protocol)

prover

verifier

y = 2
proof

(x1 ∙ 2) – x3 = 0
(x3 – x2) – x4 = 0

x1 – input a = 0
x2 – input b = 0

x4 – output = 0

translate build

Zaatar and Pinocchio support a large C subset:

• Arithmetic operations, bitwise operations
• Conditional control flow
• Volatile memory including pointers
• Loops: bound must be known at compile time

Pantry supports state while working in a stateless
model---by using cryptographic hashes (a folklore idea)

How does Pantry support state?
Key idea: name data blocks with their short cryptographic hashes

int req(int a, uint8_t *digest) {
int b = prover_input();
assert(digest == SHA256(b));
return a*2 - b;

}

Prover supplies value for b (could be incorrect)

If prover supplies invalid state the assert will fail

Verifier supplies digest as one of the inputs

Pantry builds a key-value store using this idea: treat hashes as
pointers to data and construct a (Merkle) tree

Cost of a key-value store operation: logarithmic in the size of state
Concretely: several minutes of CPU-time (106 KV pairs)

Spice in a nutshell
Core idea: Use a set data structure [Blum et al. FOCS91, Clarke et al.
ASIACRYPT03, Arasu et al. SIGMOD17] instead of a tree
• Key-value store op = add an element to a set

• Costs = constant-time (amortized) vs. logarithmic

However: A naïve instantiation is slower than tree-based approach
• Spice presents an efficient instantiation using ECC (106x faster than naïve)

• Spice includes new techniques to support inexpensive transactions

• ….

Spice in a nutshell
Core idea: Use a set data structure [Blum et al. FOCS91, Clarke et al.
ASIACRYPT03, Arasu et al. SIGMOD17] instead of a tree
• Key-value store op = add an element to a set

• Costs = constant-time (amortized) vs. logarithmic

However: A naïve instantiation is slower than tree-based approach
• Spice presents an efficient instantiation using ECC (106x faster than naïve)

• Spice includes new techniques to support inexpensive transactions

• ….

Implementation of Spice

request handler
(a C program with calls to

Spice’s storage API)

the service
executable

the verifier
executableThe Spice toolchain

(compiler, etc.)

• 3,000 lines of C atop Pantry [SOSP13] (~15,000 LOC)

• Three apps: 1,500 lines of C

• init(), insert(Key, Value), put(Key, Value), get(Key), delete(Key)

• lock(Key), unlock(Key)

• begin_txn(Key[], Value**), end_txn(Key[], Value[])

• Applications

• Background and overview of Spice

• Experimental results

Evaluation questions

1. How does Spice compare with the prior state-of-the-art?

2. What is the end-to-end performance of apps built with Spice?

Evaluation testbed:
• Azure D64s_v3 instances: 64 vCPUs, 2.4Ghz Intel Xeon, 256 GB

RAM, running Ubuntu 17.04

(1) How does Spice compare to prior work?

get put
Pantry [SOSP13] 0.078 0.039
Pantry++ 0.15 0.076
Geppetto [Oakland15] 0.002 0.002
Spice (1-thread) 3.3 3.3
Spice (512-threads) 1,250 1,259

A million key-value pairs

Transactions with a single operation, keys chosen with a uniform distribution

Metric: number of operations/second

(2) End-to-end performance with varying #CPUs

• TPS is 16,000x better than prior state-of-the art (algorithmic + hardware)
• Verification throughput: 15 million proof verifications/second

Summary

• Verifiable state machines is a key tool for the cloud and blockchains

• Spice is a substantial milestone for building verifiable state machines
• >16,000x better performance (over prior state-of-the-art)
• Supports real-world applications with thousands of transactions/sec

• We are excited about the many possibilities Spice points to!

Thank you!

	Research�Faculty Summit 2018
	Spice: Verifiable state machines �A foundation for building high-throughput confidential blockchains
	Verifiable state machines
	Verifiable state machines
	Prior work on verifiable state machines
	Prior work on verifiable state machines
	Prior work on verifiable state machines
	Rest of this talk
	Why are we interested in verifiable state machines?
	Cloud-hosted ledgers�(inspired by https://sequence.io)
	Private and fast smart contracts
	Slide Number 12
	A quick overview of Pantry[SOSP13]
	Zaatar and Pinocchio support a large C subset:
	How does Pantry support state?
	Spice in a nutshell
	Spice in a nutshell
	Implementation of Spice
	Slide Number 19
	Evaluation questions
	(1) How does Spice compare to prior work?
	(2) End-to-end performance with varying #CPUs
	Summary
	Slide Number 24
	Slide Number 25

