

Research Faculty Summit 2018

Systems | Fueling future disruptions

Spice: Verifiable state machines

A foundation for building high-throughput confidential blockchains

Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee Microsoft Research UT Austin and NYU

Verifiable state machines

Verifiable state machines

- Correctness: If the service's behavior is equivalent to a serial execution, verifiers accept
- Soundness: If the service misbehaves, $Pr[a \text{ verifier outputs accept}] < \epsilon$
- Zero-knowledge: Trace does not reveal anything beyond correct execution
- Succinctness: Each entry in the trace is small

Prior work on verifiable state machines

• The underlying theory dates back to 90s: Babai et al.[STOC91]

Cost reductions by 10²⁰x

- Pepper [HotOS11, NDSS12], CMT [ITCS12], Ginger [Security12], TRMP [HotCloud12]
- Zaatar[EuroSys13], Pinocchio[Oakland13], SNARKS-for-C[CRYPTO13]

Support stateful computations

• Pantry[sosp13], Geppetto[Oakland15], CTV[EUROCRYPT15], vSQL[Oakland17], ...

Storage interfaces: key-value stores, SQL databases, etc.

Two key limitations of recent systems:

- Storage ops. are expensive: tens of seconds to minutes of CPU-time
- Support only a sequential execution model

Prior work can only support < 0.15 reqs/sec (even for simple services)

Support stateful computations

• Pantry[sosp13], Geppetto[Oakland15], CTV[EUROCRYPT15], vSQL[Oakland17], ...

Storage interfaces: key-value stores, SQL databases, etc.

Two key limitations of recent systems:

- Storage ops. are expensive: tens of seconds to minutes of CPU-time
- Support only a sequential execution model

Prior work can only support < 0.15 reqs/sec (even for simple services)

Our system, Spice [OSDI18, to appear]:

- Features a storage primitive that is >100x faster
- Supports a concurrent execution model
- Throughput: 488—1048 reqs/sec (512 CPU-cores)

Rest of this talk

Applications of verifiable state machines

Background and overview of Spice

Experimental results

Why are we interested in verifiable state machines?

They enable us to build:

1. Cloud services without trusting the cloud infrastructure

2. Private and efficient blockchains

- Permissionless (e.g., Ethereum)
- Permissioned (e.g., Hyperledger Fabric, Quorum, etc.)

Cloud-hosted ledgers

(inspired by https://sequence.io)

Value proposition:
An auditor can verify
the service---without
access to requests or
trusting the service

Issue(clientId, asset, balance, issuerSig)

accept/reject

- Transfer(senderId, recvId, asset, amount, senderSig)
- Retire(clientId, asset, amount, clientSig)

request types

Private and fast smart contracts

- All transactions and contract state are public → no confidentiality
- Every app-level request must be processed by blockchain → limits throughput
- Only a succinct trace is public → strong confidentiality
- Ethereum processes a succinct trace >
 can support high-throughput apps

Applications

• Background and overview of Spice

Experimental results

A quick overview of Pantry[SOSP13]

• Extends Zaatar[EuroSys13] and Pinocchio[Oakland13] to support state

Zaatar and Pinocchio support a large C subset:

- Arithmetic operations, bitwise operations
- Conditional control flow
- Volatile memory including pointers
- Loops: bound must be known at compile time

Pantry supports state while working in a stateless model---by using cryptographic hashes (a folklore idea)

How does Pantry support state?

Key idea: name data blocks with their short cryptographic hashes

Cost of a key-value store operation: logarithmic in the size of state Concretely: several minutes of CPU-time (10⁶ KV pairs)

```
return a " Z - p;

If prover supplies invalid state the assert will fail
```

Pantry builds a key-value store using this idea: treat hashes as pointers to data and construct a (Merkle) tree

Spice in a nutshell

Core idea: Use a set data structure [Blum et al. FOCS91, Clarke et al. ASIACRYPT03, Arasu et al. SIGMOD17] instead of a tree

- Key-value store op = add an element to a set
- Costs = constant-time (amortized) vs. logarithmic

Spice in a nutshell

Core idea: Use a set data structure [Blum et al. FOCS91, Clarke et al. ASIACRYPT03, Arasu et al. SIGMOD17] instead of a tree

- Key-value store op = add an element to a set
- Costs = constant-time (amortized) vs. logarithmic

However: A naïve instantiation is slower than tree-based approach

- Spice presents an efficient instantiation using ECC (10⁶x faster than naïve)
- Spice includes new techniques to support inexpensive transactions

•

Implementation of Spice

• 3,000 lines of C atop Pantry [SOSP13] (~15,000 LOC)

• Three apps: 1,500 lines of C

- init(), insert(Key, Value), put(Key, Value), get(Key), delete(Key)
- lock(Key), unlock(Key)
- begin_txn(Key[], Value**), end_txn(Key[], Value[])

Applications

Background and overview of Spice

• Experimental results

Evaluation questions

- 1. How does Spice compare with the prior state-of-the-art?
- 2. What is the end-to-end performance of apps built with Spice?

Evaluation testbed:

 Azure D64s_v3 instances: 64 vCPUs, 2.4Ghz Intel Xeon, 256 GB RAM, running Ubuntu 17.04

(1) How does Spice compare to prior work?

A million key-value pairs

Transactions with a single operation, keys chosen with a uniform distribution

Metric: number of operations/second

	get	put
Pantry [SOSP13]	0.078	0.039
Pantry++	0.15	0.076
Geppetto [Oakland15]	0.002	0.002
Spice (1-thread)	3.3	3.3
Spice (512-threads)	1,250	1,259

(2) End-to-end performance with varying #CPUs

- TPS is 16,000x better than prior state-of-the art (algorithmic + hardware)
- Verification throughput: 15 million proof verifications/second

Summary

Verifiable state machines is a key tool for the cloud and blockchains

- Spice is a substantial milestone for building verifiable state machines
 - >16,000x better performance (over prior state-of-the-art)
 - Supports real-world applications with thousands of transactions/sec

We are excited about the many possibilities Spice points to!

Thank you!

