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• Correctness: If the service’s behavior is equivalent to a serial execution, verifiers accept
• Soundness: If the service misbehaves, Pr[a verifier outputs accept] < ϵ
• Zero-knowledge: Trace does not reveal anything beyond correct execution
• Succinctness: Each entry in the trace is small

Verifiable state machines

store

fully untrusted 
(no trusted hardware)



Prior work on verifiable state machines

• Pantry[SOSP13], Geppetto[Oakland15], CTV[EUROCRYPT15], vSQL[Oakland17], …

• The underlying theory dates back to 90s: Babai et al.[STOC91]

• Pepper [HotOS11, NDSS12], CMT [ITCS12], Ginger [Security12], TRMP [HotCloud12]

• Zaatar[EuroSys13], Pinocchio[Oakland13], SNARKS-for-C[CRYPTO13]

Storage interfaces: key-value stores, SQL databases, etc.

Cost reductions by 1020x

Support stateful computations
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• Storage ops. are expensive: tens of seconds to minutes of CPU-time
• Support only a sequential execution model
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Two key limitations of recent systems:
• Storage ops. are expensive: tens of seconds to minutes of CPU-time
• Support only a sequential execution model

Prior work can only support < 0.15 reqs/sec (even for simple services)

Our system, Spice [OSDI18, to appear]:
• Features a storage primitive that is >100x faster
• Supports a concurrent execution model
• Throughput: 488—1048 reqs/sec (512 CPU-cores)



Rest of this talk

• Applications of verifiable state machines

• Background and overview of Spice

• Experimental results



Why are we interested in verifiable state machines?

They enable us to build:
1. Cloud services without trusting the cloud infrastructure

2. Private and efficient blockchains
• Permissionless (e.g., Ethereum)
• Permissioned (e.g., Hyperledger Fabric, Quorum, etc.)



Cloud-hosted ledgers
(inspired by https://sequence.io)

clients service state

ClientI
d

Asse
t

Balanc
e

0x2ff1 USD 200

0xfad1 USD 500

0xba21 Euro 100auditor(s)

accept/reject

1. Issue(clientId, asset, balance, issuerSig)

2. Transfer(senderId, recvId, asset, amount, senderSig)

3. Retire(clientId, asset, amount, clientSig)

request types

Value proposition: 
An auditor can verify 
the service---without 
access to requests or 
trusting the service 



Private and fast smart contracts

Smart contract

Ethereum 
blockchain

• All transactions and contract state are 
public  no confidentiality

• Every app-level request must be processed 
by blockchain limits throughput

With verifiable state machines

Ethereum runs 
a verifier

service

succinct ZK 
trace

• Only a succinct trace is public  strong 
confidentiality

• Ethereum processes a succinct trace 
can support high-throughput apps



• Applications

• Background and overview of Spice

• Experimental results



A quick overview of Pantry[SOSP13]

• Extends Zaatar[EuroSys13] and Pinocchio[Oakland13] to support state

front-end
(translates C to constraints)

Equations over variables in a 
large (256-bit) finite field 𝔽𝔽p

int f(int a, int b) {
return a*2 – b;

}

C program

a = 3
b = 4

back-end
(an argument protocol)

prover

verifier

y = 2
proof

(x1 ∙ 2) – x3     = 0
(x3 – x2) – x4  = 0

x1 – input a   = 0
x2 – input b   = 0

x4 – output    = 0

translate build



Zaatar and Pinocchio support a large C subset:

• Arithmetic operations, bitwise operations
• Conditional control flow
• Volatile memory including pointers
• Loops: bound must be known at compile time

Pantry supports state while working in a stateless 
model---by using cryptographic hashes (a folklore idea)



How does Pantry support state?
Key idea: name data blocks with their short cryptographic hashes

int req(int a, uint8_t *digest) {
int b = prover_input();
assert(digest == SHA256(b));
return a*2 - b;

}

Prover supplies value for b (could be incorrect)

If prover supplies invalid state the assert will fail

Verifier supplies digest as one of the inputs

Pantry builds a key-value store using this idea: treat hashes as 
pointers to data and construct a (Merkle) tree

Cost of a key-value store operation: logarithmic in the size of state
Concretely: several minutes of CPU-time (106 KV pairs)



Spice in a nutshell
Core idea: Use a set data structure [Blum et al. FOCS91,  Clarke et al. 
ASIACRYPT03, Arasu et al. SIGMOD17] instead of a tree 
• Key-value store op = add an element to a set

• Costs = constant-time (amortized) vs. logarithmic

However: A naïve instantiation is slower than tree-based approach
• Spice presents an efficient instantiation using ECC (106x faster than naïve)

• Spice includes new techniques to support inexpensive transactions

• ….
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Implementation of Spice

request handler 
(a C program with calls to 

Spice’s storage API)

the service 
executable

the verifier 
executableThe Spice toolchain 

(compiler, etc.)

• 3,000 lines of C atop Pantry [SOSP13] (~15,000 LOC)

• Three apps: 1,500 lines of C

• init(), insert(Key, Value), put(Key, Value), get(Key), delete(Key)

• lock(Key), unlock(Key)

• begin_txn(Key[], Value**), end_txn(Key[], Value[])
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• Background and overview of Spice

• Experimental results



Evaluation questions

1. How does Spice compare with the prior state-of-the-art?

2. What is the end-to-end performance of apps built with Spice?

Evaluation testbed: 
• Azure D64s_v3 instances: 64 vCPUs, 2.4Ghz Intel Xeon, 256 GB 

RAM, running Ubuntu 17.04



(1) How does Spice compare to prior work? 

get put
Pantry [SOSP13] 0.078 0.039
Pantry++ 0.15 0.076
Geppetto [Oakland15] 0.002 0.002
Spice (1-thread) 3.3 3.3
Spice (512-threads) 1,250 1,259

A million key-value pairs

Transactions with a single operation, keys chosen with a uniform distribution

Metric: number of operations/second



(2) End-to-end performance with varying #CPUs

• TPS is 16,000x better than prior state-of-the art (algorithmic + hardware)
• Verification throughput: 15 million proof verifications/second



Summary

• Verifiable state machines is a key tool for the cloud and blockchains

• Spice is a substantial milestone for building verifiable state machines
• >16,000x better performance (over prior state-of-the-art)
• Supports real-world applications with thousands of transactions/sec

• We are excited about the many possibilities Spice points to!



Thank you!
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