

System Challenge in Deep Learning

L

* |Innovations are emerging very fast in deep learning area g Bricoon
ging very P g P CNTK o

« New DNN models and workload patterns fensor Caffe2

Intermediate Representation (IR)

« RNN, CNN, GAN, reinforcement learning, graph neural network, etc.
. . QA O-D
* Diverse and emerging hardware accelerators, W

* GPU, FPGA, ASICs, edge devices, NV-Link, RDMA, etc.

Compiler & Optimizer Infrastructure

o Compiler stack is key to bridge framework and hardware -
e Combine information of computation graph and hardware Execution backends
* Optimize for both local execution and distributed scalability
 Critical for both training and inference

Research

Faculty Summit 2018

Systems | Fueling future disruptions

Wolong: Optimizer Stack for Deep Learning

« System innovation to bridge application and hardware [Intermediate Represe”tatior‘}

(graph of operators)

e General computation graph optimization

___ e

» Software and hardware co-design Ve Tensor e Global Optimizer: A}

e Just-in-time compiler Placement e Optimize distributed training over RDMA |

i . i il « Graph analyzer/ RDMA memcpy librar

| Optimizer: [i i veer/ > ' i

¢ Transparent optlmlzatlon i| Memory layout}™ | .. !
L. . il and placement | i Local Optimizer: i

e Communication efficiency { optimization | | © Optimize execution with JIT compiler |

| e Operator batching/ kernel fusion

» Accelerator execution efficiency -

« Memory efficiency [Execution Runtime]

CPU, GPU, RDMA devices

Research
Faculty Summit 2018

Systems | Fueling future disruptions

Global Optimizer

Fast Distributed Deep Learning Computation over RDMA

Distributed Dataflow Graph Execution

» Deep learning computation is modeled as dataflow graph
» Achieve parallel manner through graph partitioning Sicoatch |
ispatc !
» Model parallelism vs. data parallelism parEc)itions !
e Tensor transmission across server becomes bottlenecks f ;
Send-Recv Benchmark -:_-_-_-_-_-_-_-_-_-_-_-_-: ----------------------------

10000 { \:

_ ——gRPC —~RDMA i H en >

E 1000 10x i Q :

g 100 i |

g ENONE

- 10 I !

:\ W1 X ;

N Y %Y 9 0 N XD o0 Y AN
ORI []
message size (MB)

Research

Faculty Summit 2018

Systems | Fueling future disruptions

General Message Passing Library (e.g., RPC)

« Unavoidable memory copy overhead in RPC '@Hj. T
* Generally designed for dynamic data structure ! @
* Lacks knowledge of actual data placement and size W_LX ___________

e Extra memory copy from data serialization

Application mory| ‘ Appllcatlon memory
& |

« Software/hardware co-design to completely

|
remove memory copy overhead RPC man ed buffer ~ RP managed buffer
e Leverage runtime application information @

e RDMA network U

Server, Serverl

Research

Faculty Summit 2018

Systems | Fueling future disruptions

Combine Dataflow Graph Computation with RDMA

» Tensor abstraction in deep learning computation
» Consists of a plain byte array with sufficiently large size (tens of KB to MB)
Do NOT require variant data serialization/deserialization
* Do NOT require extra batching since access pattern is already sequential

 RDMA enables to manage local and distributed memory in a unified view
e One-side RDMA R/W : efficient memory copy between host memory
e GPU-Direct RDMA : efficient memory copy between host and device memory

» Global graph optimizer for distributed computation
« Has the entire view and control of memory placement among devices and servers
« Capable of making globally optimized strategy for tensor data placement in runtime

Research
Faculty Summit 2018

Systems | Fueling future disruptions

Optimized Communication Mechanism

» Transfer statically placed tensor through one-side RDMA write
e Phase I: graph analyzing

, RDMA-based zero-copy communication
e Phase Il: graph execution

__

i \ | RDMA lib: | }
1 1 1

: : ' e Conduct remote memory copy ,: :
1 H \\ : ‘\—'"""———————————————; —————————————————— . :
i (o) \i One-sided s (Polling flag byte) :
i :\l ROMAwrite [T TT] - |
1 1 1
SoRnl! a
\ W1 X ’l \ \S\(?U rce Tensor Dest Tensor]

.......... 5 >

4
-
P4
U4
4
4
rd
-
P
e
o o

Research
Faculty Summit 2018

Systems | Fueling future disruptions

Global Optimizer: Performance Evaluation

* Improve training throughput, convergence speed and scalability

Deep Learning Benchmarks Convergence of Seq2Seq Translation

___700.0 100000

D 1.8x
ﬁ 600.0

%) 10000
i

S 500.0 2.3x Z
S o)

7 400.0 L 1000

L 2-3x speed u

= 2.6x o . p p |
£ 300.0 & !
- 100

5 200.0 4.2x

o AL AN A
S ’

%0 100.0 8.1x 10

© . 0 500 1000 1500 2000 2500
c 0.0 .

- AlexNet Inception LSTM VGG16 Run time (s)

B TensorFlow(gRPC) Wolong —TensorFlow(gRPC) Wolong(RDMA)

More details in our paper: RPC Considered Harmful: Fast Distributed Deep Learning on RDMA

* Experiments are conducted on 8 servers 8 Nvidia GTX 1080 GPUs; The translation model uses WTM’15 datasets;

Research

Faculty Summit 2018

Systems | Fueling future disruptions

Local Optimizer

Kernel Fusion for Deep Learning on GPU

Motivation

* Deep learning frameworks model computation as graph of primitive operators
o Expressivity to represent arbitrary neural network structure
 Flexibility to run on multi-device and multi-server through graph partitioning

 Significant framework overhead to schedule thousands of operators

e Kernel-launch overhead LSTM 512x512 (80steps)
» Cross operator communication overhead 40.00
» Too fine-grained to leverage vendor’s library 7 30.00
gzo.oo
* Example: 80-step LSTM model € oo
» Contains 1686 operators in TensorFlow 000 C —
TensorFlow CUDNN FuseKernel

Research

Faculty Summit 2018

Systems | Fueling future disruptions

DL Frameworks vs. Vendor Provided Library

Flexibility e Deep learning frameworks « DL framework + Compiler
* E.g., TensorFlow, PyTorch, CNTK « Generate library-like code in runtime
 Embrace flexibility and expressivity « Win both of the worlds
e Performance inefficiency

* Hardware specific library
e E.g., cuDNN, cuBlas, MKL
» Designed for extreme efficiency

* Impossible to handle customized or
new network structure

Research
Faculty Summit 2018

Systems | Fueling future disruptions

Wolong Compiler Design

« Computation graph level optimization Computational Graph (IR)
e Graph rewriting based on computational equivalence

« Common subexpression elimination, constant folding etc.

» Operator batching. automatically batch same type operators Graph level optimizer
to better leverage batch efficiency

Target specific JIT compiler

e Target and application specific runtime compilation
« Static shape and type inference

e Static memory planning
e Aggressive kernel fusion

Research
Faculty Summit 2018

Systems | Fueling future disruptions

Wolong Compiler Execution Workflow

|
.. I .
Detect optimize subgraphi Code generation
\ templ948 = x12.val[global_idx % x12.size] + x13.val[global
, temp1949 = templ948 + x11.vall[global_idx % xl1l.sizel;
| temp1950 = sigmoidf (templ949);
| temp1945 = x9.val[global_idx % x9.size] + x10.vallglobal id .
: templ946 = templ945 + x8.val[global_idx % x8.sizel; JIT Complle
: . templ952 = templ946 + x7.val[global idx % x7.size];
: Sha pe inference templ953 = sigmoidf (templ9s2);
| » temp1954 = xe.vaHg'{oEa{_iﬂx % xs.size% * tenpl%f[ﬂ_l;- bel id » FusedKernel
: 0 temp1936 = x5.val[global_idx % x5.size] + x4.vallglobal_idx
| I I\/Iemory pla NNINg temp1937 = templ936 + x3.vallglobal_idx % x3.sizel;
: : temp1938 = sigmoidf (temp1937);
: I templ940 = x2.vallglobal_idx % x2.size] + x1.vallglobal_idx
: 1 temp1941 = templ1940 + x8.vallglobal_idx % x8.sizel;
| [templ942 = tanhf (templ941);
| : temp1943 = templ938 * temp1942;
) temp1955 = templ954 + templ943; .
: l Rewrite graph
Operator batching ! grap
|
I
: Cache hit in later iterations -y ;
Input graph | | |
[: |
I : .
|
|
|
I
Before Graph Execution ! Runtime Optimization
|
|

Research
Faculty Summit 2018

Systems | Fueling future disruptions

Graph Level Optimization: Operator Batching

e Automatically conduct GEMM fusion and static memory placement optimization

M,[4,1] i Concat(M,, M,) M,[4,1]
M0[214] B M1[214] B

Tensor M,(2,4) |Tensor I\/Il(2,4)]

\/\/,5» \ 7 PA

! ! i ! i /
H H i L i Concat Tensor I\/Ig(4,4)
i Concat(0,, O,)
0,[2,1] 0,[2,1] | W

Research

Faculty Summit 2018

Systems | Fueling future disruptions

JIT Compilation: Kernel Fusion

* Leverage aggressive kernel fusion to completely remove scheduling overhead

* Element-wise (i.e., point-wise) operators
* No cross-element dependency between operators
» Better leverage cache, reqgister locality

void kernel o(*x1, *x2,

h = sigmoid(xq; + x5) /

idx = blockIdx.x * blockDim.x +
threadIdx.Xx;
(idx < 1024) {
temp@ = x1[idx] + x2[idx];
templ = sigmoidf(temp@);
h[idx] = templ;

Research
Faculty Summit 2018

Systems | Fueling future disruptions

JIT Compilation: Kernel Fusion

* Fuse arbitrary (non element-wise) operators in to single kernel
» Operator data dependency may introduce cross threads data dependency in kernel

e Need global synchronization to guarantee correctness
e Cross operator communication uses device memory

* E.g., fuse two matrix multiplications: Z=A X B x C

void kernel 0(*A, *B, *C, float *Z) {
if (idx < 1024) {
buffer[idx] = MatMul f(A, B);
Global Sync();
Z[idx] = MatMul_ f(buffer, C);
h[idx] = templ;
}
}

Research
Faculty Summit 2018

Systems | Fueling future disruptions

Graph Computation in DL Frameworks

* QOperators (kernels) are scheduled (launched) one by one

GPU
Cl
ol —
Overhead of kernel launching,
— G o C C C C

DAG scheduling, memory copy,
‘ ‘, etc.

Research
Faculty Summit 2018

Systems | Fueling future disruptions

Arbitrary Kernel Fusion Is Limited by GPU Architechture

» Hard to conduct global synchronization across all threads

GPU

PCle
)

Never complete due
”to waiting for barrier

barrier

—

Fused as single kernel ' Never be scheduled

Research
Faculty Summit 2018

Systems | Fueling future disruptions

Our Solution: Persistent Threads and Virtual Blocks

* Assign virtual block task to persistent threads

Cl
u

R blgl blﬁ3 bI&4 blo

——/
. vblock3 vblock4
Fused as single kernel
vblock9 RS

Research
Faculty Summit 2018

barrier

Systems | Fueling future disruptions

Kernel Packing

* Explore graph level parallelism in static code generation

GPU
PCle
-

block0 blockl block2 block3 blocka blocks Under utilization of
[64, 512] [512, 128] GPU resource

‘ Add

MatMul

vblockO vblockl vblock2 vblock3

vblockO vblock1 vblock2 vblock3

~

vblock6

(64, 128]

Research
Faculty Summit 2018

Systems | Fueling future disruptions

Code Generation

void kernel 0O(*A, *B, *C) {

}

idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < 1024) {
temp® = sigmoidf(A[idx]);
buffer@[idx] = tempo;
}
GlobalSync();
for (tix = bx; tix < ey; tix += offx) {
for (int tiy = by; tiy < ey; tiy += offy) {
MatMul (buffere, B, bufferl, , ,);
}
}
if (idx < 1024) {
temp2 = reluf(templ);
C[idx] = temp2;
}

sigmoidf(in) {
+ expf(-in));

reluf(

return fmaxf , in);

MatMul (
*c, m, n,
if (thread_ix < m && thread_iy < k) {
float temp 5
for (i=0;1i<n; ++i) {
temp += a[tix*n+i] * b[k*i+tiy];

c[k * tix + tiy] = temp;
}
}

MatMul, Add, Mul, Sub, Div, Relu, Sigmoid, Tanh, Split, Max, Min,

Research

Faculty Summit 2018

Systems | Fueling future disruptions

Convolution, etc.

Performance of End-to-end Kernel Fusion

 RNN inference benchmark (LSTM-128uints-80steps)

| —. A g
= &

LSTM Benchmark

w
9

w
o

=

m%«\gm Fused 1686 operators into 1 kernel

?m

N
o

10.94

. -
x
= -
v -
\’\
i
X
g
& %
\
N
L 3 iy, [
e am, p— -
= =D
ax s g ™
s P\ s
= N= Wolong
sty = mase
- F— PR— .
. o o v o
i) am <ame —';;ff-‘;
[t MR [<Al
] -]
/ w I -ETy
o m 7 Y =]
#Emm 4 o i
R} ~
A prs
X e -]
i gy
i
,(\
Tgm
>

TensorFlow XLA OpBatch Fusion

= =N
U O

—'“
c
wn
D
ID_
s
1)
-3
=)
®
Avg Runtime(ms)
o

-‘:‘.‘ E .
5
F]
o (O]

e Experiments are conducted on Nvidia GTX 1080 Ti GPUs

Research

Faculty Summit 2018

Systems | Fueling future disruptions

Conclusion

* A compiler infrastructure is critical for both cloud and edge Al
* Optimize for fast distributed training in cloud
« Optimize for efficient inference on accelerator devices

« System innovations to bridge applications and diverse hardware
e« Common intermediate representation (IR)
» Co-design software and hardware for extreme efficiency

* Wolong prototype has demonstrated the initial improvements
* Up to 8x speedup on training workloads
* Up to 10x speedup on inference benchmark

Research
Faculty Summit 2018

Systems | Fueling future disruptions

\T

F. . Lrs e 3 % o b,
(7 T LA NN \
AV V] Py/ = < .
W P2 = = S\
| i i _ _ i \ ._ %
) (S . !
.__,‘ 4 B
_ v“

.
i\

////n\\h?‘h\\ 2

——

W
-
@)
+
Q.
D)
-
2
o
)
| -
D)
+—
D)
G
@)
=
o
D)
L
W
-
)
+
s
>
W

Thank You!

== Microsoft

=& Microsoft

© Copyright Microsoft Corporation. All rights reserved.

Distributed Graph Optimizer of Wolong

 Transfer dynamically allocated tensor through RDMA write/read
e Phase I: graph analyzing

+ Phase II: graph execution } Supports GPUDirect RDMA as well

‘I \‘ ', ----------- \‘
. | : ; ;
) L One-sided 1 T ' !
' I ensor meta data I I
i Q \“ | Tensor meta data RDMA write ! i i
!) ‘\‘i 1 ; 2 & I l
1 : : :
| W, X : : Allocate | i
\W1 4 N 1 One-sided \)
‘1 I RDMA read /
...... i
|
Source Tensor i Dest Tensor
1
Server,

Research
Faculty Summit 2018

Systems | Fueling future disruptions

	Research�Faculty Summit 2018
	Wolong: A Backend Optimizer for Deep Learning Computation
	System Challenge in Deep Learning
	Wolong: Optimizer Stack for Deep Learning
	Slide Number 5
	Distributed Dataflow Graph Execution
	General Message Passing Library (e.g., RPC)�
	Combine Dataflow Graph Computation with RDMA
	Optimized Communication Mechanism
	Global Optimizer: Performance Evaluation
	Slide Number 11
	Motivation
	DL Frameworks vs. Vendor Provided Library
	Wolong Compiler Design
	Wolong Compiler Execution Workflow
	Graph Level Optimization: Operator Batching
	JIT Compilation: Kernel Fusion
	JIT Compilation: Kernel Fusion
	Graph Computation in DL Frameworks
	Arbitrary Kernel Fusion Is Limited by GPU Architechture
	Our Solution: Persistent Threads and Virtual Blocks
	Kernel Packing
	Code Generation
	Performance of End-to-end Kernel Fusion
	Conclusion
	Thank You!
	Slide Number 27
	Distributed Graph Optimizer of Wolong

